1
|
Ghanbari H, Derakhshankhah H, Bahrami K, Keshavarzi S, Mohammadi K, Hayati P, Centore R, Parisi E. Synthesis, characterization, and biological activity of a fresh class of sonochemically synthesized Cu 2+ complexes. Sci Rep 2024; 14:21325. [PMID: 39266594 PMCID: PMC11393119 DOI: 10.1038/s41598-024-72345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
The synthesis and characterization of metal complexes have garnered significant attention due to their versatile applications in scientific and biomedical fields. In this research, two novel copper (Cu) complexes, [Cu(L)(L')(H2O)2] (1) and [Cu(L)(Im)H2O] (2), where L = pyridine-2,6-dicarboxylic acid, L' = 2,4-diamino-6-hydroxypyrimidine, and Im = imidazole, were investigated concerning their sonochemical synthesis, spectroscopic analysis, and biological activity. The complexes' structural characterization was achieved using analytical techniques, including single-crystal X-ray structure determination, FTIR, PXRD, TGA and DTA, SEM, TEM, and EDS. Complex (1) displayed a six-coordinated Cu2+ ion, while complex (2) exhibited a five-coordinated Cu2+ ion. The crystal structures revealed monoclinic (C2/c) and triclinic (P-1) space groups, respectively. Both complexes showcased zero-dimensional (0D) supramolecular networks, primarily driven by hydrogen bonding and π-π stacking interactions, which played pivotal roles in stabilizing the structures and shaping the unique supramolecular architecture. Both complexes demonstrated significant antioxidant activity, suggesting their capability to neutralize free radicals and mitigate oxidative stress-related diseases. Hemolysis percentages were less than 2%, per the ASTM F756-00 standard, indicating non-hemolytic behavior. Low cytotoxicity was observed against fibroblast and MCF-7 cell lines. They do not exhibit antibacterial activity against Escherichia coli and Staphylococcus aureus. These findings suggest that the synthesized Cu2+‒complexes hold considerable promise for applications in drug delivery and cancer treatment. This research contributes to the advancement of supramolecular chemistry and the development of multifunctional materials for diverse scientific and medical applications.
Collapse
Affiliation(s)
- Hamed Ghanbari
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67144-14971, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Kiumars Bahrami
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67144-14971, Iran.
- Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, 67144-14971, Iran.
| | - Saeide Keshavarzi
- Department of Chemistry, Faculty of Sciences and Nano and Biotechnology, Persian Gulf University, Bushehr, 75169, Iran
| | - Khosro Mohammadi
- Department of Chemistry, Faculty of Sciences and Nano and Biotechnology, Persian Gulf University, Bushehr, 75169, Iran.
| | - Payam Hayati
- Department of Chemistry, Faculty of Sciences and Nano and Biotechnology, Persian Gulf University, Bushehr, 75169, Iran.
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846‑13114, Iran.
| | - Roberto Centore
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Emmanuele Parisi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| |
Collapse
|
2
|
Pradhan S, Mishra DK, Gurung P, Chettri A, Singha UK, Dutta T, Sinha B. An In-Silico Drug Designing Approach Attempted on a Newly Synthesized Co(II) Complex along with its Other Biological Activities: A Combined Investigation of both Experimental and Theoretical Aspects. J Fluoresc 2024:10.1007/s10895-024-03852-0. [PMID: 39031237 DOI: 10.1007/s10895-024-03852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
A new Co (II) complex incorporating a novel Schiff base ligand acquired from the condensation of 3,3'-Methylenedianiline and 2-Hydroxy-5-bromobenzaldehyde was synthesized and characterized. The synthesized complex was air and moisture stable, monomeric, and non-electrolytic in nature. Based on physical and spectral studies, tetrahedral conformation was ascribed to the synthesized Co (II) complex.Density Functional Theory (DFT) was used to analysis different electronic parameters of the optimized structure of Co(II) complex to reveal its stability.Using different analytic and spectroscopic techniques, the new Co (II) complex was established to interact with DNA quite effectively and works as an efficient metallo intercalators. The synthesized complex was discovered to cleave DNA significantly, so it can be inferred that the complex will inhibit the growth of pathogens. Molecular docking was performed to check the binding affinity of the cobalt complex with different receptors, responsible for different diseases. Proteins like progesterone receptor and induced myeloid leukemia cell differentiation Mcl-1 protein showed high binding affinity with this complex, and hence the complex might have some implications for inhibition of progesterone hormones in biological systems. Biological activity of the Co (II) complex was also predicted through computational analysis with SwissADME.Using strains of Escherichia coli, Klebsiella pneumoniae, Bacillus subtilis, and Staphylococcus aureus, an in vitro antibacterial activity of the ligand and Co (II) complex was carried out. This activity was further validated by a molecular docking investigation.
