1
|
Ma M, Chen J, Dong L, Su Y, Tian S, Zhou Y, Li M. Polyoxometalates and their composites for antimicrobial applications: Advances, mechanisms and future prospects. J Inorg Biochem 2024; 262:112739. [PMID: 39293326 DOI: 10.1016/j.jinorgbio.2024.112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
The overuse of antibiotics can lead to the development of antibiotic-resistant bacteria, which can be even more difficult to treat and pose an even greater threat to public health. In order to address the issue of antibiotic-resistant bacteria, researchers currently are exploring alternative methods of sterilization that are both effective and sustainable. Polyoxometalates (POMs), as emerging transition metal oxide compounds, exhibit significant potential in various applications due to their remarkable tunable physical and chemical performance, especially in antibacterial fields. They constitute a diverse family of inorganic clusters, characterized by a wide array of composition, structures and charges. Presently, several studies indicated that POM-based composites have garnered extensive attention in the realms of the antibacterial field and may become promising materials for future medical applications. Moreover, this review will focus on exploring the antibacterial properties and mechanisms of different kinds of organic-inorganic hybrid POMs, POM-based composites, films and hydrogels with substantial bioactivity, while POM-based composites have the dual advantages of POMs and other materials. Additionally, the potential antimicrobial mechanisms have also been discussed, mainly encompassing cell wall/membrane disruption, intracellular material leakage, heightened intracellular reactive oxygen species (ROS) levels, and depletion of glutathione (GSH). These findings open up exciting possibilities for POMs as exemplary materials in the antibacterial arena and expand their prospective applications.
Collapse
Affiliation(s)
- Min Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayin Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Liuyang Dong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yue Su
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China; International Joint Research Laboratory for Cell Medical Engineering of Henan, Kaifeng, Henan 475000, China.
| | - Shufang Tian
- School of Energy Science and Technology, Henan University, Zhengzhou 450046, China.
| | - Yuemin Zhou
- Department of Plastic and Reconstructive Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China; International Joint Research Laboratory for Cell Medical Engineering of Henan, Kaifeng, Henan 475000, China
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China; Department of Plastic and Reconstructive Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China.
| |
Collapse
|
2
|
Wu T, Luo C, Li T, Zhang C, Chen HX, Mao YT, Wu YT, Huang HF. Effects of exposure to multiple metallic elements in the first trimester of pregnancy on the risk of preterm birth. MATERNAL & CHILD NUTRITION 2024:e13682. [PMID: 38925571 DOI: 10.1111/mcn.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Exposure to certain heavy metals has been demonstrated to be associated with a higher risk of preterm birth (PTB). However, studies focused on the effects of other metal mixtures were limited. A nested case‒control study enrolling 94 PTB cases and 282 controls was conducted. Metallic elements were detected in maternal plasma collected in the first trimester using inductively coupled plasma‒mass spectrometry. The effect of maternal exposure on the risk of PTB was investigated using logistic regression, least absolute shrinkage and selection operator, restricted cubic spline (RCS), quantile g computation (QGC) and Bayesian kernel machine regression (BKMR). Vanadium (V) and arsenic (As) were positively associated with PTB risk in the logistic model, and V remains positively associated in the multi-exposure logistic model. QGC analysis determined V (69.42%) and nickel (Ni) (70.30%) as the maximum positive and negative contributors to the PTB risk, respectively. BKMR models further demonstrated a positive relationship between the exposure levels of the mixtures and PTB risk, and V was identified as the most important independent variable among the elements. RCS analysis showed an inverted U-shape effect of V and gestational age, and plasma V more than 2.18 μg/L was considered a risk factor for shortened gestation length. Exposure to metallic elements mixtures consisting of V, As, cobalt, Ni, chromium and manganese in the first trimester was associated with an increased risk of PTB, and V was considered the most important factor in the mixtures in promoting the incidence of PTB.
Collapse
Affiliation(s)
- Ting Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Chuan Luo
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Tao Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Chen Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hui-Xi Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yi-Ting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - He-Feng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Cardiology, Shanghai, China
| |
Collapse
|
3
|
Barbosa MDM, de Lima LMA, Alves WADS, de Lima EKB, da Silva LA, da Silva TD, Postal K, Ramadan M, Kostenkova K, Gomes DA, Nunes GG, Pereira MC, da Silva WE, Belian MF, Crans DC, Lira EC. In Vitro, Oral Acute, and Repeated 28-Day Oral Dose Toxicity of a Mixed-Valence Polyoxovanadate Cluster. Pharmaceuticals (Basel) 2023; 16:1232. [PMID: 37765040 PMCID: PMC10536805 DOI: 10.3390/ph16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 08/13/2023] [Indexed: 09/29/2023] Open
Abstract
Polyoxovanadates (POV) are a subgroup of polyoxometalates (POM), which are nanosized clusters with reported biological activities. This manuscript describes the first toxicity evaluation of a mixed-valence polyoxovanadate, pentadecavanadate, (Me4N)6[V15O36Cl], abbreviated as V15. Cytotoxicity experiments using peripheral blood mononuclear cells (PBMC), larvae of Artemia salina Leach, and in vivo oral acute and repeated 28-day doses in mice was carried out. The LC50 values in PBMC cells and A. salina were 17.5 ± 5.8 μmol L-1, and 17.9 µg L-1, respectively, which indicates high cytotoxic activity. The toxicity in mice was not observed upon acute exposure in a single dose, however, the V15 repeated 28-day oral administration demonstrated high toxicity using 25 mg/kg, 50 mg/kg and, 300 mg/kg doses. The biochemical and hematological analyses during the 28-day administration of V15 showed significant alteration of the metabolic parameters related to the kidney and liver, suggesting moderate toxicity. The V15 toxicity was attributed to the oxidative stress and lipid peroxidation, once thiobarbituric acid (TBAR) levels significantly increased in both males and females treated with high doses of the POV and also in males treated with a lower dose of the POV. This is the first study reporting a treatment-related mortality in animals acutely administrated with a mixed-valence POV, contrasting with the well-known, less toxic decavanadate. These results document the toxicity of this mixed-valence POV, which may not be suitable for biomedical applications.
Collapse
Affiliation(s)
- Mariana de M. Barbosa
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Lidiane M. A. de Lima
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.d.S.); (M.F.B.)
| | - Widarlane A. da S. Alves
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Eucilene K. B. de Lima
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Luzia A. da Silva
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Thiago D. da Silva
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Kahoana Postal
- Centro Politécnico, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil; (K.P.); (G.G.N.)
| | - Mohammad Ramadan
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (K.K.)
| | - Kateryna Kostenkova
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (K.K.)
| | - Dayane A. Gomes
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Giovana G. Nunes
- Centro Politécnico, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil; (K.P.); (G.G.N.)
| | - Michelly C. Pereira
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Wagner E. da Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.d.S.); (M.F.B.)
| | - Mônica F. Belian
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.d.S.); (M.F.B.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (K.K.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Eduardo C. Lira
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| |
Collapse
|
4
|
Alsherif EA, Hajjar D, AbdElgawad H. Future Climate CO 2 Reduces the Tungsten Effect in Rye Plants: A Growth and Biochemical Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:1924. [PMID: 37653841 PMCID: PMC10222005 DOI: 10.3390/plants12101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
Heavy metal pollution is one of the major agronomic challenges. Tungsten (W) exposure leads to its accumulation in plants, which in turn reduces plant growth, inhibits photosynthesis and induces oxidative damage. In addition, the predicted increase in CO2 could boost plant growth under both optimal and heavy metal stress conditions. The aim of the present study was to investigate the effect of W on growth, photosynthetic parameters, oxidative stress and redox status in rye plants under ambient and elevated (eCO2) levels. To this end, rye plants were grown under the following conditions: ambient CO2 (aCO2, 420 ppm), elevated CO2 (eCO2, 720 ppm), W stress (350 mg kg-1 soil) and W+eCO2. W stress induced significant (p < 0.05) decreases in growth and photosynthesis, increases in oxidative damages (lipid peroxidation) and the antioxidant defense system, i.e., ascorbate (ASC), reduced glutathione (GSH), GSH reductase (GR), peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), ASC peroxide (APX) and dehydroascorbate reductase (DHAR). On the other hand, eCO2 decreased W uptake and improved photosynthesis, which sequentially improved plant growth. The obtained results showed that eCO2 can decrease the phytotoxicity risks of W in rye plants. This positive impact of eCO2 on reducing the negative effects of soil W was related to their ability to enhance plant photosynthesis, which in turn provided energy and a carbon source for scavenging the reactive oxygen species (ROS) accumulation caused by soil W stress.
Collapse
Affiliation(s)
- Emad A. Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Dina Hajjar
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2018 Antwerp, Belgium;
| |
Collapse
|
5
|
Alsherif EA, AbdElgawad H. Elevated CO 2 Suppresses the Vanadium Stress in Wheat Plants under the Future Climate CO 2. PLANTS (BASEL, SWITZERLAND) 2023; 12:1535. [PMID: 37050160 PMCID: PMC10096617 DOI: 10.3390/plants12071535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Increases in atmospheric CO2 is known to promote plant growth under heavy metals stress conditions. However, vanadium (V) stress mitigating the impact of eCO2 as well as the physiological and biochemical bases of this stress mitigation have not been well studied. To this end, this study investigated the growth, photosynthetic parameters, oxidative damages antioxidants, and antioxidants enzymes in wheat plants grown under ambient (420 PPM) and high eCO2 (720 ppm) levels. Exposing wheat plants to higher V increased its accumulation in plants which consequentially inhibited plant growth and induced oxidative damage. An increase in antioxidant and detoxification defense systems was observed but it was not enough to reduce V stress toxicity. On the other hand, wheat growth was improved as a result of reduced V uptake and toxicity on photosynthesis under eCO2. To reduce V uptake, wheat accumulated citric acid, and oxalic acid in soil preferentially under both treatments but to more extend under V and eCO2. Additionally, improved photosynthesis induced high carbon availability that was directed to produce chelating proteins (metallothioneins, phytochelatin) and antioxidants (phenolics, flavonoids, total antioxidant capacity). This study advances our knowledge of the processes behind the variations in the physiological and biochemical responses of the wheat crop under V and eCO2 conditions.
