1
|
Tran VT, Turek-Herman J, Ferreira M, Martin KN, Beseiso D, Williams BR, Rosu F, Gabelica V, Burgmayer SJN, Yatsunyk LA. Interactions of ruthenium(II) polypyridyl complexes with human telomeric DNA. J Inorg Biochem 2023; 249:112388. [PMID: 37837940 PMCID: PMC10668861 DOI: 10.1016/j.jinorgbio.2023.112388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
Eight [Ru(bpy)2L]2+ and three [Ru(phen)2L]2+complexes (where bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline are ancillary ligands, and L = a polypyridyl experimental ligand) were investigated for their G-quadruplex binding abilities. Fluorescence resonance energy transfer melting assays were used to screen these complexes for their ability to selectively stabilize human telomeric DNA variant, Tel22. The best G-quadruplex stabilizers were further characterized for their binding properties (binding constant and stoichiometry) using UV-vis, fluorescence spectroscopy, and mass spectrometry. The ligands' ability to alter the structure of Tel22 was determined via circular dichroism and PAGE studies. We identified me2allox as the experimental ligand capable of conferring excellent stabilizing ability and good selectivity to polypyridyl Ru(II) complexes. Replacing bpy by phen did not significantly impact interactions with Tel22, suggesting that binding involves mostly the experimental ligand. However, using a particular ancillary ligand can help fine-tune G-quadruplex-binding properties of Ru(II) complexes. Finally, the fluorescence "light switch" behavior of all Ru(II) complexes in the presence of Tel22 G-quadruplex was explored. All Ru(II) complexes displayed "light switch" properties, especially [Ru(bpy)2(diamino)]2+, [Ru(bpy)2(dppz)]2+, and [Ru(bpy)2(aap)]2+. Current work sheds light on how Ru(II) polypyridyl complexes interact with human telomeric DNA with possible application in cancer therapy or G-quadruplex sensing.
Collapse
Affiliation(s)
- Vienna T Tran
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave., Swarthmore, PA, USA.
| | - Joshua Turek-Herman
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave., Swarthmore, PA, USA.
| | - Michelle Ferreira
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave., Swarthmore, PA, USA.
| | - Kailey N Martin
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave., Swarthmore, PA, USA.
| | - Dana Beseiso
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave., Swarthmore, PA, USA.
| | | | - Frederic Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, F-33600 Pessac, France.
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, F-33600 Pessac, France; Univ. Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, F-33600 Pessac, France.
| | | | - Liliya A Yatsunyk
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave., Swarthmore, PA, USA.
| |
Collapse
|
2
|
Ortiz de Luzuriaga I, Sánchez-González Á, Synoradzki W, Lopez X, Gil A. Unravelling the binding affinity and selectivity of molybdenum(II) phenanthroline complexes with DNA G-quadruplexes by using linear-scaling DFT studies. The important role of ancillary ligands. Phys Chem Chem Phys 2022; 24:25918-25929. [PMID: 36260061 DOI: 10.1039/d2cp02241a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We have used near linear-scaling density functional theory (LS-DFT) methods including dispersion, for the first time, to study the interaction of two isomers, equatorial (Eq) and axial (Ax), of the [Mo(η3-C3H5)Br(CO)2(phen)] metal complex with the DNA G-quadruplexes (GQ) to gain insight into its cytotoxicity. The LMKLL/DZDP level of calculation, which includes van der Waals contributions, with the SIESTA software was used to treat by means of first-principles computations the whole biological studied model system with ∼1000 atoms. Computed formation energies point to systems containing the Ax isomer as the most stable although the nearest system in energy containing the Eq isomer is only 7.5 kcal mol-1 above. On the other hand, the energy decomposition analysis (EDA) favours interaction energies for the systems containing the Eq isomer. However, when solvent effects are taken into account the systems containing the Ax isomer are again the most stable. This Ax isomer was found interacting by means of end-stacking with the GQ and surprisingly totally inside the non-canonical secondary structure, where all the ligands of the metal complex produce several weak interactions with the DNA structure. On the other hand, the Eq isomer prefers to interact from outside by means of intercalation in which the ancillary ligands also have some role in the interaction. Such features and comparison with the results regarding the interaction of the [Mo(η3-C3H5)Br(CO)2(phen)] metal complex with duplex DNA suggest that the [Mo(η3-C3H5)Br(CO)2(phen)] would have a higher affinity and eventual selectivity for non-canonical DNA GQ structures.
Collapse
Affiliation(s)
- Iker Ortiz de Luzuriaga
- CIC-nanoGUNE BRTA, Tolosa Hiribidea 76, E-20018, Donostia - San Sebastián, Euskadi, Spain.
- Polímero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, 20080, Donostia, Euskadi, Spain
| | - Ángel Sánchez-González
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Wojciech Synoradzki
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Xabier Lopez
- Polímero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, 20080, Donostia, Euskadi, Spain
- Donostia International Physics Center (DIPC), P. K. 1072, 20080, Donostia, Euskadi, Spain
| | - Adrià Gil
- CIC-nanoGUNE BRTA, Tolosa Hiribidea 76, E-20018, Donostia - San Sebastián, Euskadi, Spain.
