1
|
Robbins L, Balaram A, Dejneka S, McMahon M, Najibi Z, Pawlowicz P, Conrad WH. Heterologous production of the D-cycloserine intermediate O-acetyl-L-serine in a human type II pulmonary cell model. Sci Rep 2023; 13:8551. [PMID: 37237156 DOI: 10.1038/s41598-023-35632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/21/2023] [Indexed: 05/28/2023] Open
Abstract
Tuberculosis (TB) is the second leading cause of death by a single infectious disease behind COVID-19. Despite a century of effort, the current TB vaccine does not effectively prevent pulmonary TB, promote herd immunity, or prevent transmission. Therefore, alternative approaches are needed. We seek to develop a cell therapy that produces an effective antibiotic in response to TB infection. D-cycloserine (D-CS) is a second-line antibiotic for TB that inhibits bacterial cell wall synthesis. We have determined D-CS to be the optimal candidate for anti-TB cell therapy due to its effectiveness against TB, relatively short biosynthetic pathway, and its low-resistance incidence. The first committed step towards D-CS synthesis is catalyzed by the L-serine-O-acetyltransferase (DcsE) which converts L-serine and acetyl-CoA to O-acetyl-L-serine (L-OAS). To test if the D-CS pathway could be an effective prophylaxis for TB, we endeavored to express functional DcsE in A549 cells as a human pulmonary model. We observed DcsE-FLAG-GFP expression using fluorescence microscopy. DcsE purified from A549 cells catalyzed the synthesis of L-OAS as observed by HPLC-MS. Therefore, human cells synthesize functional DcsE capable of converting L-serine and acetyl-CoA to L-OAS demonstrating the first step towards D-CS production in human cells.
Collapse
Affiliation(s)
- Laurel Robbins
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Ariane Balaram
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Stefanie Dejneka
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Matthew McMahon
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Zarina Najibi
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Peter Pawlowicz
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - William H Conrad
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA.
| |
Collapse
|
2
|
Sharma B, Shukla S, Rattan R, Fatima M, Goel M, Bhat M, Dutta S, Ranjan RK, Sharma M. Antimicrobial Agents Based on Metal Complexes: Present Situation and Future Prospects. Int J Biomater 2022; 2022:6819080. [PMID: 36531969 PMCID: PMC9754840 DOI: 10.1155/2022/6819080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
The rise in antimicrobial resistance is a cause of serious concern since the ages. Therefore, a dire need to explore new antimicrobial entities that can combat against the increasing threat of antibiotic resistance is realized. Studies have shown that the activity of the strongest antibiotics has reduced drastically against many microbes such as microfungi and bacteria (Gram-positive and Gram-negative). A ray of hope, however, was witnessed in early 1940s with the development of new drug discovery and use of metal complexes as antibiotics. Many new metal-based drugs were developed from the metal complexes which are potentially active against a number of ailments such as cancer, malaria, and neurodegenerative diseases. Therefore, this review is an attempt to describe the present scenario and future development of metal complexes as antibiotics against wide array of microbes.