Collapse
Affiliation(s)
- Emad A. Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2180 Antwerp, Belgium
| |
Collapse
|
6
|
Aureliano M, De Sousa-Coelho AL, Dolan CC, Roess DA, Crans DC. Biological Consequences of Vanadium Effects on Formation of Reactive Oxygen Species and Lipid Peroxidation. Int J Mol Sci 2023; 24:ijms24065382. [PMID: 36982458 PMCID: PMC10049017 DOI: 10.3390/ijms24065382] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review.
Collapse
Affiliation(s)
- Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- CCMar, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence: (M.A.); (D.C.C.); Tel.: +351-289-900-805 (M.A.)
| | - Ana Luísa De Sousa-Coelho
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), 8005-139 Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), 8005-139 Faro, Portugal
| | - Connor C. Dolan
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Cellular and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
- Correspondence: (M.A.); (D.C.C.); Tel.: +351-289-900-805 (M.A.)
| |
Collapse
|
7
|
Clichici A, Filip GA, Achim M, Baldea I, Cristea C, Melinte G, Pana O, Tudoran LB, Dudea D, Stefan R. Characterization and In Vitro Biocompatibility of Two New Bioglasses for Application in Dental Medicine-A Preliminary Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9060. [PMID: 36556865 PMCID: PMC9782195 DOI: 10.3390/ma15249060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Bioactive glasses (BGs), also known as bioglasses, are very attractive and versatile materials that are increasingly being used in dentistry. For this study, two new bioglasses-one with boron (BG1) and another with boron and vanadium (BG2)-were synthesized, characterized, and tested on human dysplastic keratinocytes. The in vitro biological properties were evaluated through pH and zeta potential measurement, weight loss, Ca2+ ions released after immersion in phosphate-buffered saline (PBS), and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) analysis. Furthermore, biocompatibility was evaluated through quantification of lactate dehydrogenase activity, oxidative stress, transcription factors, and DNA lesions. The results indicate that both BGs presented the same behavior in simulated fluids, characterized by high degradation, fast release of calcium and boron in the environment (especially from BG1), and increased pH and zeta potential. Both BGs reacted with the fluid, particularly BG2, with irregular deposits covering the glass surface. In vitro studies demonstrated that normal doses of the BGs were not cytotoxic to DOK, while high doses reduced cell viability. Both BGs induced oxidative stress and cell membrane damage and enhanced NFkB activation, especially BG1. The BGs down-regulated the expression of NFkB and diminished the DNA damage, suggesting the protective effects of the BGs on cell death and efficacy of DNA repair mechanisms.
Collapse
Affiliation(s)
- Andra Clichici
- Department of Propaedeutics and Dental Materials, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Marcela Achim
- Departments of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, 400606 Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Cecilia Cristea
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Gheorghe Melinte
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ovidiu Pana
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Diana Dudea
- Department of Propaedeutics and Dental Materials, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan Stefan
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Anticancer, antimicrobial and biomedical features of polyoxometalate as advanced materials: A review study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Zeneli L, Daci-Ajvazi M, Sekovanić A, Jurasović J, Bajraktari D. The Effects of Chromium and Vanadium on Biomarkers of Carbohydrate and Lipid Metabolism in Workers Exposed to Coal Fly Ash. J Xenobiot 2022; 12:307-316. [PMID: 36278758 PMCID: PMC9590079 DOI: 10.3390/jox12040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chromium (Cr) and vanadium (V) are micronutrients playing a role in carbohydrate and lipid metabolism but can be toxic at high concentrations, especially in specific forms. The study documents the effect of Cr and V concentrations on glucose and lipid metabolism in workers exposed to coal fly ash. We quantified selected metals (Cr, V) in the blood and serum of workers from a thermal power plant in Kosovo and compared them with the reference biological values. We determined fasting serum glucose and lipid profiles using a biochemical analyzer Synchron CX7 (Beckman Coulter). We quantified blood and serum Cr and V by inductively coupled plasma mass spectrometry. We also evaluated the association between carbohydrate and lipid metabolism biomarkers (glucose, cholesterol, and triglycerides) and co-exposure to coal fly ash. Power plant workers had significantly higher blood Cr and V levels (p < 0.0001) and significantly lower serum Cr and V levels (p < 0.0001) than the controls. We also found statistically significant (p < 0.0001) correlations between high blood Cr levels and low glucose/blood Cr ratios as well as between high serum Cr levels and low glucose/serum Cr ratios. Finally, in power plant workers, high blood V levels significantly correlated with low triglycerides/blood V and cholesterol/blood V ratios (p < 0.0001), while high serum V levels correlated with low cholesterol/serum V ratios (p = 0.005). Based on these findings, we concluded that the glucose/Cr, triglycerides/V and cholesterol/V ratios should be considered when evaluating carbohydrate and lipid metabolism disorders in occupationally-exposed workers.
Collapse
Affiliation(s)
- Lulzim Zeneli
- Faculty of Education, University Fehmi Agani, 50000 Gjakova, Kosovo
| | - Majlinda Daci-Ajvazi
- Faculty of Mathematics and Natural Sciences, University of Prishtina, 10000 Prishtina, Kosovo
| | - Ankica Sekovanić
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Jasna Jurasović
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Demush Bajraktari
- Faculty of Pharmacy, UBT Higher Education Institution, 10000 Prishtina, Kosovo
- Correspondence:
| |
Collapse
|
10
|
Chang D, Li Y, Chen Y, Wang X, Zang D, Liu T. Polyoxometalate-based nanocomposites for antitumor and antibacterial applications. NANOSCALE ADVANCES 2022; 4:3689-3706. [PMID: 36133327 PMCID: PMC9470027 DOI: 10.1039/d2na00391k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/17/2022] [Indexed: 06/07/2023]
Abstract
Polyoxometalates (POMs), as emerging inorganic metal oxides, have been shown to have significant biological activity and great medicinal value. Nowadays, biologically active POM-based organic-inorganic hybrid materials have become the next generation of antibacterial and anticancer drugs because of their customizable molecular structures related to their highly enhanced antitumor activity and reduced toxicity to healthy cells. In this review, the current developed strategies with POM-based materials for the purpose of antibacterial and anticancer activities from different action principles inducing cell death and hyperpolarization, cell plasma membrane destruction, interference with bacterial respiratory chain and inhibiting bacterial growth are overviewed. Moreover, specific interactions between POM-based materials and biomolecules are highlighted for a better understanding of their antibacterial and anticancer mechanisms. POMs have great promise as next-generation antibacterial and anticancer drugs, and this review will provide a valuable systematic reference for the further development of POM-based nanomaterials.
Collapse
Affiliation(s)
- Dening Chang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Yanda Li
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Yuxuan Chen
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Dejin Zang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Teng Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| |
Collapse
|
11
|
Chang J, Li M, Du J, Ma M, Xing C, Sun L, Ma P. A Nickel-Containing Polyoxomolybdate as an Efficient Antibacterial Agent for Water Treatment. Int J Mol Sci 2022; 23:ijms23179651. [PMID: 36077048 PMCID: PMC9456081 DOI: 10.3390/ijms23179651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/25/2022] Open
Abstract
In view of the water pollution issues caused by pathogenic microorganisms and harmful organic contaminants, nontoxic, environmentally friendly, and efficient antimicrobial agents are urgently required. Herein, a nickel-based Keggin polyoxomolybdate [Ni(L)(HL)]2H[PMo12O40] 4H2O (1, HL = 2-acetylpyrazine thiosemicarbazone) was prepared via a facile hydrothermal method and successfully characterized. Compound 1 exhibited high stability in a wide range of pH values from 4 to 10. 1 demonstrated significant antibacterial activity, with minimum inhibitory concentration (MIC) values in the range of 0.0019–0.2400 µg/mL against four types of bacteria, including Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), Escherichia coli (E. coli), and Agrobacterium tumefaciens (A. tumefaciens). Further time-kill studies indicated that 1 killed almost all (99.9%) of E. coli and S. aureus. Meanwhile, the possible antibacterial mechanism was explored, and the results indicate that the antibacterial properties of 1 originate from the synergistic effect between [Ni(L)(HL)]+ and [PMo12O40]3−. In addition, 1 presented effective adsorption of basic fuchsin (BF) dyes. The kinetic data fitted a pseudo-second-order kinetic model well, and the maximum adsorption efficiency for the BF dyes (29.81 mg/g) was determined by the data fit of the Freundlich isotherm model. The results show that BF adsorption was dominated by both chemical adsorption and multilayer adsorption. This work provides evidence that 1 has potential to effectively remove dyes and pathogenic bacteria from wastewater.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Sun
- Correspondence: (L.S.); (P.M.)
| | | |
Collapse
|
12
|
Bilal S, Sami AJ, Hayat A, Fayyaz Ur Rehman M. Assessment of pesticide induced inhibition of Apis mellifera (honeybee) acetylcholinesterase by means of N-doped carbon dots/BSA nanocomposite modified electrochemical biosensor. Bioelectrochemistry 2022; 144:107999. [PMID: 34801807 DOI: 10.1016/j.bioelechem.2021.107999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
This work describes the development and optimization of an electrochemical method to evaluate pesticide induced inhibition of honey bee (Apis mellifera) acetylcholinesterase (AChE) by means of acetylcholinesterase biosensor. The inhibition assay was based on the detection of changes in electrochemical activity of the enzyme caused by pesticide. As transducer, nitrogen doped carbon dots BSA (N-CD/BSA) nanocomposite electrodeposited on pencil graphite electrode was used to covalently immobilize AChE. The as-synthesized nanocomposite and fabricated electrodes were characterized for the structural, functional and electrochemical properties. Nanocomposite promoted the electron transfer reaction to catalyze the electro-oxidation of thiocholine and a large current response was obtained by cyclic voltammetry at 0.77 V, indicating successful immobilization of AChE. The sensitivity of Diazinon, an OP insecticide, for honeybee AChE was tested under optimal conditions and a linear response ranging 10-250 nM was obtained with a detection limit of 8.9 nM, and sensitivity 9 uA/nM/cm2. The method showed a good operational reproducibility and selectivity of biosensor. Further, the molecular docking provided additional support to the experimental data suggesting irreversible nature and contact toxicity of the pesticide for honey bee AChE. The developed biosensor has proved useful for the diazinon detection in wheat samples with 99% recovery rate.