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
- ARAID Foundation, Zaragoza, Spain
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Consejo Superior de Investigaciones Científicas (CSIC). Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
3
|
Chen M, Chen X, Huang G, Jiang Y, Gou Y, Deng J. Synthesis, anti-tumour activity, and mechanism of benzoyl hydrazine Schiff base-copper complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Jiang J, Teunens T, Tisaun J, Denuit L, Moucheron C. Ruthenium(II) Polypyridyl Complexes and Their Use as Probes and Photoreactive Agents for G-quadruplexes Labelling. Molecules 2022; 27:1541. [PMID: 35268640 PMCID: PMC8912042 DOI: 10.3390/molecules27051541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their optical and electrochemical properties, ruthenium(II) polypyridyl complexes have been used in a wide array of applications. Since the discovery of the light-switch ON effect of [Ru(bpy)2dppz]2+ when interacting with DNA, the design of new Ru(II) complexes as light-up probes for specific regions of DNA has been intensively explored. Amongst them, G-quadruplexes (G4s) are of particular interest. These structures formed by guanine-rich parts of DNA and RNA may be associated with a wide range of biological events. However, locating them and understanding their implications in biological pathways has proven challenging. Elegant approaches to tackle this challenge relies on the use of photoprobes capable of marking, reversibly or irreversibly, these G4s. Indeed, Ru(II) complexes containing ancillary π-deficient TAP ligands can create a covalently linked adduct with G4s after a photoinduced electron transfer from a guanine residue to the excited complex. Through careful design of the ligands, high selectivity of interaction with G4 structures can be achieved. This allows the creation of specific Ru(II) light-up probes and photoreactive agents for G4 labelling, which is at the core of this review composed of an introduction dedicated to a brief description of G-quadruplex structures and two main sections. The first one will provide a general picture of ligands and metal complexes interacting with G4s. The second one will focus on an exhaustive and comprehensive overview of the interactions and (photo)reactions of Ru(II) complexes with G4s.
Collapse
Affiliation(s)
- Julie Jiang
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
- Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Tisaun
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Laura Denuit
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| |
Collapse
|
5
|
Piperine analogs arrest c-myc gene leading to downregulation of transcription for targeting cancer. Sci Rep 2021; 11:22909. [PMID: 34824301 PMCID: PMC8617303 DOI: 10.1038/s41598-021-01529-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022] Open
Abstract
G-quadruplex (G4) structures are considered a promising therapeutic target in cancer. Since Ayurveda, Piperine has been known for its medicinal properties. Piperine shows anticancer properties by stabilizing the G4 motif present upstream of the c-myc gene. This gene belongs to a group of proto-oncogenes, and its aberrant transcription drives tumorigenesis. The transcriptional regulation of the c-myc gene is an interesting approach for anticancer drug design. The present study employed a chemical similarity approach to identify Piperine similar compounds and analyzed their interaction with cancer-associated G-quadruplex motifs. Among all Piperine analogs, PIP-2 exhibited strong selectivity, specificity, and affinity towards c-myc G4 DNA as elaborated through biophysical studies such as fluorescence emission, isothermal calorimetry, and circular dichroism. Moreover, our biophysical observations are supported by molecular dynamics analysis and cellular-based studies. Our study showed that PIP-2 showed higher toxicity against the A549 lung cancer cell line but lower toxicity towards normal HEK 293 cells, indicating increased efficacy of the drug at the cellular level. Biological evaluation assays such as TFP reporter assay, quantitative real-time PCR (qRT- PCR), and western blotting suggest that the Piperine analog-2 (PIP-2) stabilizes the G-quadruplex motif located at the promoter site of c-myc oncogene and downregulates its expression. In conclusion, Piperine analog PIP-2 may be used as anticancer therapeutics as it affects the c-myc oncogene expression via G-quadruplex mediated mechanism.
