1
|
López C, Delmonti J, Bonomo RA, Vila AJ. Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. J Biol Chem 2022; 298:101665. [PMID: 35120928 DOI: 10.1016/j.jbc.2022.101665] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the evolution of metallo-β-lactamases (MBLs) is fundamental to deciphering the mechanistic basis of resistance to carbapenems in pathogenic and opportunistic bacteria. Presently, these MBL producing pathogens are linked to high rates of morbidity and mortality worldwide. However, the study of the biochemical and biophysical features of MBLs in vitro provides an incomplete picture of their evolutionary potential, since this limited and artificial environment disregards the physiological context where evolution and selection take place. Herein, we describe recent efforts aimed to address the evolutionary traits acquired by different clinical variants of MBLs in conditions mimicking their native environment (the bacterial periplasm) and considering whether they are soluble or membrane-bound proteins. This includes addressing the metal content of MBLs within the cell under zinc starvation conditions, and the context provided by different bacterial hosts that result in particular resistance phenotypes. Our analysis highlights recent progress bridging the gap between in vitro and in-cell studies.
Collapse
Affiliation(s)
- Carolina López
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Juliana Delmonti
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
| |
Collapse
|
2
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
3
|
Ferraresso L, de Arruda E, de Moraes T, Fazzi R, Da Costa Ferreira A, Abbehausen C. Copper(II) and zinc(II) dinuclear enzymes model compounds: The nature of the metal ion in the biological function. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Promiscuous metallo-β-lactamases: MIM-1 and MIM-2 may play an essential role in quorum sensing networks. J Inorg Biochem 2016; 162:366-375. [DOI: 10.1016/j.jinorgbio.2015.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/04/2015] [Accepted: 12/16/2015] [Indexed: 11/21/2022]
|
5
|
Meini MR, Llarrull LI, Vila AJ. Evolution of Metallo-β-lactamases: Trends Revealed by Natural Diversity and in vitro Evolution. Antibiotics (Basel) 2016; 3:285-316. [PMID: 25364574 PMCID: PMC4212336 DOI: 10.3390/antibiotics3030285] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The production of β-lactamase enzymes is one of the most distributed resistance mechanisms towards β-lactam antibiotics. Metallo-β-lactamases constitute a worrisome group of these kinds of enzymes, since they present a broad spectrum profile, being able to hydrolyze not only penicillins, but also the latest generation of cephalosporins and carbapenems, which constitute at present the last resource antibiotics. The VIM, IMP, and NDM enzymes comprise the main groups of clinically relevant metallo-β-lactamases. Here we present an update of the features of the natural variants that have emerged and of the ones that have been engineered in the laboratory, in an effort to find sequence and structural determinants of substrate preferences. This knowledge is of upmost importance in novel drug design efforts. We also discuss the advances in knowledge achieved by means of in vitro directed evolution experiments, and the potential of this approach to predict natural evolution of metallo-β-lactamases.
Collapse
Affiliation(s)
- María-Rocío Meini
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| | - Leticia I. Llarrull
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| | - Alejandro J. Vila
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| |
Collapse
|
6
|
Mellnik J, Vasquez PA, McKinley SA, Witten J, Hill DB, Forest MG. Micro-heterogeneity metrics for diffusion in soft matter. SOFT MATTER 2014; 10:7781-96. [PMID: 25144347 PMCID: PMC4186960 DOI: 10.1039/c4sm00676c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Passive particle tracking of diffusive paths in soft matter, coupled with analysis of the path data, is firmly established as a fundamental methodology for characterization of both diffusive transport properties (the focus here) and linear viscoelasticity. For either focus, particle time series are typically analyzed by ensemble averaging over paths, a perfectly natural protocol for homogeneous materials or for applications where mean properties are sufficient. Many biological materials, however, are heterogeneous over length scales above the probe diameter, and the implications of heterogeneity for biologically relevant transport properties (e.g. diffusive passage times through a complex fluid layer) motivate this paper. Our goals are three-fold: first, to detect heterogeneity as reflected by the ensemble path data; second, to further decompose the ensemble of particle paths into statistically distinct clusters; and third, to fit the path data in each cluster to a model for the underlying stochastic process. After reviewing current best practices for detection and assessment of heterogeneity in diffusive processes, we introduce our strategy toward the first two goals with methods from the statistics and machine learning literature that have not found application thus far to passive particle tracking data. We apply an analysis based solely on the path data that detects heterogeneity and yields a decomposition of particle paths into statistically distinct clusters. After these two goals are achieved, one can then pursue model-fitting. We illustrate these heterogeneity metrics on diverse datasets: for numerically generated and experimental particle paths, with tunable and unknown heterogeneity, on numerical models for simple diffusion and anomalous sub-diffusion, and experimentally on sucrose, hyaluronic acid, agarose, and human lung culture mucus solutions.