Collapse
Affiliation(s)
- Bharti Sharma
- School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir 185234, India
| | - Sudeep Shukla
- Environment Pollution Analysis Lab, Bhiwadi, Alwar, Rajasthan 301019, India
| | - Rohit Rattan
- WWF-India Field Office, ITI Road, Rajouri, Jammu and Kashmir 185132, India
| | - Musarrat Fatima
- Department of Botany, BGSB University, Rajouri, Jammu and Kashmir 185234, India
| | - Mayurika Goel
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Program, The Energy and Resource Institute, Gurugram, Haryana, India
| | - Mamta Bhat
- School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir 185234, India
| | - Shruti Dutta
- Amity School of Earth and Environmental Sciences, Amity University Haryana, Haryana, India
| | | | - Mamta Sharma
- Aditi Mahavidyalaya, University of Delhi, New Delhi, India
| |
Collapse
|
3
|
Kayogolo CW, Vegi MR, Srivastava BBL, Sahini MG. Therapeutical potential of metal complexes of quinoxaline derivatives: a review. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2049767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chrisant William Kayogolo
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, Dodoma, Tanzania
| | - Maheswara Rao Vegi
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, Dodoma, Tanzania
| | - Bajarang Bali Lal Srivastava
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, Dodoma, Tanzania
| | - Mtabazi Geofrey Sahini
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
4
|
Lopes LGF, Carvalho EM, Sousa EHS. A bioinorganic chemistry perspective on the roles of metals as drugs and targets against Mycobacterium tuberculosis - a journey of opportunities. Dalton Trans 2021; 49:15988-16003. [PMID: 32583835 DOI: 10.1039/d0dt01365j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Medicinal inorganic chemists have provided many strategies to tackle a myriad of diseases, pushing forward the frontiers of pharmacology. As an example, the fight against tuberculosis (TB), an infectious bacterial disease, has led to the development of metal-based compounds as potential drugs. This disease remains a current health issue causing over 1.4 million of deaths per year. The emergence of multi- (MDR) and extensively-drug resistant (XDR) Mycobacterium tuberculosis (Mtb) strains along with a long dormancy process, place major challenges in developing new therapeutic compounds. Isoniazid is a front-line prodrug used against TB with appealing features for coordination chemists, which have been explored in a series of cases reported here. An isoniazid iron-based compound, called IQG-607, has caught our attention, whose in vitro and in vivo studies are advanced and thoroughly discussed, along with other metal complexes. Isoniazid is inactive against dormant Mtb, a hard to eliminate state of this bacillus, found in one-fourth of the world's population and directly implicated in the lengthy treatment of TB (ca. 6 months). Thus, our understanding of this phenomenon may lead to a rational design of new drugs. Along these lines, we describe how metals as targets can cross paths with metals used as selective therapeutics, where we mainly review heme-based sensors, DevS and DosT, as a key system in the Mtb dormancy process and a current drug target. Overall, we report new opportunities for bioinorganic chemists to tackle this longstanding and current threat.
Collapse
Affiliation(s)
- Luiz G F Lopes
- Group of Bioinorganic, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil.
| | | | | |
Collapse
|
5
|
Sukanya P, Reddy CVR. Structural investigation, DNA interactions and in vitro anticancer studies of transition metal complexes of 3-(2-(2, 4-dihydroxy benzylidene) hydrazinyl) quinoxalin-2(1H) -one. J Biomol Struct Dyn 2021; 40:6151-6162. [PMID: 33512301 DOI: 10.1080/07391102.2021.1877819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Schiff base ligand, 3-(2-(2, 4-dihydroxybenzylidene) hydrazinyl) quinoxalin-2(1H)-one (RHQO) has been synthesized and characterized by spectral and single crystal X-ray analysis. The Mn(II), Ni(II) and Cu(II) complexes of RHQO have been synthesized and characterized by FT-IR, UV-VIS, mass, EPR spectra, CHN, thermo gravimetric analysis, magnetic susceptibility and conductivity measurements. The morphology of the ligand and complexes is studied by Scanning Electron Microscopy. The metal complexes formed were found to be polymeric in nature. The abilities of the ligand and its metal complexes to interact and bind with calf thymus DNA (CT-DNA) has been studied by electronic absorption spectroscopy and their quantitative binding strength was evaluated in terms of their intrinsic binding constant (Kb). The cleavage interaction of the ligand and its metal complexes with super coiled pBR 322 DNA has been investigated by agarose gel electrophoresis. Cytotoxicity of the Cu(II) and Ni(II) complexes was evaluated using various cancer cell lines, Human cervical cancer cell line (Hela), B16 melanoma F10(B16-F10), Human ovarian cancer cell (SKOV3) and Breast cancer cell line (MCF7) by MTT assay. The results indicated that the ligand and its metal complexes bind with CT-DNA by groove binding mode and cleaved the supercoiled pBR 322 DNA in to nicked form. The Ni(II) and Cu(II) complexes exhibited anticancer activity without affecting the normal CHO-K1 cell lines. Communicated by Vsevolod Makeev.