Collapse
|
6
|
Palma E, Carvalho J, Cruz C, Paulo A. Metal-Based G-Quadruplex Binders for Cancer Theranostics. Pharmaceuticals (Basel) 2021; 14:605. [PMID: 34201682 PMCID: PMC8308583 DOI: 10.3390/ph14070605] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
The ability of fluorescent small molecules, such as metal complexes, to selectively recognize G-quadruplex (G4) structures has opened a route to develop new probes for the visualization of these DNA structures in cells. The main goal of this review is to update the most recent research efforts towards the development of novel cancer theranostic agents using this type of metal-based probes that specifically recognize G4 structures. This encompassed a comprehensive overview of the most significant progress in the field, namely based on complexes with Cu, Pt, and Ru that are among the most studied metals to obtain this class of molecules. It is also discussed the potential interest of obtaining G4-binders with medical radiometals (e.g., 99mTc, 111In, 64Cu, 195mPt) suitable for diagnostic and/or therapeutic applications within nuclear medicine modalities, in order to enable their theranostic potential.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal;
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal;
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
7
|
Pandya N, Jain N, Kumar A. Interaction analysis of anti-cancer drug Methotrexate with bcl-2 promoter stabilization and its transcription regulation. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Devereux SJ, Poynton FE, Baptista FR, Gunnlaugsson T, Cardin CJ, Sazanovich IV, Towrie M, Kelly JM, Quinn SJ. Caught in the Loop: Binding of the [Ru(phen) 2 (dppz)] 2+ Light-Switch Compound to Quadruplex DNA in Solution Informed by Time-Resolved Infrared Spectroscopy. Chemistry 2020; 26:17103-17109. [PMID: 32725823 DOI: 10.1002/chem.202002165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 01/05/2023]
Abstract
Ultrafast time-resolved infrared (TRIR) is used to report on the binding site of the [Ru(phen)2 (dppz)]2+ "light-switch" complex with both bimolecular (Oxytricha nova telomere) and intramolecular (human telomere) guanine-quadruplex structures in both K+ and Na+ containing solutions. TRIR permits the simultaneous monitoring both of the "dark" and "bright" states of the complex and of the quadruplex nucleobase bases, the latter via a Stark effect induced by the excited state of the complex. These data are used to establish the contribution of guanine base stacking and loop interactions to the binding site of this biologically relevant DNA structure in solution. A particularly striking observation is the strong thymine signal observed for the Na+ form of the human telomere sequence, which is expected to be in the anti-parallel conformation.
Collapse
Affiliation(s)
| | - Fergus E Poynton
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland.,Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, 2, Ireland
| | | | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland.,Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, 2, Ireland
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | | | - Michael Towrie
- Rutherford Appleton Laboratory, STFC, Harwell Campus, OX11 0FA, UK
| | - John M Kelly
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin, 4, Ireland
| |
Collapse
|
9
|
Bazoobandi M, Bozorgmehr MR, Mahmoudi A, Morsali A. The Effect of Temperature on the Interaction of Phenanthroline-based Ligands with G-quadruplex: In Silico Viewpoint. Comb Chem High Throughput Screen 2019; 22:546-554. [PMID: 31642773 DOI: 10.2174/1386207322666191022142629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE The stability of the G-quadruplex structure can increase its activity in telomerase inhibiting cancer cells. In this study, a molecular dynamics simulation method was used to study the effect of three phenanthroline-based ligands on the structure of G-quadruplex at the temperatures of 20, 40, 60 and 80°C. MATERIALS AND METHODS RMSD values and frequency of calculated RMSD in the presence and absence of ligands show that ligands cause the relative stability of the G-quadruplex, particularly at low temperatures. The calculation of hydrogen bonds in Guanine-tetrads in three different quadruplex sheets shows that the effect of ligands on the sheets is not the same so that the bottom sheet of G-quadruplex is most affected by the ligands at high temperatures, and the Guaninetetrads in this sheet are far away. Conformation factor was calculated as a measure of ligands binding affinity for each of the G-quadruplex residues. RESULTS The results show that the studied ligands interact more with the G-quadruplex than loop areas, although with increasing temperature, the binding area also includes the G-quadruplex sheets. The contribution of each of the residues involved in the G-quadruplex binding area with ligands was also calculated. CONCLUSION The calculations performed are consistent with the previous experimental observations that can help to understand the molecular mechanism of the interaction of phenanthroline and its derivatives with quadruplex.
Collapse
Affiliation(s)
- Mohadeseh Bazoobandi
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Hakimiyeh, Tehran, Iran
| | | | - Ali Mahmoudi
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Hakimiyeh, Tehran, Iran
| | - Ali Morsali
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
10
|
Xu X, Wang S, Mi Y, Zhao H, Zheng Z, Zhao X. A hydroxyquinoline-appended ruthenium(II)-polypyridyl complex that induces and stabilizes G-quadruplex DNA. J COORD CHEM 2019. [DOI: 10.1080/00958972.2018.1548703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Xuexue Xu
- College of Chemistry and Environmental Science, Hebei University, Baoding, P.R. China
| | - Shuang Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding, P.R. China
| | - Yaxuan Mi
- College of Chemistry and Environmental Science, Hebei University, Baoding, P.R. China
| | - Huaqian Zhao
- College of Chemistry and Environmental Science, Hebei University, Baoding, P.R. China
| | - Zebao Zheng
- College of Chemistry and Chemical Engineering, Taishan University, Taian, P.R. China
| | - Xiaolong Zhao
- College of Chemistry and Environmental Science, Hebei University, Baoding, P.R. China
| |
Collapse
|
11
|
Binding Study of the Fluorescent Carbazole Derivative with Human Telomeric G-Quadruplexes. Molecules 2018; 23:molecules23123154. [PMID: 30513661 PMCID: PMC6321567 DOI: 10.3390/molecules23123154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/04/2023] Open
Abstract
The carbazole ligand 3 was synthesized, characterized and its binding interactions with human telomeric (22HT) G-quadruplex DNA in Na+ and K+-containing buffer were investigated by ultraviolet-visible (UV-Vis) spectrophotometry, fluorescence, circular dichroism (CD) spectroscopy, and DNA melting. The results showed that the studied carbazole ligand interacted and stabilized the intramolecular G-quadruplexes formed by the telomeric sequence in the presence of sodium and potassium ions. In the UV-Vis titration experiments a two-step complex formation between ligand and G-quadruplex was observed. Very low fluorescence intensity of the carbazole derivative in Tris HCl buffer in the presence of the NaCl or KCl increased significantly after addition of the 22HT G4 DNA. Binding stoichiometry of the ligand/G-quadruplex was investigated with absorbance-based Job plots. Carbazole ligand binds 22HT with about 2:1 stoichiometry in the presence of sodium and potassium ions. The binding mode appeared to be end-stacking with comparable binding constants of ~105 M−1 as determined from UV-Vis and fluorescence titrations data. The carbazole ligand is able to induce formation of G4 structure of 22HT in the absence of salt, which was proved by CD spectroscopy and melting studies. The derivative of carbazole 3 shows significantly higher cytotoxicity against breast cancer cells then for non-tumorigenic breast epithelial cells. The cytotoxic activity of ligand seems to be not associated with telomerase inhibition.