Collapse
Affiliation(s)
- Sehrish Bilal
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54000, Pakistan; Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore 54000, Pakistan.
| | - Amtul Jamil Sami
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54000, Pakistan; Center for Biosensor Research and Development (CBRD), University of the Punjab, Lahore 54000, Pakistan.
| | - Akhtar Hayat
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore 54000, Pakistan.
| | | |
Collapse
|
13
|
Aureliano M, Gumerova NI, Sciortino G, Garribba E, McLauchlan CC, Rompel A, Crans DC. Polyoxidovanadates' interactions with proteins: An overview. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214344] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Corona-Motolinia ND, Martínez-Valencia B, Noriega L, Sánchez-Gaytán BL, Melendez FJ, García-García A, Choquesillo-Lazarte D, Rodríguez-Diéguez A, Castro ME, González-Vergara E. Tris(2-Pyridylmethylamine)V(O)2 Complexes as Counter Ions of Diprotonated Decavanadate Anion: Potential Antineoplastic Activity. Front Chem 2022; 10:830511. [PMID: 35252118 PMCID: PMC8888438 DOI: 10.3389/fchem.2022.830511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
The synthesis and theoretical-experimental characterization of a novel diprotanated decavanadate is presented here due to our search for novel anticancer metallodrugs. Tris(2-pyridylmethyl)amine (TPMA), which is also known to have anticancer activity in osteosarcoma cell lines, was introduced as a possible cationic species that could act as a counterpart for the decavanadate anion. However, the isolated compound contains the previously reported vanadium (V) dioxido-tpma moieties, and the decavanadate anion appears to be diprotonated. The structural characterization of the compound was performed by infrared spectroscopy and single-crystal X-ray diffraction. In addition, DFT calculations were used to analyze the reactive sites involved in the donor-acceptor interactions from the molecular electrostatic potential maps. The level of theory mPW1PW91/6–31G(d)-LANL2DZ and ECP = LANL2DZ for the V atom was used. These insights about the compounds’ main interactions were supported by analyzing the noncovalent interactions utilizing the AIM and Hirshfeld surfaces approach. Molecular docking studies with small RNA fragments were used to assess the hypothesis that decavanadate’s anticancer activity could be attributed to its interaction with lncRNA molecules. Thus, a combination of three potentially beneficial components could be evaluated in various cancer cell lines.
Collapse
Affiliation(s)
- Nidia D. Corona-Motolinia
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Beatriz Martínez-Valencia
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Lisset Noriega
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Brenda L. Sánchez-Gaytán
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Francisco J. Melendez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Amalia García-García
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | - María Eugenia Castro
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: María Eugenia Castro, ; Enrique González-Vergara,
| | - Enrique González-Vergara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: María Eugenia Castro, ; Enrique González-Vergara,
| |
Collapse
|
15
|
Kita DH, de Andrade GA, Missina JM, Postal K, Boell VK, Santana FS, Zattoni IF, da Silva Zanzarini I, Moure VR, de Moraes Rego FG, Picheth G, de Souza EM, Mitchell DA, Ambudkar SV, Nunes GG, Valdameri G. Polyoxovanadates as new P-glycoprotein inhibitors: insights into the mechanism of inhibition. FEBS Lett 2022; 596:381-399. [PMID: 34939198 PMCID: PMC9340886 DOI: 10.1002/1873-3468.14265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
A promising strategy to overcome multidrug resistance is the use of inhibitors of ABC drug transporters. For this reason, we evaluated the polyoxovanadates (POVs) [V10 O28 ]6- (V10 ), [H6 V14 O38 (PO4 )]5- (V14 ), [V15 O36 Cl]6- (V15 ) and [V18 O42 I]7- (V18 ) as inhibitors of three major multidrug resistance-linked ABC transporters: P-glycoprotein (P-gp), ABCG2 and MRP1. All of the POVs selectively inhibited P-gp. V10 and V18 were the two most promising compounds, with IC50 values of transport inhibition of 25.4 and 22.7 µm, respectively. Both compounds inhibited P-gp ATPase activity, with the same IC50 value of 1.26 µm. V10 and V18 triggered different conformational changes in the P-gp protein with time-dependent inhibition, which was confirmed using the synthesized salt of V10 with rhodamine B, RhoB-V10 . The hydrophilic nature of POVs supports the hypothesis that these compounds target an unusual ligand-binding site, opening new possibilities in the development of potent modulators of ABC transporters.
Collapse
MESH Headings
- Humans
- ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry
- Multidrug Resistance-Associated Proteins/antagonists & inhibitors
- Multidrug Resistance-Associated Proteins/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/genetics
- Tungsten Compounds/pharmacology
- Tungsten Compounds/chemistry
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/chemistry
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Drug Resistance, Multiple/drug effects
- Animals
Collapse
Affiliation(s)
- Diogo Henrique Kita
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gisele Alves de Andrade
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Kahoana Postal
- Department of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | - Ingrid Fatima Zattoni
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
| | - Isadora da Silva Zanzarini
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
| | - Vivian Rotuno Moure
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - David A. Mitchell
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Glaucio Valdameri
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
16
|
Liu L, Li X, Wu M, Yu M, Wang L, Hu L, Li Y, Song L, Wang Y, Mei S. Individual and joint effects of metal exposure on metabolic syndrome among Chinese adults. CHEMOSPHERE 2022; 287:132295. [PMID: 34563779 DOI: 10.1016/j.chemosphere.2021.132295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence suggests that metal exposure contributes to metabolic syndrome (MetS), but little is known about the effects of combined exposure to metal mixtures. This cross-sectional study included 3748 adults who were recruited from the Medical Physical Examination Center of Tongji Hospital, Wuhan, China. The levels of 21 metal(loid)s in urine were measured by inductively coupled plasma mass spectrometry. MetS was diagnosed according to National Cholesterol Education Program's Adult Treatment Panel III recommendations. Multivariate logistic regression model was uesd to explore the effects of single-metal and multi-metal exposures. The elastic net (ENET) regularization with an environmental risk score (ERS) was performed to estimate the joint effects of exposure to metal mixtures. A total of 636 participants (17%) were diagnosed with MetS. In single metal models, MetS was positively associated with zinc (Zn) and negatively associated with nickel (Ni). In multiple metal models, the associations remained significant after adjusting for the other metals. In the joint association analysis, the ENET models selected Zn as the strongest predictor of MetS. Compared to the lowest quartile, the highest quartile of ERS was associated with an elevated risk of MetS (OR = 3.72; 95% CI: 2.77, 5.91; P-trend < 0.001). Overall, we identified that the combined effect of multiple metals was related to an increased MetS risk, with Zn being the major contributor. These findings need further validation in prospective studies.
Collapse
Affiliation(s)
- Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
17
|
|
18
|
Selim S, Abuelsoud W, Alsharari SS, Alowaiesh BF, Al-Sanea MM, Al Jaouni S, Madany MMY, AbdElgawad H. Improved Mineral Acquisition, Sugars Metabolism and Redox Status after Mycorrhizal Inoculation Are the Basis for Tolerance to Vanadium Stress in C3 and C4 Grasses. J Fungi (Basel) 2021; 7:915. [PMID: 34829204 PMCID: PMC8625288 DOI: 10.3390/jof7110915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 01/30/2023] Open
Abstract
Vanadium (V) can be beneficial or toxic to plant growth and the interaction between arbuscular mycorrhizal fungi (AMF) and V stress was rarely investigated at physiological and biochemical levels of plant groups (C3 and C4) and organs (roots and shoots). We tested the potential of AMF to alleviate the negative effects of V (350 mg V/Kg soil) on shoots and roots of rye and sorghum. Relative to sorghum (C4), rye (C3) showed higher levels of V and lower levels of key elements under V stress conditions. V inhibited growth, photosynthesis, and induced photorespiration (increased HDR & GO activities) and oxidative damage in both plants. AMF colonization reduced V stress by differently mitigating the oxidative stress in rye and sorghum. This mitigation was accompanied with increases in acid and alkaline phosphatase activities in plant roots and increased organic acids and polyphenols exudation into the soil, thus reduced V accumulation (29% and 58% in rye and sorghum shoot, respectively) and improved absorption of mineral nutrients including Ca, Mg and P. AMF colonization improved photosynthesis and increased the sugar accumulation and metabolism. Sugars also acted as a supplier of C skeletons for producing of antioxidants metabolite such as ascorbate. At the antioxidant level, rye was more responsive to the mitigating impact of AMF. Higher antioxidants and detoxification defence system (MTC, GST, phenolics, tocopherols and activities of CAT, SOD and POX) was recorded for rye, while sorghum (C4) improved its GR activity. The C3/C4-specificity was supported by principal component analysis. Together, this study provided both fundamental and applied insights into practical strategies to mitigate the phytotoxicity hazards of V in C3 and C4 grasses. Moreover, our results emphasize the importance of AMF as an environment-friendly factor to alleviate stress effects on plants and to improve growth and yield of unstressed plants.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | - Walid Abuelsoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt; (W.A.); (M.M.Y.M.)
| | - Salam S. Alsharari
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 72341, Saudi Arabia; (S.S.A.); (B.F.A.)
| | - Bassam F Alowaiesh
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 72341, Saudi Arabia; (S.S.A.); (B.F.A.)
| | - Mohammad M. Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf Province, Saudi Arabia;
| | - Soad Al Jaouni
- Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mahmoud M. Y. Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt; (W.A.); (M.M.Y.M.)