Collapse
Affiliation(s)
- Sudarshan Pradhan
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Dipu Kumar Mishra
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Pritika Gurung
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Anmol Chettri
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Uttam Kumar Singha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Tanmoy Dutta
- Department of Chemistry, JIS College of Engineering, Kalyani, 741235, India
| | - Biswajit Sinha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.
| |
Collapse
|
3
|
Muley A, Kumbhakar S, Raut R, Mathur S, Roy I, Saini T, Misra A, Maji S. Mononuclear copper(II) complexes with polypyridyl ligands: synthesis, characterization, DNA interactions/cleavages and in vitro cytotoxicity towards human cancer cells. Dalton Trans 2024; 53:11697-11712. [PMID: 38912924 DOI: 10.1039/d4dt00984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
DNA being the necessary element in cell regeneration, controlled cellular apoptosis via DNA binding/cleaving is considered an approach to combat cancer cells. The widely prescribed metallodrug cisplatin has shown interactions with the guanine-N7 center, and a plethora of complexes are continually developed to enhance crosslinking properties as well as covalent and non-covalent interactions. Two pentadentate ligands, L1 (1-(6-(1H-benzo[d]imidazol-2-yl)pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine) and L2 (1-(6-(1-methyl-1H-benzo[d]imidazol-2-yl)pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine), were synthesized together with their respective copper(II) complexes [1](ClO4)2 and [2](ClO4)2, which crystallized in a trigonal bipyramidal fashion. Different analytical and spectroscopic methods confirmed their formation, and their redox behaviour was also examined. The interactions of salmon sperm DNA (ss-DNA) with these two complexes were explored using absorbance spectroscopy, and they both exhibited a binding affinity (Kb) of ∼104 M-1. Fluorescence quenching experiments with ethidium bromide (EB)-bound DNA (EB-DNA) were also performed, and Stern-Volmer constant (KSV) values of 6.93 × 103 and 2.34 × 104 M-1 for [1](ClO4)2 and [2](ClO4)2, respectively, were obtained. Furthermore, DNA conformational changes due to the interactions of both complexes were validated via circular dichroism. We also assessed the DNA cleavage property of these complexes, which resulted in the linearization of circular plasmid DNA. This finding was supported by studying the growth of MDA-MB-231 breast cancer cells upon treatment with both Cu(II) complexes; IC50 values of 5.34 ± 1.02 μM and 0.83 ± 0.18 μM were obtained for [1](ClO4)2 and [2](ClO4)2, respectively. This validates their affinity towards DNA, and these insights can be further utilized for non-platinum based economical metallodrug development based on first row transition metals.
Collapse
Affiliation(s)
- Arabinda Muley
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Sadananda Kumbhakar
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Rajnikant Raut
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Shobhit Mathur
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Indrajit Roy
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Taruna Saini
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Ashish Misra
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Somnath Maji
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
4
|
Wang S, Gai L, Chen Y, Ji X, Lu H, Guo Z. Mitochondria-targeted BODIPY dyes for small molecule recognition, bio-imaging and photodynamic therapy. Chem Soc Rev 2024; 53:3976-4019. [PMID: 38450547 DOI: 10.1039/d3cs00456b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Mitochondria are essential for a diverse array of biological functions. There is increasing research focus on developing efficient tools for mitochondria-targeted detection and treatment. BODIPY dyes, known for their structural versatility and excellent spectroscopic properties, are being actively explored in this context. Numerous studies have focused on developing innovative BODIPYs that utilize optical signals for imaging mitochondria. This review presents a comprehensive overview of the progress made in this field, aiming to investigate mitochondria-related biological events. It covers key factors such as design strategies, spectroscopic properties, and cytotoxicity, as well as mechanism to facilitate their future application in organelle imaging and targeted therapy. This work is anticipated to provide valuable insights for guiding future development and facilitating further investigation into mitochondria-related biological sensing and phototherapy.