Collapse
|
12
|
Troian-Gautier L, Wehlin SAM, Meyer GJ. Photophysical Properties of Tetracationic Ruthenium Complexes and Their Ter-Ionic Assemblies with Chloride. Inorg Chem 2018; 57:12232-12244. [DOI: 10.1021/acs.inorgchem.8b01921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Sara A. M. Wehlin
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
13
|
Głuszyńska A, Juskowiak B, Kuta-Siejkowska M, Hoffmann M, Haider S. Carbazole Derivatives' Binding to c-KIT G-Quadruplex DNA. Molecules 2018; 23:E1134. [PMID: 29747481 PMCID: PMC6099540 DOI: 10.3390/molecules23051134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
Abstract
The binding affinities of three carbazole derivatives to the intramolecular G-quadruplex (GQ) DNA formed by the sequence 5′-AGGGAGGGCGCTGGGAGGAGGG-3′, derived from the c-KIT 1 oncogene region, were investigated. All carbazole cationic ligands that differed in the substituents on the nitrogen atom were able to stabilize G-quadruplex, as demonstrated using UV-Vis, fluorescence and CD spectroscopic techniques as well as molecular modeling. The spectrophotometric titration results showed spectral features characteristic of these ligands-bathochromic shifts and initial hypochromicity followed by hyperchromicity at higher GQ concentrations. All free carbazole ligands exhibited modest fluorescent properties, but after binding to the DNA the fluorescence intensity increased significantly. The binding affinities of carbazole ligands to the c-KIT 1 DNA were comparable showing values in the order of 10⁵ M−1. Molecular modeling highlights the differences in interactions between each particular ligand and studied G-quadruplex, which potentially influenced binding strength. Obtained results relevant that all three investigated ligands have stabilization properties on studied G-quadruplex.
Collapse
Affiliation(s)
- Agata Głuszyńska
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Bernard Juskowiak
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Martyna Kuta-Siejkowska
- Laboratory of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Marcin Hoffmann
- Laboratory of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Shozeb Haider
- School of Pharmacy, University College London, London WC1N 1AX, UK.
| |
Collapse
|
14
|
A dinuclear ruthenium(II) complex as an inducer and potential luminescent switch-on probe for G-quadruplex DNA. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0240-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Pal M, Nandi U, Mukherjee D. Detailed account on activation mechanisms of ruthenium coordination complexes and their role as antineoplastic agents. Eur J Med Chem 2018; 150:419-445. [DOI: 10.1016/j.ejmech.2018.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 10/17/2022]
|
16
|
Bouzada D, Salvadó I, Barka G, Rama G, Martínez-Costas J, Lorca R, Somoza Á, Melle-Franco M, Vázquez ME, Vázquez López M. Selective G-quadruplex binding by oligoarginine-Ru(dppz) metallopeptides. Chem Commun (Camb) 2018; 54:658-661. [DOI: 10.1039/c7cc08286j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We demonstrate that both the R8 functionalization and its interplay with the ancillary ligand have and an important role in the G-quadruplex recognition process by Ru(dppz) metallopeptides.