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawwarah 41411, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000 Antwerp, Belgium
| |
Collapse
|
19
|
Sciortino G, Aureliano M, Garribba E. Rationalizing the Decavanadate(V) and Oxidovanadium(IV) Binding to G-Actin and the Competition with Decaniobate(V) and ATP. Inorg Chem 2021; 60:334-344. [PMID: 33253559 PMCID: PMC8016201 DOI: 10.1021/acs.inorgchem.0c02971] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 02/07/2023]
Abstract
The experimental data collected over the past 15 years on the interaction of decavanadate(V) (V10O286-; V10), a polyoxometalate (POM) with promising anticancer and antibacterial action, with G-actin, were rationalized by using several computational approaches (docking, density functional theory (DFT), and molecular dynamics (MD)). Moreover, a comparison with the isostructural and more stable decaniobate(V) (Nb10O286-; Nb10) was carried out. Four binding sites were identified, named α, β, γ, and δ, the site α being the catalytic nucleotide site located in the cleft of the enzyme at the interface of the subdomains II and IV. It was observed that the site α is preferred by V10, whereas Nb10 is more stable at the site β; this indicates that, differently from other proteins, G-actin could contemporaneously bind the two POMs, whose action would be synergistic. Both decavanadate and decaniobate induce conformational rearrangements in G-actin, larger for V10 than Nb10. Moreover, the binding mode of oxidovanadium(IV) ion, VIVO2+, formed upon the reduction of decavanadate(V) by the -SH groups of accessible cysteine residues, is also found in the catalytic site α with (His161, Asp154) coordination; this adduct overlaps significantly with the region where ATP is bound, accounting for the competition between V10 and its reduction product VIVO2+ with ATP, as previously observed by EPR spectroscopy. Finally, the competition with ATP was rationalized: since decavanadate prefers the nucleotide site α, Ca2+-ATP displaces V10 from this site, while the competition is less important for Nb10 because this POM shows a higher affinity for β than for site α. A relevant consequence of this paper is that other metallodrug-protein systems, in the absence or presence of eventual inhibitors and/or competition with molecules of the organism, could be studied with the same approach, suggesting important elements for an explanation of the biological data and a rational drug design.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
- Institute
of Chemical Research of Catalonia (ICIQ), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Manuel Aureliano
- CCMar,
FCT, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8000-139 Faro, Portugal
| | - Eugenio Garribba
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
20
|
Kinetic Studies of Sodium and Metforminium Decavanadates Decomposition and In Vitro Cytotoxicity and Insulin- Like Activity. INORGANICS 2020. [DOI: 10.3390/inorganics8120067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The kinetics of the decomposition of 0.5 and 1.0 mM sodium decavanadate (NaDeca) and metforminium decavanadate (MetfDeca) solutions were studied by 51V NMR in Dulbecco’s modified Eagle’s medium (DMEM) medium (pH 7.4) at 25 °C. The results showed that decomposition products are orthovanadate [H2VO4]− (V1) and metavanadate species like [H2V2O7]2− (V2), [V4O12]4− (V4) and [V5O15]5− (V5) for both compounds. The calculated half-life times of the decomposition reaction were 9 and 11 h for NaDeca and MetfDeca, respectively, at 1 mM concentration. The hydrolysis products that presented the highest rate constants were V1 and V4 for both compounds. Cytotoxic activity studies using non-tumorigenic HEK293 cell line and human liver cancer HEPG2 cells showed that decavanadates compounds exhibit selectivity action toward HEPG2 cells after 24 h. The effect of vanadium compounds (8–30 μM concentration) on the protein expression of AKT and AMPK were investigated in HEPG2 cell lines, showing that NaDeca and MetfDeca compounds exhibit a dose-dependence increase in phosphorylated AKT. Additionally, NaDeca at 30 µM concentration stimulated the glucose cell uptake moderately (62%) in 3T3-L1 adipocytes. Finally, an insulin release assay in βTC-6 cells (30 µM concentration) showed that sodium orthovanadate (MetV) and MetfDeca enhanced insulin release by 0.7 and 1-fold, respectively.
Collapse
|
21
|
Ohiomokhare S, Olaolorun F, Ladagu A, Olopade F, Howes MJR, Okello E, Olopade J, Chazot PL. The Pathopharmacological Interplay between Vanadium and Iron in Parkinson's Disease Models. Int J Mol Sci 2020; 21:E6719. [PMID: 32937783 PMCID: PMC7554808 DOI: 10.3390/ijms21186719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) pathology is characterised by distinct types of cellular defects, notably associated with oxidative damage and mitochondria dysfunction, leading to the selective loss of dopaminergic neurons in the brain's substantia nigra pars compacta (SNpc). Exposure to some environmental toxicants and heavy metals has been associated with PD pathogenesis. Raised iron levels have also been consistently observed in the nigrostriatal pathway of PD cases. This study explored, for the first time, the effects of an exogenous environmental heavy metal (vanadium) and its interaction with iron, focusing on the subtoxic effects of these metals on PD-like oxidative stress phenotypes in Catecholaminergic a-differentiated (CAD) cells and PTEN-induced kinase 1 (PINK-1)B9Drosophila melanogaster models of PD. We found that undifferentiated CAD cells were more susceptible to vanadium exposure than differentiated cells, and this susceptibility was modulated by iron. In PINK-1 flies, the exposure to chronic low doses of vanadium exacerbated the existing motor deficits, reduced survival, and increased the production of reactive oxygen species (ROS). Both Aloysia citrodora Paláu, a natural iron chelator, and Deferoxamine Mesylate (DFO), a synthetic iron chelator, significantly protected against the PD-like phenotypes in both models. These results favour the case for iron-chelation therapy as a viable option for the symptomatic treatment of PD.
Collapse
Affiliation(s)
- Samuel Ohiomokhare
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK; (S.O.); (F.O.); (A.L.)
| | - Francis Olaolorun
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK; (S.O.); (F.O.); (A.L.)
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria;
| | - Amany Ladagu
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK; (S.O.); (F.O.); (A.L.)
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria;
| | - Funmilayo Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria;
| | - Melanie-Jayne R. Howes
- Natural Capital and Plant Health Department, Royal Botanic Gardens Kew, Surrey TW9 3DS, UK;
| | - Edward Okello
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Tyne and Wear NE1 7RU, UK;
| | - James Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria;
| | - Paul L. Chazot
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK; (S.O.); (F.O.); (A.L.)
| |
Collapse
|
22
|
Zhao M, Fang Y, Ma L, Zhu X, Jiang L, Li M, Han Q. Synthesis, characterization and in vitro antibacterial mechanism study of two Keggin-type polyoxometalates. J Inorg Biochem 2020; 210:111131. [DOI: 10.1016/j.jinorgbio.2020.111131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
|
23
|
Ścibior A, Kurus J. Vanadium and Oxidative Stress Markers - In Vivo Model: A Review. Curr Med Chem 2019; 26:5456-5500. [PMID: 30621554 DOI: 10.2174/0929867326666190108112255] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/23/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022]
Abstract
This review article is an attempt to summarize the current state of knowledge of the impact of Vanadium (V) on Oxidative Stress (OS) markers in vivo. It shows the results of our studies and studies conducted by other researchers on the influence of different V compounds on the level of selected Reactive Oxygen Species (ROS)/Free Radicals (FRs), markers of Lipid peroxidation (LPO), as well as enzymatic and non-enzymatic antioxidants. It also presents the impact of ROS/peroxides on the activity of antioxidant enzymes modulated by V and illustrates the mechanisms of the inactivation thereof caused by this metal and reactive oxygen metabolites. It also focuses on the mechanisms of interaction of V with some nonenzymatic compounds of the antioxidative system. Furthermore, we review the routes of generation of oxygen-derived FRs and non-radical oxygen derivatives (in which V is involved) as well as the consequences of FR-mediated LPO (induced by this metal) together with the negative/ positive effects of LPO products. A brief description of the localization and function of some antioxidant enzymes and low-molecular-weight antioxidants, which are able to form complexes with V and play a crucial role in the metabolism of this element, is presented as well. The report also shows the OS historical background and OS markers (determined in animals under V treatment) on a timeline, collects data on interactions of V with one of the elements with antioxidant potential, and highlights the necessity and desirability of conducting studies of mutual interactions between V and antioxidant elements.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Joanna Kurus
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
24
|
In vitro study of the protective effect of manganese against vanadium-mediated nuclear and mitochondrial DNA damage. Food Chem Toxicol 2019; 135:110900. [PMID: 31654710 DOI: 10.1016/j.fct.2019.110900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/24/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022]
Abstract
We aimed to study the effect of vanadium(V) exposure on cell viability, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) and to elucidate if these effects can be reverted by co-exposure to V and manganese (Mn). HepG2 cells were incubated with various concentrations of bis(maltolato)oxovanadium(IV) or MnCl2 for 32 h for viability study. The higher concentrations (59 μM V, 54 nM Mn and 59 μM V+54 nM Mn) were used to study DNA damage and uptake of V and Mn. Comet assay was used for the study of nDNA damage; mtDNA damage was studied by determining deletions and number of copies of the ND1/ND4 mtDNA region. Cellular content of V and Mn was determined using ICPMS. Cellular exposure to 59 μM V decreased viability (14%) and damaged nDNA and mtDNA. This effect was partially prevented by the co-exposure to V + Mn. Exposure to V increased the cellular content of V and Mn (812.3% and 153.5%, respectively). Exposure to Mn decreased the content of V and Mn (62% and 56%, respectively). Exposure to V + Mn increased V (261%) and decreased Mn (56%) content. The positive effects on cell viability and DNA damage when incubated with V + Mn could be due to the Mn-mediated inhibition of V uptake.
Collapse
|
25
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
26
|
Treviño S, González-Vergara E. Metformin-decavanadate treatment ameliorates hyperglycemia and redox balance of the liver and muscle in a rat model of alloxan-induced diabetes. NEW J CHEM 2019. [DOI: 10.1039/c9nj02460c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MetfDeca treatment ameliorate glucose and insulin levels, and reduce the levels of oxidized glutathione, reactive oxygen species, malondialdehyde, and 4-hydroxyalkenal; the superoxide and catalase activities, and glutathione levels were regulated.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas
- Benemérita Universidad Autónoma de Puebla
- Puebla
- Mexico
| | - Enrique González-Vergara
- Laboratorio de Bioinorgánica Aplicada
- Centro de Química ICUAP
- Benemérita Universidad Autónoma de Puebla
- Puebla
- Mexico
| |
Collapse
|
27
|
Fang Y, Xing C, Zhan S, Zhao M, Li M, Liu H. A polyoxometalate-modified magnetic nanocomposite: a promising antibacterial material for water treatment. J Mater Chem B 2019; 7:1933-1944. [DOI: 10.1039/c8tb03331e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A polyoxometalate-modified magnetic nanocomposite integrates the double antibacterial effects of both Fe3O4 and polyoxometalate, rendering it a promising candidate as an antimicrobial material.