Collapse
Affiliation(s)
- John Mellnik
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel, Hill, NC USA. Fax:919-962-9345; Tel:919-962-9606;
- Department of Biomedical Engineering, University of North Carolina at, Chapel Hill, Chapel Hill, NC USA
| | - Paula A. Vasquez
- Department of Mathematics, University of South Carolina, Columbia, SC, USA
| | - Scott A. McKinley
- Department of Mathematics, University of Florida, Gainesville, FL USA
| | - Jacob Witten
- Department of Mathematics, Amherst College, Amherst, MA USA
| | - David B. Hill
- The Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- Department of Physics and Astronomy, University of North Carolina at, Chapel Hill, Chapel Hill, NC USA
| | - M. Gregory Forest
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel, Hill, NC USA. Fax:919-962-9345; Tel:919-962-9606;
- Department of Biomedical Engineering, University of North Carolina at, Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
7
|
Alderson RG, Barker D, Mitchell JBO. One origin for metallo-β-lactamase activity, or two? An investigation assessing a diverse set of reconstructed ancestral sequences based on a sample of phylogenetic trees. J Mol Evol 2014; 79:117-29. [PMID: 25185655 PMCID: PMC4185109 DOI: 10.1007/s00239-014-9639-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/11/2014] [Indexed: 01/04/2023]
Abstract
Bacteria use metallo-β-lactamase enzymes to hydrolyse lactam rings found in many antibiotics, rendering them ineffective. Metallo-β-lactamase activity is thought to be polyphyletic, having arisen on more than one occasion within a single functionally diverse homologous superfamily. Since discovery of multiple origins of enzymatic activity conferring antibiotic resistance has broad implications for the continued clinical use of antibiotics, we test the hypothesis of polyphyly further; if lactamase function has arisen twice independently, the most recent common ancestor (MRCA) is not expected to possess lactam-hydrolysing activity. Two major problems present themselves. Firstly, even with a perfectly known phylogeny, ancestral sequence reconstruction is error prone. Secondly, the phylogeny is not known, and in fact reconstructing a single, unambiguous phylogeny for the superfamily has proven impossible. To obtain a more statistical view of the strength of evidence for or against MRCA lactamase function, we reconstructed a sample of 98 MRCAs of the metallo-β-lactamases, each based on a different tree in a bootstrap sample of reconstructed phylogenies. InterPro sequence signatures and homology modelling were then used to assess our sample of MRCAs for lactamase functionality. Only 5 % of these models conform to our criteria for metallo-β-lactamase functionality, suggesting that the ancestor was unlikely to have been a metallo-β-lactamase. On the other hand, given that ancestral proteins may have had metallo-β-lactamase functionality with variation in sequence and structural properties compared with extant enzymes, our criteria are conservative, estimating a lower bound of evidence for metallo-β-lactamase functionality but not an upper bound.