Collapse
|
17
|
Ma DL, Wu C, Dong ZZ, Tam WS, Wong SW, Yang C, Li G, Leung CH. The Development of G-Quadruplex-Based Assays for the Detection of Small Molecules and Toxic Substances. Chem Asian J 2017; 12:1851-1860. [PMID: 28470784 DOI: 10.1002/asia.201700533] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 11/12/2022]
Abstract
G-Quadruplexes can be induced to form guanine-rich DNA sequences by certain small molecules or metal ions. In concert with an appropriate signal transducer, such as a fluorescent dye or a phosphorescent metal complex, the ligand-recognition event can be transduced into a luminescent response. This focus review aims to highlight recent examples of aptamer-based and metal-mediated G-quadruplex assays for the detection of small molecules and toxic substances in the last three years. We discuss the mechanisms and features of the different assays and present an outlook and a perspective for the future of this field.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Chun Wu
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Zhen-Zhen Dong
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Wing-Sze Tam
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Sze-Wan Wong
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| |
Collapse
|
18
|
Zhao XL, Zhao HQ, Xu XX, Li ZS, Wang KZ. Inducement and stabilization of G-quadruplex DNA by a thiophene-containing dinuclear ruthenium(II) complex. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1322694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xiao-Long Zhao
- College of Chemistry & Environmental Science, Hebei University, Baoding, PR China
| | - Hua-Qian Zhao
- College of Chemistry & Environmental Science, Hebei University, Baoding, PR China
| | - Xue-Xue Xu
- College of Chemistry & Environmental Science, Hebei University, Baoding, PR China
| | - Zhen-Sheng Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, PR China
| | - Ke-Zhi Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, PR China
| |
Collapse
|
19
|
Lin S, Lu L, Kang TS, Mergny JL, Leung CH, Ma DL. Interaction of an Iridium(III) Complex with G-Quadruplex DNA and Its Application in Luminescent Switch-On Detection of Siglec-5. Anal Chem 2016; 88:10290-10295. [PMID: 27678199 DOI: 10.1021/acs.analchem.6b03128] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sialic acid (Sia) binding immunoglobulin (Ig)-like lectin-5 (Siglec-5) is a type-I transmembrane protein, and it has been demonstrated as a biomarker of granulocytic maturation and acute myeloid leukemia phenotype. Herein we aimed to construct a method that could sensitively detect Siglec-5 by taking advantage of the high affinity and selectivity of the K19 aptamer for its cognate target, and the selective interaction of luminescent iridium(III) transition metal complexes with G-quadruplex DNA. The iridium(III) complex 1 [Ir(tpyd)2(2,9-dmphen)]PF6 (where tpyd =2-(m-tolyl)pyridine; 2,9-dmphen =2,9-dimethyl-1,10-phenanthroline) was synthesized, and it displayed high luminescence for G-quadruplex DNA compared to dsDNA and ssDNA. Additionally, complex 1 exhibited a blue shift luminescence response to c-kit2 G-quadruplex, and the interaction between 1 and G-quadruplexes was discussed based on the results of G-tetrad assay, loop effect assay, and other assays. Then complex 1 was utilized to develop a G-quadruplex-based sensing platform for Siglec-5 in aqueous solution. Upon the addition of Siglec-5, the specific binding of the K19 aptamer sequence results in a conformational change that generates a split G-quadruplex structure, which is then recognized by the G-quadruplex-specific iridium(III) complex with an enhanced luminescent response. Futhermore, the use of the assay for detecting Siglec-5 in cellular debris was demonstrated.
Collapse
Affiliation(s)
- Sheng Lin
- Department of Chemistry, Hong Kong Baptist University , Kowloon Tong, Hong Kong, China , 999077
| | - Lihua Lu
- Department of Chemistry, Hong Kong Baptist University , Kowloon Tong, Hong Kong, China , 999077.,College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, China , 266109
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China , 999078
| | - Jean-Louis Mergny
- INSERM, U1212, CNRS, UMR 5320, IECB, Pessac, France , 33607.,University of Bordeaux , ARNA Laboratory, Bordeaux, France , 33370
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China , 999078
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University , Kowloon Tong, Hong Kong, China , 999077
| |
Collapse
|
20
|
Zhang X, Huang Z, Wu S, Lin R, Liu J, Su N. Investigation of antitumor mechanism of the chiral ruthenium complex Λ-[Ru(phen) 2 p-MOPIP] 2+ in human gastric cancer MGC-803 cells. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Novel Fe II and Co II Complexes of Natural Product Tryptanthrin: Synthesis and Binding with G-Quadruplex DNA. Bioinorg Chem Appl 2016; 2016:5075847. [PMID: 27698647 PMCID: PMC5029049 DOI: 10.1155/2016/5075847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/12/2016] [Accepted: 07/27/2016] [Indexed: 11/26/2022] Open
Abstract
Tryptanthrin is one of the most important members of indoloquinoline alkaloids. We obtained this alkaloid from Isatis. Two novel FeII and CoII complexes of tryptanthrin were first synthesized. Single-crystal X-ray diffraction analyses show that these complexes display distorted four-coordinated tetrahedron geometry via two heterocyclic nitrogen and oxygen atoms from tryptanthrin ligand. Binding with G-quadruplex DNA properties revealed that both complexes were found to exhibit significant interaction with G-quadruplex DNA. This study may potentially serve as the basis of future rational design of metal-based drugs from natural products that target the G-quadruplex DNA.