Collapse
Affiliation(s)
- Yan Fang
- Henan Key Laboratory of Polyoxometalates
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| | - Cuili Xing
- Henan Key Laboratory of Polyoxometalates
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| | - Shixia Zhan
- Henan Key Laboratory of Polyoxometalates
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| | - Meng Zhao
- Henan Key Laboratory of Polyoxometalates
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalates
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| | - Hongling Liu
- Henan Key Laboratory of Polyoxometalates
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| |
Collapse
|
28
|
Jin S, Xia W, Jiang Y, Sun X, Huang S, Zhang B, Zhou A, Zheng T, Xu S, Li Y. Urinary vanadium concentration in relation to premature rupture of membranes: A birth cohort study. CHEMOSPHERE 2018; 210:1035-1041. [PMID: 30208528 DOI: 10.1016/j.chemosphere.2018.07.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Heavy metal exposure has been indicated to be linked with reproductive and developmental toxicity. However, human studies on the association between heavy metal exposure and premature rupture of membranes (PROM) are limited. Thus, we aimed to evaluate the associations between urinary metal concentrations in pregnant women and the risk of PROM. The study was conducted among 7290 pregnant women from an ongoing cohort study in China. Levels of urinary metals were determined using an inductively coupled plasma-mass spectrometry and adjusted by creatinine concentration (μg/g creatinine). Adjusted odds ratios (OR) and 95% confidence intervals (CI) for PROM and preterm PROM were estimated using logistic regression models. Among 12 urinary metals detected, vanadium (V) have shown stable positive associations with PROM and preterm PROM. With one unit increase in natural logarithmically transformed urinary V concentration, adjusted OR of 1.57 (95% CI: 1.47, 1.66) for PROM was observed. Compared with the lowest tertile of urinary V, we also observed positive associations between V levels and PROM (for the medium tertile, adjusted OR = 1.66, 95% CI: 1.34, 2.05; for the highest tertile, adjusted OR = 3.75, 95% CI: 3.09, 4.54). In addition, higher adjusted ORs for preterm PROM were observed (for the highest tertile, adjusted OR = 8.14, 95% CI: 4.55, 14.55). Further stratified analysis suggested the associations were more pronounced among women delivering male infants than those with female infants. Our present epidemiological study indicated that pregnant women exposure to higher level of V might lead to an increased risk of PROM.
Collapse
Affiliation(s)
- Shuna Jin
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangqian Jiang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sha Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Zhang
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, Hubei, China
| | - Aifen Zhou
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, Hubei, China
| | - Tongzhang Zheng
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
29
|
Sánchez-Lara E, Treviño S, Sánchez-Gaytán BL, Sánchez-Mora E, Eugenia Castro M, Meléndez-Bustamante FJ, Méndez-Rojas MA, González-Vergara E. Decavanadate Salts of Cytosine and Metformin: A Combined Experimental-Theoretical Study of Potential Metallodrugs Against Diabetes and Cancer. Front Chem 2018; 6:402. [PMID: 30333969 PMCID: PMC6176007 DOI: 10.3389/fchem.2018.00402] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/20/2018] [Indexed: 01/15/2023] Open
Abstract
Cytosine, a DNA and RNA building-block, and Metformin, the most widely prescribed drug for the treatment of Type 2 Diabetes mellitus were made to react separately with ammonium or sodium metavanadates in acidic aqueous solutions to obtain two polyoxovanadate salts with a 6:1 ratio of cation-anion. Thus, compounds [HCyt]6[V10O28]·4H2O, 1 and [HMetf]6[V10O28]·6H2O, 2 (where HCyt = Cytosinium cation, [C4H6N3O]+ and HMetf = Metforminium cation, [C4H12N5]+) were obtained and characterized by elemental analysis, single crystal X-ray diffraction, vibrational spectroscopy (IR and Raman), solution 51V-NMR, thermogravimetric analysis (TGA-DTGA), as well as, theoretical methods. Both compounds crystallized in P1 ¯ space group with Z' = 1/2, where the anionic charge of the centrosymmetric ion [V10O28]6- is balanced by six Cytosinium and six Metforminium counterions, respectively. Compound 1 is stabilized by π-π stacking interactions coming from the aromatic rings of HCyt cations, as denoted by close contacts of 3.63 Å. On the other hand, guanidinium moieties from the non-planar HMetf in Compound 2 interact with decavanadate μ2-O atoms via N-H···O hydrogen bonds. The vibrational spectroscopic data of both IR and Raman spectra show that the dominant bands in the 1000-450 cm-1 range are due to the symmetric and asymmetric ν(V-O) vibrational modes. In solution, 51V-NMR experiments of both compounds show that polyoxovanadate species are progressively transformed into the monomeric, dimeric and tetrameric oxovanadates. The thermal stability behavior suggests a similar molecular mechanism regarding the loss of water molecules and the decomposition of the organic counterions. Yet, no changes were observed in the TGA range of 540-580°C due to the stability of the [V10O28]6- fragment. Dispersion-corrected density functional theory (DFT-D) calculations were carried out to model the compounds in aqueous phase using a polarized continuum model calculation. Optimized structures were obtained and the main non-covalent interactions were characterized. Biological activities of these compounds are also under investigation. The combination of two therapeutic agents opens up a window toward the generation of potential metalopharmaceuticals with new and exciting pharmacological properties.
Collapse
Affiliation(s)
- Eduardo Sánchez-Lara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Brenda L. Sánchez-Gaytán
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Enrique Sánchez-Mora
- Instituto de Física “Luis Rivera Terrazas”, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - María Eugenia Castro
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Miguel A. Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla, Mexico
| | - Enrique González-Vergara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
30
|
Wang J, Huang X, Zhang K, Mao X, Ding X, Zeng Q, Bai S, Xuan Y, Peng H. Vanadate oxidative and apoptotic effects are mediated by the MAPK-Nrf2 pathway in layer oviduct magnum epithelial cells. Metallomics 2018; 9:1562-1575. [PMID: 29022012 DOI: 10.1039/c7mt00191f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vanadium is a metal of high physiological, environmental and industrial importance. However, vanadium-induced oxidative stress can reduce the egg quality of poultry, and be potentially harmful to humans, and the underlying mechanism is not clear. In this study, we investigated the underlying relationship between the oxidant-sensitive mitogen-activated protein kinase (MAPK) signaling pathway and vanadium-induced oxidative stress in oviduct magnum epithelial (OME) cells. Cultured OME cells were treated with 100 μmol L-1 vanadium and/or MAPK inhibitors [P38 MAPK inhibitor, SB203580; extracellular regulated protein kinase 1 and 2 (ERK1/2) inhibitor, U0126; c-JUN N-terminal kinases (JNK) inhibitor, SP600125]. Cell viability, apoptosis, and generation of reactive oxygen species (ROS) were assessed using flow cytometry. The expression of oxidative stress-related genes and their proteins was measured by reverse transcription-polymerase chain reaction and western blotting. Vanadium treatment reduced cell viability, whereas pretreated OME cells with SB203580 and U0126 prevented the reducing effect of vanadium on cell viability (P < 0.05). Likewise, MAPK inhibitors effectively suppressed vanadium-induced apoptosis and ROS generation (P < 0.05). In the OME cells treated with vanadium, SB203580 (P < 0.05) and SP600125 (P = 0.08) increased catalase activity by 89.3% and 55.3%; SB203580 and U0126 increased (P < 0.05) glutathione peroxidase activity by 44.9% and 51.1%, respectively. Incubation of OME cells with MAPK inhibitors also prevents malondialdehyde concentration increase and lactic dehydrogenase activity decrease in response to vanadium (P < 0.05). Vanadium downregulated P38, ERK1/2, JNK, Nrf2, sMaf, GCLC, NQO1 and HO-1 mRNA expression (P < 0.05). In contrast, inhibition of JNK with SP600125 upregulated P38, ERK1/2, JNK, Nrf2, GCLC and HO-1 mRNA expression (P < 0.05); inhibition of P38 with SB203580 upregulated JNK, NQO1 and HO-1 mRNA expression (P < 0.05); and inhibition of ERK1/2 with U0126 upregulated ERK1/2, GCLC and HO-1 mRNA expression (P < 0.05). Moreover, phosphorylation of P38, ERK1/2, JNK, and Nrf2 proteins was enhanced by V incubation; however, SP600125 blocked the phosphorylation of these proteins, whereas SB203580 blocked the phosphorylation of P38 and Nrf2. These results indicate that vanadium inducing oxidative stress in OME cells might be, at least, associated with the phosphorylation of the P38MAPK/JNK-Nrf2 pathway, which reduces the expression of phase II detoxifying enzymes.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Chengdu 611130, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bijelic A, Aureliano M, Rompel A. The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives. Chem Commun (Camb) 2018; 54:1153-1169. [PMID: 29355262 PMCID: PMC5804480 DOI: 10.1039/c7cc07549a] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/02/2018] [Indexed: 02/05/2023]
Abstract
Polyoxometalates (POMs) are, mostly anionic, metal oxide compounds that span a wide range of tunable physical and chemical features rendering them very interesting for biological purposes, an continuously emerging but little explored field. Due to their biological and biochemical effects, including antitumor, -viral and -bacterial properties, POMs and POM-based systems are considered as promising future metallodrugs. In this article, we focus on the antibacterial activity of POMs and their therapeutic potential in the battle against bacteria and their increasing resistance against pharmaceuticals. Recent advances in the synthesis of POMs are highlighted, with emphasis on the development and properties of biologically active POM-based hybrid and nanocomposite structures. By analysing the antibacterial activity and structure of POMs, putative mode of actions are provided, including potential targets for POM-protein interactions, and a structure-activity-relationship was established for a series of POMs against two bacteria, namely Helicobacter pylori and Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Aleksandar Bijelic
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße 14 , 1090 Wien , Austria . ; http://www.bpc.univie.ac.at
| | - Manuel Aureliano
- CCMar , FCT , Faculdade de Ciências e Tecnologia , Universidade do Algarve , 8000-139 Faro , Portugal
| | - Annette Rompel
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße 14 , 1090 Wien , Austria . ; http://www.bpc.univie.ac.at
| |
Collapse
|
32
|