Collapse
Affiliation(s)
- Panaganti Sukanya
- Department of Chemistry, Vasavi College of Engineering, Hyderabad, India.,Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| | | |
Collapse
|
6
|
Abstract
Traditional organic antimicrobials mainly act on specific biochemical processes such as replication, transcription and translation. However, the emergence and wide spread of microbial resistance is a growing threat for human beings. Therefore, it is highly necessary to design strategies for the development of new drugs in order to target multiple cellular processes that should improve their efficiency against several microorganisms, including bacteria, viruses or fungi. The present review is focused on recent advances and findings of new antimicrobial strategies based on metal complexes. Recent studies indicate that some metal ions cause different types of damages to microbial cells as a result of membrane degradation, protein dysfunction and oxidative stress. These unique modes of action, combined with the wide range of three-dimensional geometries that metal complexes can adopt, make them suitable for the development of new antimicrobial drugs.
Collapse
|
7
|
Dueke-Eze CU, Fasina TM, Oluwalana AE, Familoni OB, Mphalele JM, Onubuogu C. Synthesis and biological evaluation of copper and cobalt complexes of (5-substituted-salicylidene) isonicotinichydrazide derivatives as antitubercular agents. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Preparation, structural characterization, voltammetry and Hirshfeld surface analysis of homoleptic iron(III) thiosemicarbazone complexes. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00404-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Applications of Mössbauer Spectroscopy in Biomedical Research. Cell Biochem Biophys 2018; 77:15-32. [PMID: 29704106 DOI: 10.1007/s12013-018-0843-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/07/2018] [Indexed: 10/17/2022]
Abstract
A brief review on the applications of Mössbauer spectroscopy in biomedical research discusses the results of more than fifty years of experience in this field. Basing on the numerous results the main directions of biomedical applications of Mössbauer spectroscopy are considered as follows: 1) studies of the quantitative changes of iron-containing biomolecules related to pathological processes; 2) studies of the qualitative changes in iron-containing biomolecules related to pathological processes; 3) studies of the effect of various environmental factors (physical, chemical, and biological) on iron-containing biomolecules; 4) studies of metabolic processes by means of analysis of the Mössbauer nuclides pathways in organisms; 5) studies of dynamic processes; 6) studies of pharmaceutical compounds and blood substitutes containing Mössbauer nuclides; 7) miscellaneous studies. Some examples of biomedical research using 57Fe, 57Co, 119Sn, 153Sm, and 197Au Mössbauer nuclides are presented.
Collapse
|
10
|
Keri RS, Pandule SS, Budagumpi S, Nagaraja BM. Quinoxaline and quinoxaline-1,4-di-N
-oxides: An emerging class of antimycobacterials. Arch Pharm (Weinheim) 2018; 351:e1700325. [DOI: 10.1002/ardp.201700325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/27/2018] [Accepted: 03/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Rangappa S. Keri
- Centre for Nano and Material Sciences, Jain University; Jain Global Campus; Bangalore India
| | | | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, Jain University; Jain Global Campus; Bangalore India
| | - Bhari M. Nagaraja
- Centre for Nano and Material Sciences, Jain University; Jain Global Campus; Bangalore India
| |
Collapse
|
11
|
Synthesis, characterization, theoretical studies and biological activity of coordination compounds with essential metals containing N4-donor ligand 2,9-di(ethylaminomethyl)-1,10-phenanthroline. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.06.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Tetrathiafulvalene based electroactive ligands and complexes: Synthesis, crystal structures and antifungal activity. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Rodríguez Arce E, Mosquillo MF, Pérez-Díaz L, Echeverría GA, Piro OE, Merlino A, Coitiño EL, Maríngolo Ribeiro C, Leite CQF, Pavan FR, Otero L, Gambino D. Aromatic amine N-oxide organometallic compounds: searching for prospective agents against infectious diseases. Dalton Trans 2016. [PMID: 26203896 DOI: 10.1039/c5dt00557d] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In search of prospective agents against infectious diseases, 1,1'-bis(diphenylphosphino)ferrocene pyridine-2-thiolato-1-oxide M(ii) hexafluorophosphate compounds [M(mpo)(dppf)](PF6), where M = palladium or platinum, were synthesized and fully characterized in the solid state and in solution using experimental and DFT computational techniques. The compounds are isomorphous and the M(ii) transition metal ions are in a nearly planar trapezoidal cis-coordination bound to the pyridine-2-thiolato-1-oxide (mpo) and to the 1,1'-bis(diphenylphosphino)ferrocene molecules, both acting as bidentate ligands. Both compounds showed high cytotoxic activity on Trypanosoma cruzi and Mycobacterium tuberculosis (MTB) and acceptable selectivities towards MTB, but good to excellent selectivity index values as anti-T. cruzi compounds. The inclusion of the ferrocene moiety (dppf ligand) improved the selectivity towards the parasite when compared to the previously reported [M(mpo)2] complexes. Related to the probable mechanism of action of the complexes, molecular docking studies on modelled T. cruzi NADH-fumarate reductase (TcFR) predicted that both be very good inhibitors of the enzyme. The effect of the compounds on the enzyme activity was experimentally confirmed using T. cruzi protein extracts. According to all obtained results, both [M(mpo)(dppf)](PF6) compounds could be considered prospective anti-trypanosomal agents that deserve further research.