Collapse
|
22
|
Lin S, Lu L, Liu JB, Liu C, Kang TS, Yang C, Leung CH, Ma DL. A G-quadruplex-selective luminescent iridium(III) complex and its application by long lifetime. Biochim Biophys Acta Gen Subj 2016; 1861:1448-1454. [PMID: 27592730 DOI: 10.1016/j.bbagen.2016.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND The G-quadruplex motif has been widely used for the construction of analytical detection platforms due to its rich structural polymorphism and flexibility. Luminescent assays are often limited due to the interference from endogenous fluorophores in biological samples. METHODS To address this challenge, a novel long lifetime iridium(III) complex 1 was synthesized and used to construct a G-quadruplex-based assay for detecting prostate specific antigen (PSA) in aqueous solution. PSA is a common biomarker in serum and used as a model for demonstration in this work. RESULTS The PSA assay has achieved a detection limit of 40.8pg·mL-1, and shows high selectivity towards PSA over other proteins. Additionally, the assay could function in diluted human serum by using time-resolved luminescent spectroscopy, with good linearity from 1 to 10ng·mL-1 of PSA, which is adequate to detect the PSA levels for physiological (<4ng·mL-1) and clinical (4-10ng·mL-1) applications. CONCLUSIONS The assay was successfully constructed. As revealed from time-resolved method, the long lifetime property of iridium(III) complex 1 plays an important role in distinguishing phosphorescence signals from short-life auto-fluorescence of human serum. GENERAL SIGNIFICANCE Luminescent transition metal complexes offer several advantages over other widely used organic fluorophores, such as long phosphorescence lifetime, large Stokes shift and modular syntheses. In addition, the assay could work effectively in diluted human serum using time-resolved luminescent spectroscopy, it therefore could be potentially developed to monitor PSA in biological samples. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Sheng Lin
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Lihua Lu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jin-Biao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chenfu Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
23
|
Lin S, He B, Yang C, Leung CH, Mergny JL, Ma DL. Luminescence switch-on assay of interferon-gamma using a G-quadruplex-selective iridium(III) complex. Chem Commun (Camb) 2016; 51:16033-6. [PMID: 26399215 DOI: 10.1039/c5cc06655g] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, we synthesized a series of 9 luminescent iridium(III) complexes and studied their ability to function as luminescent probes for G-quadruplex DNA. The iridium(III) complex 8 [Ir(pbtz)2(dtbpy)]PF6 (where pbtz = 2-phenylbenzo[d]thiazole; dtbpy = 4,4'-di-tert-butyl-2,2'-bipyridine) showed high selectivity for G-quadruplex DNA over single-stranded and double-stranded DNA, and was subsequently utilized for the development of a label-free oligonucleotide-based assay for interferon-gamma (IFN-γ), an important biomarker for a range of immune and infectious diseases, in aqueous solution. We further demonstrated that this assay could monitor IFN-γ levels even in the presence of cellular debris. This assay represents the first G-quadruplex-based assay for IFN-γ detection described in the literature.
Collapse
Affiliation(s)
- Sheng Lin
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Bingyong He
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Jean-Louis Mergny
- University of Bordeaux, ARNA laboratory, Bordeaux, France. and INSERM, U869, IECB, Pessac, France
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China. and Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
24
|
Zhang Z, Mei W, Wu X, Wang X, Wang B, Chen S. Synthesis and characterization of chiral ruthenium(II) complexes Λ /Δ-[Ru(bpy) 2(H 2iip)](ClO 4) 2 as stabilizers of c- myc G-quadruplex DNA. J COORD CHEM 2015; 68:1465-1475. [DOI: 10.1080/00958972.2015.1014352] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/12/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Zhao Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Wenjie Mei
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Xiaohui Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Xicheng Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Baoguo Wang
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Sidong Chen
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
25
|
Lu XH, Shi S, Yao JL, Gao X, Huang HL, Yao TM. Two structurally analogous ruthenium complexes as naked-eye and reversible molecular "light switch" for G-quadruplex DNA. J Inorg Biochem 2014; 140:64-71. [PMID: 25063909 DOI: 10.1016/j.jinorgbio.2014.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 11/30/2022]
Abstract
A pair of symmetrical furyl based ruthenium(II) complexes ([Ru(phen)2dpq-df](2+) (1) and [Ru(bpy)2dpq-df](2+) (2) (phen=1,10-phenanthroline, bpy=2,2'-bipyridine, dpq-df=dipyrido (3,2-a:2',3'-c) quinoxaline-difuran) have been prepared and characterized. The binding properties of both complexes toward G-quadruplex DNA have been investigated by fluorescence spectroscopy, UV-Vis spectroscopy, circular dichroism (CD), fluorescence resonance energy transfer (FRET) melting assays and molecular docking studies. The experimental results indicated that both Ru-complexes exhibited a remarkable "light switch" effect in the presence of hybrid G-quadruplex DNA. Interestingly, the "light switch" can be repeated off and on through the successive addition of Cu(2+) ions and EDTA, and all these behaviors can be observed even by the naked eyes. Moreover, FRET melting assay revealed that both complexes could be potential stabilizers for G-quadruplex architectures. The computational studies not only confirmed that the two complex molecules bound to one G-quadruplex DNA molecule, but also explained the "light switch" effect.