Wang J, Zhou H, Guo G, Cheng T, Peng X, Mao X, Li J, Zhang X. A functionalized surface modification with vanadium nanoparticles of various valences against implant-associated bloodstream infection. Int J Nanomedicine 2017; 12:3121-3136. [PMID: 28458535 PMCID: PMC5402895 DOI: 10.2147/ijn.s129459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bloodstream infection, especially with implants involved, is an often life-threatening condition with high mortality rates, imposing a heavy burden on patients and medical systems. Herein, we firstly deposited homogeneous vanadium metal, V2O3, VO2, and V2O5 nanofilms on quartz glass by magnetron sputtering. Using these platforms, we further investigated the potential antimicrobial efficiency of these nano-VOx films and the interactions of human erythrocytes and bacteria (methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa) with our samples in a novel cell–bacteria coculture model. It was demonstrated that these nano-VOx precipitated favorable antibacterial activity on both bacteria, especially on S. aureus, and this effect increased with higher vanadium valence. A possible mechanism accountable for these results might be elevated levels of vanadium-induced intracellular reactive oxygen species. More importantly, based on hemolysis assays, our nano-VOx films were found to be able to kill prokaryotic cells but were not toxic to mammalian cells, holding the potential for the prevention of implant-related hematogenous infections. As far as we know, this is the first report wherein such nano-VOx films have assisted human erythrocytes to combat bacteria in a valence-dependent manner. Additionally, vanadium ions were released from these nano-VOx films in a sustained manner, and low-valence films possessed better biocompatibility with human fibroblasts. This work may provide new insights for biomedical applications of inorganic vanadium compounds and attract growing attention in this field. From the perspective of surface modification and functionalization, this study holds promise to avail the prophylaxis of bloodstream infections involving implantable biomedical devices.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University
| | - Huaijuan Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University
| | - Tao Cheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University
| | - Xiaochun Peng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University
| | - Xin Mao
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University
| | - Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai.,Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,University of Chinese Academy of Sciences, Beijing, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University
| |
Collapse
|
33
|
Li J, Zhou H, Wang J, Wang D, Shen R, Zhang X, Jin P, Liu X. Oxidative stress-mediated selective antimicrobial ability of nano-VO2 against Gram-positive bacteria for environmental and biomedical applications. NANOSCALE 2016; 8:11907-11923. [PMID: 27240639 DOI: 10.1039/c6nr02844f] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Vanadium dioxide (VO2) is a unique thermochromic material as a result of its semiconductor-metal transition, holding great promise for energy-saving intelligent windows. Herein, pure nano-VO2 from discrete nanoparticles to continuous films were successfully deposited on quartz glass by controlling the sputtering parameters. It was demonstrated that, for Gram-positive S. aureus and S. epidermidis, the nano-VO2 could effectively disrupt bacteria morphology and membrane integrity, and eventually cause death. By contrast, the nano-VO2 did not exhibit significant toxicity towards Gram-negative E. coli and P. aeruginosa. To our knowledge, this is the first report on a selective antimicrobial effect of nano-VO2 materials on Gram-positive bacteria. Based on the experimental results, a plausible mechanism was proposed for the antimicrobial selectivity, which might originate from the different sensitivity of Gram-positive and Gram-negative bacteria to intracellular reactive oxygen species (ROS) level. Elevated intracellular ROS levels exceed the threshold that bacteria can self-regulate to maintain cellular redox homeostasis and thus cause oxidative stress, which can be alleviated by the intervention of glutathione (GSH) antioxidant. In addition, nano-VO2 did not produce significant cytotoxicity (hemolysis) against human erythrocytes within 12 h. Meanwhile, potential cytotoxicity against HIBEpiC revealed a time- and dose-dependent behavior that might be controlled and balanced by careful design. The findings in the present work may contribute to understanding the antimicrobial behavior of nano-VO2, and to expanding the new applications of VO2-based nanomaterials in environmental and biomedical fields.
Collapse
Affiliation(s)
- Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaijuan Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruxiang Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Ping Jin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology, Nagoya 463-8560, Japan.
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
34
|
Metforminium Decavanadate as a Potential Metallopharmaceutical Drug for the Treatment of Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6058705. [PMID: 27119007 PMCID: PMC4826921 DOI: 10.1155/2016/6058705] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/14/2022]
Abstract
New potential drugs based on vanadium are being developed as possible treatments for diabetes mellitus (DM) and its complications. In this regard, our working group developed metforminium decavanadate (MetfDeca), a compound with hypoglycemic and hypolipidemic properties. MetfDeca was evaluated in models of type 1 and type 2 diabetes mellitus, on male Wistar rats. Alloxan-induction was employed to produce DM1 model, while a hypercaloric-diet was employed to generate DM2 model. Two-month treatments with 3.7 μg (2.5 μM)/300 g/twice a week for DM2 and 7.18 μg (4.8 μM)/300 g/twice a week for DM1 of MetfDeca, respectively, were administered. The resulting pharmacological data showed nontoxicological effects on liver and kidney. At the same time, MetfDeca showed an improvement of carbohydrates and lipids in tissues and serum. MetfDeca treatment was better than the monotherapies with metformin for DM2 and insulin for DM1. Additionally, MetfDeca showed a protective effect on pancreatic beta cells of DM1 rats, suggesting a possible regeneration of these cells, since they recovered their insulin levels. Therefore, MetfDeca could be considered not only as an insulin-mimetic agent, but also as an insulin-enhancing agent. Efforts to elucidate the mechanism of action of this compound are now in progress.
Collapse
|
35
|
Liu Y, Zhou Q, Xu J, Xue Y, Liu X, Wang J, Xue C. Assessment of total and organic vanadium levels and their bioaccumulation in edible sea cucumbers: tissues distribution, inter-species-specific, locational differences and seasonal variations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2016; 38:111-122. [PMID: 25732906 DOI: 10.1007/s10653-015-9689-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
The objective of this study is to investigate the levels, inter-species-specific, locational differences and seasonal variations of vanadium in sea cucumbers and to validate further several potential factors controlling the distribution of metals in sea cucumbers. Vanadium levels were evaluated in samples of edible sea cucumbers and were demonstrated exhibit differences in different seasons, species and sampling sites. High vanadium concentrations were measured in the sea cucumbers, and all of the vanadium detected was in an organic form. Mean vanadium concentrations were considerably higher in the blood (sea cucumber) than in the other studied tissues. The highest concentration of vanadium (2.56 μg g(-1)), as well as a higher degree of organic vanadium (85.5 %), was observed in the Holothuria scabra samples compared with all other samples. Vanadium levels in Apostichopus japonicus from Bohai Bay and Yellow Sea have marked seasonal variations. Average values of 1.09 μg g(-1) of total vanadium and 0.79 μg g(-1) of organic vanadium were obtained in various species of sea cucumbers. Significant positive correlations between vanadium in the seawater and V org in the sea cucumber (r = 81.67 %, p = 0.00), as well as between vanadium in the sediment and V org in the sea cucumber (r = 77.98 %, p = 0.00), were observed. Vanadium concentrations depend on the seasons (salinity, temperature), species, sampling sites and seawater environment (seawater, sediment). Given the adverse toxicological effects of inorganic vanadium and positive roles in controlling the development of diabetes in humans, a regular monitoring programme of vanadium content in edible sea cucumbers can be recommended.
Collapse
Affiliation(s)
- Yanjun Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China.
| | - Qingxin Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China.
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China.
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China.
| | - Xiaofang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China.
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China.
| |
Collapse
|
36
|
Zhou H, Li J, Bao S, Wang D, Liu X, Jin P. The potential cytotoxicity and mechanism of VO2 thin films for intelligent thermochromic windows. RSC Adv 2015. [DOI: 10.1039/c5ra22582e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The potential cytotoxicity of a thermochromic VO2 nanofilm to human cells presumably originates from ATP dyssynthesis by vanadate-phosphate antagonism.
Collapse
Affiliation(s)
- Huaijuan Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Shanhu Bao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Ping Jin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
37
|
Two novel compounds of vanadium and molybdenum with carnitine exhibiting potential pharmacological use. J Inorg Biochem 2014; 142:109-17. [PMID: 25450025 DOI: 10.1016/j.jinorgbio.2014.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 11/21/2022]
Abstract
The reaction of sodium orthovanadate with carnitine hydrochloride molecule results in the precipitation of decavanadate compound of carnitine whereas the reaction of metallic molybdenum with hydrogen peroxide and carnitine results in the peroxo-molybdenum complex of carnitine. The decavanadate compound as well as the molybdenum complex of carnitine have been characterized by means of elemental analysis, IR, electronic spectra, (1)H NMR, 2D-COSY-NMR (=correlation spectroscopy) and thermo-gravimetric analysis (TGA). In addition decavanadate compound of carnitine was fully characterized by X-ray crystallography. The analytical data were in good agreement with the empirical formulae of both, decavanadate compound and molybdenum complex. The two compounds were also evaluated for cell toxicity and their anticancer activity by the MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)-based assay method, using primary cells and tumor cell lines of both human and murine origins and the results show that compound 1 shows an increased biological activity in comparison with compound 2. Moreover using confocal microscopy and antibodies against cleaved caspase 3 we further analyzed the cell toxicity and we conclude that the apoptotic pathway is triggered efficiently with tumor specificity by compound 1 and not by compound 2.
Collapse
|
38
|
Aureliano M. Decavanadate contribution to vanadium biochemistry: In vitro and in vivo studies. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Aureliano M, Ohlin CA. Decavanadate in vitro and in vivo effects: facts and opinions. J Inorg Biochem 2014; 137:123-30. [PMID: 24865633 DOI: 10.1016/j.jinorgbio.2014.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/03/2014] [Accepted: 05/03/2014] [Indexed: 02/07/2023]
Abstract
This review covers recent advances in the understanding of the in vitro and in vivo effects of decavanadate, (V10O28)(6-), particularly in mitochondria. In vivo toxicological studies involving vanadium rarely account for the fact that under physiological conditions some vanadium may be present in the form of the decavanadate ion, which may behave differently from ortho- and metavanadates. It has for example been demonstrated that vanadium levels in heart or liver mitochondria are increased upon decavanadate exposure. Additionally, in vitro studies have shown that mitochondrial depolarization (IC50, 40 nM) and oxygen consumption (IC50, 99 nM) are strongly affected by decavanadate, which causes reduction of cytochrome b (complex III). We review these recent findings which together suggest that the observed cellular targets, metabolic pathway and toxicological effects differ according to the species of vanadium present. Finally, the toxicological effects of decavanadate depend on several factors such as the mode of administration, exposure time and type of tissue.