Collapse
Affiliation(s)
- Esteban Rodríguez Arce
- Cátedra de Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cheng G, Sa W, Cao C, Guo L, Hao H, Liu Z, Wang X, Yuan Z. Quinoxaline 1,4-di-N-Oxides: Biological Activities and Mechanisms of Actions. Front Pharmacol 2016; 7:64. [PMID: 27047380 PMCID: PMC4800186 DOI: 10.3389/fphar.2016.00064] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/07/2016] [Indexed: 11/29/2022] Open
Abstract
Quinoxaline 1,4-di-N-oxides (QdNOs) have manifold biological properties, including antimicrobial, antitumoral, antitrypanosomal and antiinflammatory/antioxidant activities. These diverse activities endow them broad applications and prospects in human and veterinary medicines. As QdNOs arouse widespread interest, the evaluation of their medicinal chemistry is still in progress. In the meantime, adverse effects have been reported in some of the QdNO derivatives. For example, genotoxicity and bacterial resistance have been found in QdNO antibacterial growth promoters, conferring urgent need for discovery of new QdNO drugs. However, the modes of actions of QdNOs are not fully understood, hindering the development and innovation of these promising compounds. Here, QdNOs are categorized based on the activities and usages, among which the antimicrobial activities are consist of antibacterial, antimycobacterial and anticandida activities, and the antiprotozoal activities include antitrypanosomal, antimalarial, antitrichomonas, and antiamoebic activities. The structure-activity relationship and the mode of actions of each type of activity of QdNOs are summarized, and the toxicity and the underlying mechanisms are also discussed, providing insight for the future research and development of these fascinating compounds.
Collapse
Affiliation(s)
- Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Wei Sa
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Chen Cao
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Liangliang Guo
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zhenli Liu
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
15
|
Nyawade EA, Friedrich HB, Omondi B, Chenia HY, Singh M, Gorle S. Synthesis and characterization of new α,α′-diaminoalkane-bridged dicarbonyl(η 5 -cyclopentadienyl)ruthenium(II) complex salts: Antibacterial activity tests of η 5 -cyclopentadienyl dicarbonyl ruthenium(II) amine complexes. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Santi E, Facchin G, Faccio R, Barroso RP, Costa-Filho AJ, Borthagaray G, Torre MH. Antimicrobial evaluation of new metallic complexes with xylitol active against P. aeruginosa and C. albicans: MIC determination, post-agent effect and Zn-uptake. J Inorg Biochem 2015; 155:67-75. [PMID: 26619097 DOI: 10.1016/j.jinorgbio.2015.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/07/2015] [Accepted: 11/10/2015] [Indexed: 01/25/2023]
Abstract
Xylitol (xylH5) is metabolized via the pentose pathway in humans, but it is unsuitable as an energy source for many microorganisms where it produces a xylitol-induced growth inhibition and disturbance in protein synthesis. For this reason, xylitol is used in the prophylaxis of several infections. In the search of better antimicrobial agents, new copper and zinc complexes with xylitol were synthesized and characterized by analytical and spectrosco pic methods: Na2[Cu3(xylH−4)2]·NaCl·4.5H2O (Cu-xyl) and [Zn4(xylH−4)2(H2O)2]·NaCl·3H2O (Zn-xyl). Both copper and zinc complexes presented higher MIC against Pseudomona aeruginosa than the free xylitol while two different behaviors were found against Candida albicans depending on the complex. The growth curves showed that Cu-xyl presented lower activity than the free ligand during all the studied period. In the case of Znxyl the growth curves showed that the inhibition of the microorganism growth in the first stage was equivalent to that of xylitol but in the second stage (after 18 h) Zn-xyl inhibited more. Besides, the PAE (post agent effect)obtained for Zn-xyl and xyl showed that the recovery from the damage of microbial cells had a delay of 14 and 13 h respectively. This behavior could be useful in prophylaxis treatments for infectious diseases where it is important that the antimicrobial effect lasts longer. With the aim to understand the microbiological activities the analysis of the particle size, lipophilicity and Zn uptake was performed.