Collapse
Affiliation(s)
- Xiao-Hui Lu
- Department of Chemistry, Tongji University, Shanghai 200092, PR China
| | - Shuo Shi
- Department of Chemistry, Tongji University, Shanghai 200092, PR China.
| | - Jun-Liang Yao
- Department of Chemistry, Tongji University, Shanghai 200092, PR China
| | - Xing Gao
- Department of Chemistry, Tongji University, Shanghai 200092, PR China
| | - Hai-Liang Huang
- Department of Chemistry, Tongji University, Shanghai 200092, PR China
| | - Tian-Ming Yao
- Department of Chemistry, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
26
|
Adonin SA, Abramov PA, Uskov SI. Crystal structure of Ir(III) complexes with 1,10-phenanthroline: K[Ir(phen)Cl4]·H2O and (Me4N)[Ir(phen)Cl4]. J STRUCT CHEM+ 2014. [DOI: 10.1134/s0022476614030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Yu HJ, Yu L, Hao ZF, Zhao Y. Interactions of ruthenium complexes containing indoloquinoline moiety with human telomeric G-quadruplex DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 124:187-193. [PMID: 24486786 DOI: 10.1016/j.saa.2013.12.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 12/26/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
G-quadruplex structures are attractive targets for the development of anticancer drugs, as their formation in human telomere could impair telomerase activity, thus inducing apoptosis in cancer cells. Vast majority of G-quadruplex binding molecules have been designed and synthesized. Ruthenium complexes have also been reported to induction or stabilization of G-quadruplex structure of human telomeric sequence, whereas most of them generally promote the formation of antiparallel or hybrid-type G-quadruplex structure. Ruthenium complex that selectively promotes the formation of parallel G-quadruplex structure has rarely been reported. We reported here the interaction of two ruthenium complexes [Ru(bpy)2(mitatp)](2+)1 and [Ru(phen)2(mitatp)](2+)2 (bpy=2,2' bipyridine, phen=1,10-phenanthroline, mitatp=5-methoxy-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene) containing indoloquinoline moiety with human telomeric G-quadruplex DNA (Telo22). Complex 1 binds to Telo22 tightly via a stable π-π stacking interaction and efficiently stabilizes the G-quadruplex structure. Circular dichroism (CD) spectra titration results suggest that complex 1 could induce Telo22 to fold into antiparallel G-quadruplex conformation. Complex 2 exhibits moderate G-quadruplex binding and stabilizing ability, while CD titration data reveals that complex 2 could promote the formation of parallel G-quadruplex structure.
Collapse
Affiliation(s)
- Hui-juan Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhi-feng Hao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ying Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
28
|
Abdel Aziz AA, Elbadawy HA. Spectral, electrochemical, thermal, DNA binding ability, antioxidant and antibacterial studies of novel Ru(III) Schiff base complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 124:404-415. [PMID: 24508879 DOI: 10.1016/j.saa.2014.01.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/21/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
Four new air stable low spin Ru(III) complexes of the type [Ru(L(1-4))(H2O)2]Cl have been synthesized, where L=dianion of the tetradentate Schiff base ligands namely N,N'bis(salicylaldehyde)4,5-dimethy-l,2-phenylendiammine (L(1)H2), N,N'bis(salicylaldehyde)4,5-dichloro 1,2-phenylendiammine (L(2)H2), N,N'bis(o-vanillin)4,5-dimethy-1,2-phenylendiammine (L(3)H2) and N,N'bis(o-vanillin)4,5-dichloro-1,2-phenylendiammine (L(4)H2). The complexes have been fully characterized by elemental analysis, infrared spectroscopy, electronic spectroscopy, magnetic susceptibility and electron spin resonance spectroscopy. Elemental analyses and spectroscopic data have been showed that, the stoichiometries of complexes were 1:1 with an octahedral geometry for all the complexes. Thermal analysis measurements indicated that the complexes have good thermal stability. The redox behavior of the complexes has been investigated by the cyclic voltammetric technique. The interaction of these complexes with calf thymus DNA (CT-DNA) was explored by different techniques which revealed that the complexes could bind to CT-DNA through an intercalative mode. Furthermore, the antioxidant activity of the Ru(III) complexes against superoxide and hydroxyl radicals was evaluated by using spectrophotometer methods in vitro. The experiments on antioxidant activity show that the complexes were found to possess potent antioxidant activity. Additionally, as a potential application the antibacterial activity of the complexes was assessed by testing their effect on the growth of various strains of bacteria.