Collapse
Affiliation(s)
- Rosanna G. Alderson
- Biomedical Sciences Research Complex and EaStCHEM School of Chemistry, Purdie Building, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland, UK
| | - Daniel Barker
- Sir Harold Mitchell Building, School of Biology, University of St Andrews, St Andrews, KY16 9TH Scotland, UK
| | - John B. O. Mitchell
- Biomedical Sciences Research Complex and EaStCHEM School of Chemistry, Purdie Building, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland, UK
| |
Collapse
|
8
|
Lykhin AO, Novikova GV, Kuzubov AA, Staloverova NA, Sarmatova NI, Varganov SA, Krasnov PO. A complex of ceftriaxone with Pb(II): synthesis, characterization, and antibacterial activity study. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.938065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Aleksandr O. Lykhin
- Department of Chemistry, Siberian Federal University, Krasnoyarsk, Russia
- Information Sciences and Telecommunication Institute, Siberian State Aerospace University, Krasnoyarsk, Russia
| | - Galina V. Novikova
- Department of Chemistry, Siberian Federal University, Krasnoyarsk, Russia
| | - Alexander A. Kuzubov
- Department of Chemistry, Siberian Federal University, Krasnoyarsk, Russia
- L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
- Department of Physics, Siberian State Technological University, Krasnoyarsk, Russia
| | | | | | | | - Pavel O. Krasnov
- Department of Physics, Siberian State Technological University, Krasnoyarsk, Russia
| |
Collapse
|
9
|
Widmann M, Pleiss J. Protein variants form a system of networks: microdiversity of IMP metallo-beta-lactamases. PLoS One 2014; 9:e101813. [PMID: 25013948 PMCID: PMC4094381 DOI: 10.1371/journal.pone.0101813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/10/2014] [Indexed: 12/29/2022] Open
Abstract
Genome and metagenome sequencing projects support the view that only a tiny portion of the total protein microdiversity in the biosphere has been sequenced yet, while the vast majority of existing protein variants is still unknown. By using a network approach, the microdiversity of 42 metallo-β-lactamases of the IMP family was investigated. In the networks, the nodes are formed by the variants, while the edges correspond to single mutations between pairs of variants. The 42 variants were assigned to 7 separate networks. By analyzing the networks and their relationships, the structure of sequence space was studied and existing, but still unknown, functional variants were predicted. The largest network consists of 10 variants with IMP-1 in its center and includes two ubiquitous mutations, V67F and S262G. By relating the corresponding pairs of variants, the networks were integrated into a single system of networks. The largest network also included a quartet of variants: IMP-1, two single mutants, and the respective double mutant. The existence of quartets indicates that if two mutations resulted in functional enzymes, the double mutant may also be active and stable. Therefore, quartet construction from triplets was applied to predict 15 functional variants. Further functional mutants were predicted by applying the two ubiquitous mutations in all networks. In addition, since the networks are separated from each other by 10-15 mutations on average, it is expected that a subset of the theoretical intermediates are functional, and therefore are supposed to exist in the biosphere. Finally, the network analysis helps to distinguish between epistatic and additive effects of mutations; while the presence of correlated mutations indicates a strong interdependency between the respective positions, the mutations V67F and S262G are ubiquitous and therefore background independent.
Collapse
Affiliation(s)
- Michael Widmann
- Institute of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
10
|
González LJ, Moreno DM, Bonomo RA, Vila AJ. Host-specific enzyme-substrate interactions in SPM-1 metallo-β-lactamase are modulated by second sphere residues. PLoS Pathog 2014; 10:e1003817. [PMID: 24391494 PMCID: PMC3879351 DOI: 10.1371/journal.ppat.1003817] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 10/21/2013] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most virulent and resistant non-fermenting Gram-negative pathogens in the clinic. Unfortunately, P. aeruginosa has acquired genes encoding metallo-β-lactamases (MβLs), enzymes able to hydrolyze most β-lactam antibiotics. SPM-1 is an MβL produced only by P. aeruginosa, while other MβLs are found in different bacteria. Despite similar active sites, the resistance profile of MβLs towards β-lactams changes from one enzyme to the other. SPM-1 is unique among pathogen-associated MβLs in that it contains “atypical” second sphere residues (S84, G121). Codon randomization on these positions and further selection of resistance-conferring mutants was performed. MICs, periplasmic enzymatic activity, Zn(II) requirements, and protein stability was assessed. Our results indicated that identity of second sphere residues modulates the substrate preferences and the resistance profile of SPM-1 expressed in P. aeruginosa. The second sphere residues found in wild type SPM-1 give rise to a substrate selectivity that is observed only in the periplasmic environment. These residues also allow SPM-1 to confer resistance in P. aeruginosa under Zn(II)-limiting conditions, such as those expected under infection. By optimizing the catalytic efficiency towards β-lactam antibiotics, the enzyme stability and the Zn(II) binding features, molecular evolution meets the specific needs of a pathogenic bacterial host by means of substitutions outside the active site. The presence of Zn(II)-containing metallo-β-lactamases (MβLs) that confer resistance to all penicillins, cephalosporins and carbapenems in Pseudomonas aeruginosa adds significantly to the threat of this pathogen in our health care system. SPM-1 is an MβLs widely distributed in South America and only found in P. aeruginosa. In common with all MβLs, the active site residues are highly conserved. In this work we asked the following question: how would substrate specificity evolve in SPM-1 if the active site residues are highly uniform and do not permit substitutions. To this end, we explored the role of two amino acids (S84 and G121) that are outside the active site (second sphere) and are unique in the SPM-1 β-lactamase. We discovered that replacing these amino acids impacts resistance to cephalosporins and carbapenems and that this resistance profile depends on the enzymatic behavior and the availability of Zn(II) in the environment. This work demonstrates how protein evolution by means of subtle substitutions outside the active site meets the specific needs of a pathogenic bacterial host.