Collapse
Affiliation(s)
- E Santi
- Química Inorgánica (DEC), Facultad de Química (UDELAR), Gral. Flores 2124, Montevideo, Uruguay
| | - G Facchin
- Química Inorgánica (DEC), Facultad de Química (UDELAR), Gral. Flores 2124, Montevideo, Uruguay
| | - R Faccio
- Física (DETEMA), Facultad de Química (UDELAR), Gral. Flores 2124, Montevideo, Uruguay
| | - R P Barroso
- Laboratório de Biofisica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - A J Costa-Filho
- Laboratório de Biofisica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - G Borthagaray
- Microbiología (BIOCLIN), Facultad de Química (UDELAR), Gral. Flores 2124, Montevideo, Uruguay
| | - M H Torre
- Química Inorgánica (DEC), Facultad de Química (UDELAR), Gral. Flores 2124, Montevideo, Uruguay.
| |
Collapse
|
17
|
Chandra S, Kumar S. Synthesis, spectroscopic, anticancer, antibacterial and antifungal studies of Ni(II) and Cu(II) complexes with hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene]. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 135:356-363. [PMID: 25087168 DOI: 10.1016/j.saa.2014.06.143] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/19/2014] [Accepted: 06/29/2014] [Indexed: 06/03/2023]
Abstract
Schiff's base ligand(L) hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene] and its metal complexes have been synthesized and characterized by elemental analysis, molar conductance, various spectroscopic techniques such as electronic, IR, (1)H NMR, mass, EPR. Molar conductance of complexes in DMF solution corresponds to non-electrolyte. Complexes have general composition [M(L)2X2], where M=Ni(II) and Cu(II), X=Cl(-), NO3(-), CH3COO(-) and ½SO4(2-). On the basis of above spectral studies, an octahedral geometry has been assigned for Ni(II) complexes and tetragonal geometry for Cu(II) complexes except [Cu(L)2SO4] which possesses five coordinated trigonal bipyramidal geometry. These metal complexes were also tested for their anticancer, antibacterial and antifungal activities to assess their inhibition potential. Anticancer activity of ligand and its metal complexes were evaluated using SRB fluorometric assay and Adriamycin (ADR) was applied as positive control. Schiff's base ligand and its metal complexes were screened for their antibacterial and antifungal activity against Escherichia coli, Bacillus cereus and Aspergillus niger, Aspergillus flavus, respectively. Kirby-Bauer single disk susceptibility test was used for antibacterial activity and well diffusion method for antifungal activity of the compounds on the used fungi.