Collapse
Affiliation(s)
- Ayman A Abdel Aziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia; Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Hemmat A Elbadawy
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia; Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21641, Egypt
| |
Collapse
|
29
|
Li Q, Zhang J, Yang L, Yu Q, Chen Q, Qin X, Le F, Zhang Q, Liu J. Stabilization of G-quadruplex DNA and inhibition of telomerase activity studies of ruthenium(II) complexes. J Inorg Biochem 2014; 130:122-9. [DOI: 10.1016/j.jinorgbio.2013.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 01/16/2023]
|
30
|
Ma DL, He HZ, Leung KH, Chan DSH, Leung CH. Bioactive Luminescent Transition-Metal Complexes for Biomedical Applications. Angew Chem Int Ed Engl 2013; 52:7666-7682. [DOI: 10.1002/anie.201208414] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
31
|
Ma DL, He HZ, Leung KH, Chan DSH, Leung CH. Bioaktive lumineszierende Übergangsmetallkomplexe für biomedizinische Anwendungen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208414] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Ruthenium (II) polypyridyl complexes stabilize the bcl-2 promoter quadruplex and induce apoptosis of Hela tumor cells. Biometals 2013; 26:387-402. [DOI: 10.1007/s10534-013-9622-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
|
33
|
Vummidi BR, Alzeer J, Luedtke NW. Fluorescent Probes for G-Quadruplex Structures. Chembiochem 2013; 14:540-58. [DOI: 10.1002/cbic.201200612] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Indexed: 12/19/2022]
|
34
|
Barry NPE, Sadler PJ. Exploration of the medical periodic table: towards new targets. Chem Commun (Camb) 2013; 49:5106-31. [DOI: 10.1039/c3cc41143e] [Citation(s) in RCA: 570] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Yu Q, Liu Y, Wang C, Sun D, Yang X, Liu Y, Liu J. Chiral ruthenium(II) polypyridyl complexes: stabilization of g-quadruplex DNA, inhibition of telomerase activity and cellular uptake. PLoS One 2012; 7:e50902. [PMID: 23236402 PMCID: PMC3517606 DOI: 10.1371/journal.pone.0050902] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
Two ruthenium(II) complexes, Λ-[Ru(phen)2(p-HPIP)]2+ and Δ-[Ru(phen)2(p-HPIP)]2+, were synthesized and characterized via proton nuclear magnetic resonance spectroscopy, electrospray ionization-mass spectrometry, and circular dichroism spectroscopy. This study aims to clarify the anticancer effect of metal complexes as novel and potent telomerase inhibitors and cellular nucleus target drug. First, the chiral selectivity of the compounds and their ability to stabilize quadruplex DNA were studied via absorption and emission analyses, circular dichroism spectroscopy, fluorescence-resonance energy transfer melting assay, electrophoretic mobility shift assay, and polymerase chain reaction stop assay. The two chiral compounds selectively induced and stabilized the G-quadruplex of telomeric DNA with or without metal cations. These results provide new insights into the development of chiral anticancer agents for G-quadruplex DNA targeting. Telomerase repeat amplification protocol reveals the higher inhibitory activity of Λ-[Ru(phen)2(p-HPIP)]2+ against telomerase, suggesting that Λ-[Ru(phen)2(p-HPIP)]2+ may be a potential telomerase inhibitor for cancer chemotherapy. MTT assay results show that these chiral complexes have significant antitumor activities in HepG2 cells. More interestingly, cellular uptake and laser-scanning confocal microscopic studies reveal the efficient uptake of Λ-[Ru(phen)2(p-HPIP)]2+ by HepG2 cells. This complex then enters the cytoplasm and tends to accumulate in the nucleus. This nuclear penetration of the ruthenium complexes and their subsequent accumulation are associated with the chirality of the isomers as well as with the subtle environment of the ruthenium complexes. Therefore, the nucleus can be the cellular target of chiral ruthenium complexes for anticancer therapy.
Collapse
Affiliation(s)
- Qianqian Yu
- Department of Chemistry, Jinan University, Guangzhou, P. R. China
| | - Yanan Liu
- Department of Chemistry, Jinan University, Guangzhou, P. R. China
- Department of Biology, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Chuan Wang
- Department of Chemistry, Jinan University, Guangzhou, P. R. China
| | - Dongdong Sun
- Department of Chemistry, Jinan University, Guangzhou, P. R. China
| | - Xingcheng Yang
- Department of Chemistry, Jinan University, Guangzhou, P. R. China
| | - Yanyu Liu
- Department of Chemistry, Jinan University, Guangzhou, P. R. China
| | - Jie Liu
- Department of Chemistry, Jinan University, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|
36
|
Li Q, Sun D, Zhou Y, Liu D, Zhang Q, Liu J. Anticancer activity of novel ruthenium complex with 1,10-phenanthrolineselenazole as potent telomeric G-quadruplex inhibitor. INORG CHEM COMMUN 2012. [DOI: 10.1016/j.inoche.2012.02.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Liu D, Liu Y, Wang C, Shi S, Sun D, Gao F, Zhang Q, Liu J. Polypyridyl Complexes of Ruthenium(II): Stabilization of G-quadruplex DNA and Inhibition of Telomerase Activity. Chempluschem 2012. [DOI: 10.1002/cplu.201200039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Visualizing the Quadruplex: From Fluorescent Ligands to Light-Up Probes. Top Curr Chem (Cham) 2012; 330:111-77. [DOI: 10.1007/128_2012_346] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Sun D, Zhang R, Yuan F, Liu D, Zhou Y, Liu J. Studies on characterization, telomerase inhibitory properties and G-quadruplex binding of η6-arene ruthenium complexes with 1,10-phenanthroline-derived ligands. Dalton Trans 2012; 41:1734-41. [DOI: 10.1039/c1dt11676b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Huang HL, Li ZZ, Liang ZH, Liu YJ. Cell Cycle Arrest, Cytotoxicity, Apoptosis, DNA-Binding, Photocleavage, and Antioxidant Activity of Octahedral Ruthenium(II) Complexes. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100848] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Sun J, Wu S, Chen HY, Gao F, Liu J, Ji LN, Mao ZW. Synthesis, characterization and DNA-binding and DNA-photocleavage studies of two Ru(II) complexes containing two main ligands and one ancillary ligand. Polyhedron 2011. [DOI: 10.1016/j.poly.2011.04.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|