Collapse
Affiliation(s)
- Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego M. Moreno
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center and Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
11
|
Biapenem inactivation by B2 metallo β-lactamases: energy landscape of the hydrolysis reaction. PLoS One 2013; 8:e55136. [PMID: 23372827 PMCID: PMC3556986 DOI: 10.1371/journal.pone.0055136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/18/2012] [Indexed: 11/26/2022] Open
Abstract
Background A general mechanism has been proposed for metallo β-lactamases (MβLs), in which deprotonation of a water molecule near the Zn ion(s) results in the formation of a hydroxide ion that attacks the carbonyl oxygen of the β-lactam ring. However, because of the absence of X-ray structures that show the exact position of the antibiotic in the reactant state (RS) it has been difficult to obtain a definitive validation of this mechanism. Methodology/Principal Findings We have employed a strategy to identify the RS, which does not rely on substrate docking and/or molecular dynamics. Starting from the X-ray structure of the enzyme:product complex (the product state, PS), a QM/MM scan was used to drive the reaction uphill from product back to reactant. Since in this process also the enzyme changes from PS to RS, we actually generate the enzyme:substrate complex from product and avoid the uncertainties associated with models of the reactant state. We used this strategy to study the reaction of biapenem hydrolysis by B2 MβL CphA. QM/MM simulations were carried out under 14 different ionization states of the active site, in order to generate potential energy surfaces (PESs) corresponding to a variety of possible reaction paths. Conclusions/Significance The calculations support a model for biapenem hydrolysis by CphA, in which the nucleophile that attacks the β-lactam ring is not the water molecule located in proximity of the active site Zn, but a second water molecule, hydrogen bonded to the first one, which is used up in the reaction, and thus is not visible in the X-ray structure of the enzyme:product complex.
Collapse
|
12
|
Monti S, Corozzi A, Fristrup P, Joshi KL, Shin YK, Oelschlaeger P, van Duin ACT, Barone V. Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field. Phys Chem Chem Phys 2013; 15:15062-77. [DOI: 10.1039/c3cp51931g] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Chakraborty S, Asgeirsson B, Minda R, Salaye L, Frère JM, Rao BJ. Inhibition of a cold-active alkaline phosphatase by imipenem revealed by in silico
modeling of metallo-β-lactamase active sites. FEBS Lett 2012; 586:3710-5. [PMID: 22982109 DOI: 10.1016/j.febslet.2012.08.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/24/2012] [Accepted: 08/24/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
| | | | | | | | | | | |
Collapse
|
14
|
Mutagenesis of zinc ligand residue Cys221 reveals plasticity in the IMP-1 metallo-β-lactamase active site. Antimicrob Agents Chemother 2012; 56:5667-77. [PMID: 22908171 DOI: 10.1128/aac.01276-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Metallo-β-lactamases catalyze the hydrolysis of a broad range of β-lactam antibiotics and are a concern for the spread of drug resistance. To analyze the determinants of enzyme structure and function, the sequence requirements for the subclass B1 IMP-1 β-lactamase zinc binding residue Cys221 were tested by saturation mutagenesis and evaluated for protein expression, as well as hydrolysis of β-lactam substrates. The results indicated that most substitutions at position 221 destabilized the enzyme. Only the enzymes containing C221D and C221G substitutions were expressed well in Escherichia coli and exhibited catalytic activity toward β-lactam antibiotics. Despite the lack of a metal-chelating group at position 221, the C221G enzyme exhibited high levels of catalytic activity in the presence of exogenous zinc. Molecular modeling suggests the glycine substitution is unique among substitutions in that the complete removal of the cysteine side chain allows space for a water molecule to replace the thiol and coordinate zinc at the Zn2 zinc binding site to restore function. Multiple methods were used to estimate the C221G Zn2 binding constant to be 17 to 43 μM. Studies of enzyme function in vivo in E. coli grown on minimal medium showed that both IMP-1 and the C221G mutant exhibited compromised activity when zinc availability was low. Finally, substitutions at residue 121, which is the IMP-1 equivalent of the subclass B3 zinc-chelating position, failed to rescue C221G function, suggesting the coordination schemes of subclasses B1 and B3 are not interchangeable.