Collapse
Affiliation(s)
- Sulekh Chandra
- Department of Chemistry, Zakir Husain Delhi College, University of Delhi, J.L. Nehru Marg, New Delhi 110002, India.
| | - Suresh Kumar
- Department of Botany, Ramjas College, University of Delhi, New Delhi 110007, India.
| |
Collapse
|
18
|
Machado I, Marino LB, Demoro B, Echeverría GA, Piro OE, Leite CQ, Pavan FR, Gambino D. Bioactivity of pyridine-2-thiolato-1-oxide metal complexes: Bi(III), Fe(III) and Ga(III) complexes as potent anti-Mycobacterium tuberculosis prospective agents. Eur J Med Chem 2014; 87:267-73. [DOI: 10.1016/j.ejmech.2014.09.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
|
19
|
Mondelli M, Pavan F, de Souza PC, Leite CQ, Ellena J, Nascimento OR, Facchin G, Torre MH. Study of a series of cobalt(II) sulfonamide complexes: Synthesis, spectroscopic characterization, and microbiological evaluation against M. tuberculosis. Crystal structure of [Co(sulfamethoxazole)2(H2O)2]·H2O. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2012.09.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Mycobacteria and biological response modifiers: two sides of the relationship. Infect Dis Clin North Am 2012; 25:865-93. [PMID: 22054761 DOI: 10.1016/j.idc.2011.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
With increasing use of biological response modifiers (BRMs) for various systemic inflammatory diseases there is a need to be vigilant about complications with the use of these therapies. It is important to have appropriate screening for the infections in patients requiring BRMs. However, many studies have reported benefits of certain BRMs in the treatment of infections such as tuberculosis as adjuncts. Continued research and technical advances in immunogenetics helps understand complex mechanisms in the usage of the BRMs. This article summarizes the different aspects of the relationship between mycobacterial infections and the use of various BRMs for inflammatory conditions.
Collapse
|
21
|
García-Ramos JC, Toledano-Magaña Y, Talavera-Contreras LG, Flores-Álamo M, Ramírez-Delgado V, Morales-León E, Ortiz-Frade L, Gutiérrez AG, Vázquez-Aguirre A, Mejía C, Carrero JC, Laclette JP, Moreno-Esparza R, Ruiz-Azuara L. Potential cytotoxic and amoebicide activity of first row transition metal compounds with 2,9-bis-(2′,5′-diazahexanyl)-1,1-phenanthroline (L1). Dalton Trans 2012; 41:10164-74. [DOI: 10.1039/c2dt30224a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Santi E, Viera I, Mombrú A, Castiglioni J, Baran EJ, Torre MH. Synthesis and characterization of heteroleptic copper and zinc complexes with saccharinate and aminoacids. Evaluation of SOD-like activity of the copper complexes. Biol Trace Elem Res 2011; 143:1843-55. [PMID: 21336583 DOI: 10.1007/s12011-011-8992-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/01/2011] [Indexed: 11/26/2022]
Abstract
Five new copper and zinc heteroleptic complexes with saccharin and aminoacids with general stoichiometry Na(2)[M(sac)(2)(aa)(2)].nH(2)O (M denotes Cu or Zn, sac the saccharinate ion, and aa the aminoacids) were synthesized and characterized by elemental and thermogravimetric analysis, conductimetric measurements and IR, Raman and UV-vis spectroscopies. In all the complexes, copper and zinc ions coordinated with the aminoacids through the terminal amine and carboxylate residues and with saccharin through the heterocyclic nitrogen atom. Besides, the superoxide dismutase-like activity of the heteroleptic copper complexes was evaluated and compared with the homoleptic copper amino acid complexes with the aim to observe the influence of the saccharin coordination.
Collapse
Affiliation(s)
- Eduardo Santi
- Química Inorgánica (DEC), Facultad de Química (UDELAR), Gral. Flores 2124, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
23
|
Pavan FR, Poelhsitz GV, Barbosa MI, Leite SR, Batista AA, Ellena J, Sato LS, Franzblau SG, Moreno V, Gambino D, Leite CQ. Ruthenium(II) phosphine/diimine/picolinate complexes: Inorganic compounds as agents against tuberculosis. Eur J Med Chem 2011; 46:5099-107. [DOI: 10.1016/j.ejmech.2011.08.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/16/2011] [Accepted: 08/16/2011] [Indexed: 11/25/2022]
|
24
|
Searching for gallium bioactive compounds: Gallium(III) complexes of tridentate salicylaldehyde semicarbazone derivatives. Polyhedron 2011. [DOI: 10.1016/j.poly.2011.02.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|