Collapse
Affiliation(s)
- M Aureliano
- DCBB, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-135 Faro, Portugal; CCMar, University of Algarve, Campus de Gambelas, 8005-135 Faro, Portugal.
| | - C André Ohlin
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
40
|
Ścibior A, Gołębiowska D, Adamczyk A, Niedźwiecka I, Fornal E. The renal effects of vanadate exposure: potential biomarkers and oxidative stress as a mechanism of functional renal disorders--preliminary studies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:740105. [PMID: 24605335 PMCID: PMC3925536 DOI: 10.1155/2014/740105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 11/21/2022]
Abstract
The alterations in the levels/activities of selected biomarkers for detecting kidney toxicity and in the levels of some oxidative stress (OS) markers and elements were studied in male rats to evaluate biochemically the degree of kidney damage, investigate the role of OS in the mechanism of functional renal disorders, reveal potential biomarkers of renal function, and assess the renal mineral changes in the conditions of a 12-week sodium metavanadate (SMV, 0.125 mg V/mL) exposure. The results showed that OS is involved in the mechanism underlying the development of SMV-induced functional renal disturbances. They also suggest that the urinary cystatin C (CysCu) and kidney injury molecule-1 (KIM-1u) could be the most appropriate to evaluate renal function at the conditions of SMV intoxication when the fluid intake, excreted urinary volume (EUV), body weight (BW), and the urinary creatinine excretion (Creu) decreased. The use of such tests as the urinary lactate dehydrogenase, alkaline phosphatase, γ-glutamyltranspeptidase, and N-acetyl-β-D-glucosaminidase (LDHu, ALPu, GGTPu, and NAGu) seems not to be valid given their reduced activities. The use of only traditional biomarkers of renal function in these conditions may, in turn, be insufficient because their alterations are greatly influenced by the changes in the fluid intake and/or BW.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Physiology and Animal Biochemistry, Department of Zoology and Invertebrate Ecology, Institute of Environmental Protection, The John Paul II Catholic University of Lublin, 102 Kraśnicka Avenue, 20-718 Lublin, Poland
- Laboratory of Oxidative Stress, Center for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 102 Kraśnicka Avenue, 20-718 Lublin, Poland
| | - Dorota Gołębiowska
- Laboratory of Physiology and Animal Biochemistry, Department of Zoology and Invertebrate Ecology, Institute of Environmental Protection, The John Paul II Catholic University of Lublin, 102 Kraśnicka Avenue, 20-718 Lublin, Poland
- Laboratory of Oxidative Stress, Center for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 102 Kraśnicka Avenue, 20-718 Lublin, Poland
| | - Agnieszka Adamczyk
- Laboratory of Physiology and Animal Biochemistry, Department of Zoology and Invertebrate Ecology, Institute of Environmental Protection, The John Paul II Catholic University of Lublin, 102 Kraśnicka Avenue, 20-718 Lublin, Poland
| | - Irmina Niedźwiecka
- Laboratory of Physiology and Animal Biochemistry, Department of Zoology and Invertebrate Ecology, Institute of Environmental Protection, The John Paul II Catholic University of Lublin, 102 Kraśnicka Avenue, 20-718 Lublin, Poland
| | - Emilia Fornal
- Laboratory of Separation and Spectroscopic Method Applications, Center for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 102 Kraśnicka Avenue, 20-718 Lublin, Poland
| |
Collapse
|
41
|
Yang XG, Wang K. Chemical, biochemical, and biological behaviors of vanadate and its oligomers. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2014; 54:1-18. [PMID: 24420708 DOI: 10.1007/978-3-642-41004-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Vanadate is widely used as an inhibitor of protein tyrosine phosphatases (PTPase) and is routinely applied in cell lysis buffers or immunoprecipitations of phosphotyrosyl proteins. Additionally, vanadate has been extensively studied for its antidiabetic and anticancer effects. In most studies, orthovanadate or metavanadate was used as the starting compound, whereas these "vanadate" solutions may contain more or less oligomerized species. Whether and how different species of vanadium compounds formed in the biological media exert specific biological effect is still a mystery. In the present commentary, we focus on the chemical, biochemical, and biological behaviors of vanadate. On the basis of species formation of vanadate in chemical and biological systems, we compared the biological effects and working mechanism of monovanadate with that of its oligomers, especially the decamer. We propose that different oligomers may exert a specific biological effect, which depends on their structures and the context of the cell types, by different modes of action.
Collapse
Affiliation(s)
- Xiao-Gai Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | | |
Collapse
|
42
|
Zwolak I. Vanadium carcinogenic, immunotoxic and neurotoxic effects: a review ofin vitrostudies. Toxicol Mech Methods 2013; 24:1-12. [DOI: 10.3109/15376516.2013.843110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Magnesium can protect against vanadium-induced lipid peroxidation in the hepatic tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:802734. [PMID: 23766862 PMCID: PMC3666205 DOI: 10.1155/2013/802734] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 11/23/2022]
Abstract
The protective effect of magnesium as magnesium sulfate (MS) on sodium-metavanadate- (SMV-) induced lipid peroxidation (LPO) under in vivo and in vitro conditions was studied. The 18-week SMV intoxication (Group II, 0.125 Vend/mL) enhanced spontaneous malondialdehyde (MDA) generation in rat liver, compared with the control (Group I) and MS-supplemented animals (Group III, 0.06 Mgend/mL). Coadministration of SMV with MS (Group IV, SMV-MS) caused a return of the MDA level to the control value range. The effect seems to result from the Mgend-independent action and its antagonistic interaction with Vend. The in vitro treatment of liver supernatants (LS) obtained from all the tested animals groups with selected exogenous concentrations of Feexg or Vexg exhibited enhanced MDA production, compared with spontaneously formed MDA. It also showed Mgexg-stimulating effect on LPO (LS I, Group I) and revealed that the changes in the MDA generation in LS IV (Group IV) might have resulted from the synergistic interactions of Vend with Feexg and Vexg and from the antagonistic interactions of Mgend with Feexg and Vexg. The findings allow a suggestion that adequate Mg intake for a specific period in the conditions of SMV exposure may prevent V-induced LPO in the liver.
Collapse
|
44
|
Zwolak I. Comparison of five different in vitro assays for assessment of sodium metavanadate cytotoxicity in Chinese hamster ovary cells (CHO-K1 line). Toxicol Ind Health 2013; 31:677-90. [DOI: 10.1177/0748233713483199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This investigation was undertaken to compare five different in vitro cytotoxicity assays for their power in revealing vanadium-mediated toxicity in Chinese hamster ovary (CHO)-K1 cells. The cells were exposed to sodium metavanadate (NaVO3) in the range of 10–1000 µM for 24 h and thereafter the cytotoxic effects of NaVO3 were measured by colorimetric in vitro assays: the neutral red (NR) test, the 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt (XTT) assay, the resazurin assay, the sulforhodamine B (SR-B) assay, and by microscopic assessment of cell viability using the trypan blue (TB) staining method. Among the assays used, the NR test was the most sensitive, since it revealed metavanadate cytotoxicity at the lowest NaVO3 dose (=50 µM). Also, NaVO3 cytotoxicity expressed as inhibitory concentration (IC) showed the lowest values for the NR test. Three other tests XTT, resazurin, and SR-B assays showed intermediate sensitivity revealing the cytotoxicity of NaVO3 at 100 µM. The corresponding IC10 and IC50 values calculated for the XTT, resazurin, and SR-B tests were similar. The TB staining method was the least sensitive, since it recorded metavanadate cytotoxicity at the highest NaVO3 concentration tested (=600 µM). Based on the cytotoxicity end points measured with the above assays, it can be concluded that lysosomal/Golgi apparatus damage (measured by NR assay) may be the primary effect of NaVO3 on CHO-K1 cells. The disintegration of mitochondria (assessed with the XTT and resazurin assays) probably follows lysosomal impairment. Plasma membrane permeability (staining with TB) occurs at a late stage of NaVO3-induced cytotoxicity on CHO-K1 cells. The results obtained in this research work show that the NR test can be recommended as a very sensitive assay for the assessment of NaVO3 cytotoxicity in the CHO-K1 cell culture model. Considering the convenience of assay performance along with adequate sensitivity, the XTT and resazurin assays can also be advocated for NaVO3 cytotoxicity assessment.
Collapse
Affiliation(s)
- Iwona Zwolak
- Department of Cell Biology, Institute of Environmental Protection, John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
45
|
Hosseini MJ, Shaki F, Ghazi-Khansari M, Pourahmad J. Toxicity of vanadium on isolated rat liver mitochondria: a new mechanistic approach. Metallomics 2013; 5:152-66. [DOI: 10.1039/c2mt20198d] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Imura H, Shimada A, Naota M, Morita T, Togawa M, Hasegawa T, Seko Y. Vanadium toxicity in mice: possible impairment of lipid metabolism and mucosal epithelial cell necrosis in the small intestine. Toxicol Pathol 2012; 41:842-56. [PMID: 23222995 DOI: 10.1177/0192623312467101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Because precise information as to the toxicity of vanadium is required for practical use of vanadium compounds as antidiabetic drugs, we examined vanadium toxicity in mice fed normal diet or high-fat diet (C57BL/6N, male, 7 weeks) by oral administration of ammonium metavanadate (AMV) with a maximum dose of 20 mgV/kg/day. Marked lipid accumulation in hepatocytes, renal epithelial cells, and mucosal epithelial cells of the small and large intestines and severe degeneration, necrosis, and loss of mucosal epithelial cells in the small intestine were observed. These pathological changes were more severe in mice fed high-fat diet than mice fed normal diet, and the intensity of the changes increased with increase in the administered dose of AMV. By electron microscopy, the number and size of lipid droplets in hepatocytes were increased. In the small intestine, a TUNEL assay showed a decreased number of positive cells, and positive cells for acrolein immunohistochemistry were observed specifically in the mucosal epithelial cells indicating degeneration and necrosis in the AMV-treated group, suggesting that a possible factor responsible for cell necrosis in the small intestine could be oxidative stress. In conclusion, AMV may impair cellular lipid metabolism, resulting in lipid accumulation, and induce mucosal epithelial cell necrosis in the small intestine.