Collapse
|
15
|
Systematic analysis of metallo-β-lactamases using an automated database. Antimicrob Agents Chemother 2012; 56:3481-91. [PMID: 22547615 DOI: 10.1128/aac.00255-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metallo-β-lactamases (MBLs) are enzymes that hydrolyze β-lactam antibiotics, resulting in bacterial resistance to these drugs. These proteins have caused concerns due to their facile transference, broad substrate spectra, and the absence of clinically useful inhibitors. To facilitate the classification, nomenclature, and analysis of MBLs, an automated database system was developed, the Metallo-β-Lactamase Engineering Database (MBLED) (http://www.mbled.uni-stuttgart.de). It contains information on MBLs retrieved from the NCBI peptide database while strictly following the nomenclature by Jacoby and Bush (http://www.lahey.org/Studies/) and the generally accepted class B β-lactamase (BBL) standard numbering scheme for MBLs. The database comprises 597 MBL protein sequences and enables systematic analyses of these sequences. A systematic analysis employing the database resulted in the generation of mutation profiles of assigned IMP- and VIM-type MBLs, the identification of five MBL protein entries from the NCBI peptide database that were inconsistent with the Jacoby and Bush nomenclature, and the identification of 15 new IMP candidates and 9 new VIM candidates. Furthermore, the database was used to identify residues with high mutation frequencies and variability (mutation hot spots) that were unexpectedly distant from the active site located in the ββ sandwich: positions 208 and 266 in the IMP family and positions 215 and 258 in the VIM family. We expect that the MBLED will be a valuable tool for systematically cataloguing and analyzing the increasing number of MBLs being reported.
Collapse
|
16
|
Bush K, Fisher JF. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu Rev Microbiol 2012; 65:455-78. [PMID: 21740228 DOI: 10.1146/annurev-micro-090110-102911] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
β-Lactamase evolution presents to the infectious disease community a major challenge in the treatment of infections caused by multidrug-resistant gram-negative bacteria. Because over 1,000 of these naturally occurring β-lactamases exist, attempts to correlate structure and function have become daunting. Although new enzymes in the extended-spectrum β-lactamase (ESBL) families are frequently identified, the older CTX-M-14 and CTX-M-15 enzymes have become the most prevalent ESBLs in global surveillance. Carbapenemases with either serine-based or zinc-facilitated hydrolysis mechanisms are posing some of the most critical problems. Most geographical regions now report KPC serine carbapenemases and the metallo-β-lactamases VIM, IMP, and NDM-1, even though NDM-1 was only recently identified. The rapid emergence of these newer enzymes, with multiple β-lactamases appearing in a single organism, makes the design of new β-lactamase inactivators or β-lactamase-stable β-lactams all the more difficult. Combination therapy will likely be required to counteract the continuing evolution of these insidious enzymes in multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Karen Bush
- Biology Department, Indiana University, Bloomington, Indiana 47401, USA.
| | | |
Collapse
|
17
|
Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem Rev 2010; 111:209-37. [PMID: 21171664 DOI: 10.1021/cr100093b] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Oelschlaeger P, Ai N, Duprez KT, Welsh WJ, Toney JH. Evolving carbapenemases: can medicinal chemists advance one step ahead of the coming storm? J Med Chem 2010; 53:3013-27. [PMID: 20121112 DOI: 10.1021/jm9012938] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Oelschlaeger
- Chemistry Department and Center for Macromolecular Modeling and Materials Design, California State Polytechnic University, Pomona, California, USA.
| | | | | | | | | |
Collapse
|
19
|
Wackett LP. Questioning our perceptions about evolution of biodegradative enzymes. Curr Opin Microbiol 2009; 12:244-51. [DOI: 10.1016/j.mib.2009.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 05/02/2009] [Accepted: 05/05/2009] [Indexed: 10/20/2022]
|