Collapse
Affiliation(s)
- Hitomi Imura
- Department of Veterinary Pathology, Tottori University, Tottori, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Fraqueza G, Batista de Carvalho LAE, Marques MPM, Maia L, Ohlin CA, Casey WH, Aureliano M. Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca(2+)-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition. Dalton Trans 2012; 41:12749-58. [PMID: 22968713 DOI: 10.1039/c2dt31688a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently we demonstrated that the decavanadate (V(10)) ion is a stronger Ca(2+)-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V(10) interaction is not affected by any of the protein conformations that occur during the process of calcium translocation (i.e. E1, E1P, E2 and E2P) (Fraqueza et al., J. Inorg. Biochem., 2012). In the present study, we further explore this subject, and we can now show that the decaniobate ion, [Nb(10) = Nb(10)O(28)](6-), is a useful tool in deducing the interaction and the non-competitive Ca(2+)-ATPase inhibition by the decavanadate ion [V(10) = V(10)O(28)](6-). Moreover, decavanadate and vanadate induce protein cysteine oxidation whereas no effects were detected for the decaniobate, tungstate or molybdate ions. The presence of the antioxidant quercetin prevents cysteine oxidation, but not ATPase inhibition, by vanadate or decavanadate. Definitive V(IV) EPR spectra were observed for decavanadate in the presence of sarcoplasmic reticulum Ca(2+)-ATPase, indicating a vanadate reduction at some stage of the protein interaction. Raman spectroscopy clearly shows that the protein conformation changes that are induced by V(10), Nb(10) and vanadate are different from the ones induced by molybdate and tungstate monomer ions. Here, Mo and W cause changes similar to those by phosphate, yielding changes similar to the E1P protein conformation. The putative reduction of vanadium(V) to vanadium(IV) and the non-competitive binding of the V(10) and Nb(10) decametalates may explain the differences in the Raman spectra compared to those seen in the presence of molybdate or tungstate. Putting it all together, we suggest that the ability of V(10) to inhibit the Ca(2+)-ATPase may be at least in part due to the process of vanadate reduction and associated protein cysteine oxidation. These results contribute to the understanding and application of these families of mono- and polyoxometalates as effective modulators of many biological processes, particularly those associated with calcium homeostasis.
Collapse
Affiliation(s)
- Gil Fraqueza
- ISE and CCmar, University of Algarve, 8005-139 Faro, Portugal
| | | | | | | | | | | | | |
Collapse
|
48
|
Franchi N, Ferro D, Ballarin L, Santovito G. Transcription of genes involved in glutathione biosynthesis in the solitary tunicate Ciona intestinalis exposed to metals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:14-22. [PMID: 22417760 DOI: 10.1016/j.aquatox.2012.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/11/2012] [Accepted: 02/12/2012] [Indexed: 05/31/2023]
Abstract
Exposure to metals is known to generate oxidative stress risk in living organisms, which are able to respond with the induction of antioxidant defenses, both enzymatic and non-enzymatic. Glutathione (GSH) is considered to be an important cellular component involved in protecting cells, both as metal chelating agent and oxygen radical scavenger. In this work we used molecular techniques to analyze the nucleotide and predicted amino acid sequences of genes involved in GSH biosynthesis, γ-glutamyl-cysteine ligase catalytic subunit (ci-gclc), γ-glutamyl-cysteine ligase modifier subunit (ci-gclm) and GSH synthase (ci-gs) in the solitary tunicate Ciona intestinalis. We also studied the transcription of the above genes after in vivo exposure to Cd, Cu and Zn by semiquantitativ RT-PCR to improve our knowledge about the relationship between metal-induced oxidative stress and GSH production and locate mRNA expression by in situ hybridization (ISH). These genes exhibit a good level of sequence conservation with metazoan homologs generally, especially for residues important for the activity of the enzymes. Phylogenetic analyses indicate that the three enzymes evolved in different ways, Ci-GCLC and Ci-GS being mostly correlated with invertebrate proteins, Ci-GCLM being as sister group of vertebrate GCLMs. Our in silico analyses of the ci-gs and ci-gclc promoter regions revealed putative consensus sequences similar to mammalian metal-responsive elements (MRE) and antioxidant response elements (ARE), indicating that the transcription of these genes may directly depend on metals and/or reactive oxygen species. Results highlight a statistically significant increase in gene transcription, demonstrating that metal treatments have inducible effects on these genes. They can modulate gene transcription not only through MREs but also through AREs, as a consequence of metal-dependent ROS formation. The ISH location of Ci-GS and Ci-GCLC mRNAs shows that the cells most involved in glutathione biosynthesis are circulating hemocytes. The data presented here emphasize the importance of complex metal regulation of ci-gclc, ci-gclm and ci-gs transcription, which can create an efficient detoxification pathway allowing C. intestinalis to survive in continued elevated presence of metals in the environment.
Collapse
Affiliation(s)
- N Franchi
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
| | | | | | | |
Collapse
|
49
|
Fraqueza G, Ohlin CA, Casey WH, Aureliano M. Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate. J Inorg Biochem 2012; 107:82-9. [PMID: 22178669 DOI: 10.1016/j.jinorgbio.2011.10.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/08/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Over the last few decades there has been increasing interest in oxometalate and polyoxometalate applications to medicine and pharmacology. This interest arose, at least in part, due to the properties of these classes of compounds as anti-cancer, anti-diabetic agents, and also for treatment of neurodegenerative diseases, among others. However, our understanding of the mechanism of action would be improved if biological models could be used to clarify potential toxicological effects in main cellular processes. Sarcoplasmic reticulum (SR) vesicles, containing a large amount of Ca(2+)-ATPase, an enzyme that accumulates calcium by active transport using ATP, have been suggested as a useful model to study the effects of oxometalates on calcium homeostasis. In the present article, it is shown that decavanadate, decaniobate, vanadate, tungstate and molybdate, all inhibited SR Ca(2+)-ATPase, with the following IC(50) values: 15, 35, 50, 400 μM and 45 mM, respectively. Decaniobate (Nb(10)), is the strongest P-type enzyme inhibitor, after decavanadate (V(10)). Atomic-absorption spectroscopy (AAS) analysis, indicates that decavanadate binds to the protein with a 1:1 decavanadate:Ca(2+)-ATPase stoichiometry. Furthermore, V(10) binds with similar extension to all the protein conformations, which occur during calcium translocation by active transport, namely E1, E1P, E2 and E2P, as analysed by AAS. In contrast, it was confirmed that the binding of monomeric vanadate (H(2)VO(4)(2-); V(1)) to the calcium pump is favoured only for the E2 and E2P conformations of the ATPase, whereas no significant amount of vanadate is bound to the E1 and E1P conformations. Scatchard plot analysis, confirmed a 1:1 ratio for decavanadate-Ca(2+)-ATPase, with a dissociation constant, k(d) of 1 μM(-1). The interaction of decavanadate V(10)O(28)(6-) (V(10)) with Ca(2+)-ATPase is prevented by the isostructural and isoelectronic decaniobate Nb(10)O(28)(6-) (Nb(10)), whereas no significant effects were detected with ATP or with heparin, a known competitive ATP binding molecule, suggesting that V(10) binds non-competitively, with respect to ATP, to the protein. Finally, it was shown that decaniobate inhibits SR Ca(2+)-ATPase activity in a non competitive type of inhibition, with respect to ATP. Taken together, these data demonstrate that decameric niobate and vanadate species are stronger inhibitors of the SR calcium ATPase than simple monomeric vanadate, tungstate and molybdate oxometalates, thus affecting calcium homeostasis, cell signalling and cell bioenergetics, as well many other cellular processes. The ability of these oxometalates to act either as phosphate analogues, as a transition-state analogue in enzyme-catalysed phosphoryl group transfer processes and as potentially nucleotide-dependent enzymes modulators or inhibitors, suggests that different oxometalates may reveal different mechanistic preferences in these classes of enzymes.
Collapse
Affiliation(s)
- Gil Fraqueza
- Department of Food Engineering, ISE, University of Algarve, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
50
|
Ramos S, Moura JJG, Aureliano M. Recent advances into vanadyl, vanadate and decavanadate interactions with actin. Metallomics 2012; 4:16-22. [PMID: 22012168 DOI: 10.1039/c1mt00124h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the number of papers about "vanadium" has doubled in the last decade, the studies about "vanadium and actin" are scarce. In the present review, the effects of vanadyl, vanadate and decavanadate on actin structure and function are compared. Decavanadate (51)V NMR signals, at -516 ppm, broadened and decreased in intensity upon actin titration, whereas no effects were observed for vanadate monomers, at -560 ppm. Decavanadate is the only species inducing actin cysteine oxidation and vanadyl formation, both processes being prevented by the natural ligand of the protein, ATP. Vanadyl titration with monomeric actin (G-actin), analysed by EPR spectroscopy, reveals a 1:1 binding stoichiometry and a K(d) of 7.5 μM(-1). Both decavanadate and vanadyl inhibited G-actin polymerization into actin filaments (F-actin), with a IC(50) of 68 and 300 μM, respectively, as analysed by light scattering assays, whereas no effects were detected for vanadate up to 2 mM. However, only vanadyl (up to 200 μM) induces 100% of G-actin intrinsic fluorescence quenching, whereas decavanadate shows an opposite effect, which suggests the presence of vanadyl high affinity actin binding sites. Decavanadate increases (2.6-fold) the actin hydrophobic surface, evaluated using the ANSA probe, whereas vanadyl decreases it (15%). Both vanadium species increased the ε-ATP exchange rate (k = 6.5 × 10(-3) s(-1) and 4.47 × 10(-3) s(-1) for decavanadate and vanadyl, respectively). Finally, (1)H NMR spectra of G-actin treated with 0.1 mM decavanadate clearly indicate that major alterations occur in protein structure, which are much less visible in the presence of ATP, confirming the preventive effect of the nucleotide on the decavanadate interaction with the protein. Putting it all together, it is suggested that actin, which is involved in many cellular processes, might be a potential target not only for decavanadate but above all for vanadyl. By affecting actin structure and function, vanadium can regulate many cellular processes of great physiological significance.
Collapse
Affiliation(s)
- S Ramos
- REQUIMTE/CQFB, Dpto Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|