Collapse
Affiliation(s)
- Sisi Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Alajroush DR, Smith CB, Anderson BF, Oyeyemi IT, Beebe SJ, Holder AA. A Comparison of In Vitro Studies between Cobalt(III) and Copper(II) Complexes with Thiosemicarbazone Ligands to Treat Triple Negative Breast Cancer. Inorganica Chim Acta 2024; 562:121898. [PMID: 38282819 PMCID: PMC10810091 DOI: 10.1016/j.ica.2023.121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Metal complexes have gained significant attention as potential anti-cancer agents. The anti-cancer activity of [Co(phen)2(MeATSC)](NO3)3•1.5H2O•C2H5OH 1 (where phen = 1,10-phenanthroline and MeATSC = 9-anthraldehyde-N(4)-methylthiosemicarbazone) and [Cu(acetylethTSC)Cl]Cl•0.25C2H5OH 2 (where acetylethTSC = (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide) was investigated by analyzing DNA cleavage activity. The cytotoxic effect was analyzed using CCK-8 viability assay. The activities of caspase 3/7, 9, and 1, reactive oxygen species (ROS) production, cell cycle arrest, and mitochondrial function were further analyzed to study the cell death mechanisms. Complex 2 induced a significant increase in nicked DNA. The IC50 values of complex 1 were 17.59 μM and 61.26 μM in cancer and non-cancer cells, respectively. The IC50 values of complex 2 were 5.63 and 12.19 μM for cancer and non-cancer cells, respectively. Complex 1 induced an increase in ROS levels, mitochondrial dysfunction, and activated caspases 3/7, 9, and 1, which indicated the induction of intrinsic apoptotic pathway and pyroptosis. Complex 2 induced cell cycle arrest in the S phase, ROS generation, and caspase 3/7 activation. Thus, complex 1 induced cell death in the breast cancer cell line via activation of oxidative stress which induced apoptosis and pyroptosis while complex 2 induced cell cycle arrest through the induction of DNA cleavage.
Collapse
Affiliation(s)
- Duaa R. Alajroush
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| | - Chloe B. Smith
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| | - Brittney F. Anderson
- Department of Biological Sciences, University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, U.S.A
| | - Ifeoluwa T. Oyeyemi
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
- Department of Biological Sciences, University of Medical Sciences, Ondo City, Nigeria
| | - Stephen J. Beebe
- Frank Reidy Research center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, U.S.A
| | - Alvin A. Holder
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| |
Collapse
|
6
|
Synthesis, structural characterization and in vitro cytotoxicity assessment of new mononuclear Cu(II) and Co(II) complexes against MDA–MB–231, HCC–1806 and HT–29 cancer cell lines. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Sairaj V, Sundarrajan B, Mani NK, Muthuswamy K. Bio functional molecular complexes, ferrocenyl hydrazone based binuclear Cu (II) derivatives: Synthesis, spectral, DNA/BSA binding & in-silico analyses. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
Banaspati A, Ramu V, Raza MK, Goswami TK. Copper(ii) curcumin complexes for endoplasmic reticulum targeted photocytotoxicity. RSC Adv 2022; 12:30722-30733. [PMID: 36349155 PMCID: PMC9606729 DOI: 10.1039/d2ra04813b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/01/2022] [Indexed: 08/10/2023] Open
Abstract
Three copper(ii) complexes viz. [Cu(cur)(L)(ClO4)] (1-3), where Hcur is curcumin and L is 1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2), or dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3) were synthesized, fully characterized by various physicochemical methods and evaluated for their light-assisted chemotherapeutic potential. The complexes [Cu(acac)(L)(ClO4)] (4-6), where Hacac is acetylacetone and L is phen (in 4), dpq (in 5) and dppz (in 6), were synthesized and used as controls. The solid state structures of complexes 4 and 5 were determined by single crystal X-ray diffraction. The curcumin complexes (1-3) were redox inactive at the copper centre, whereas the acetylacetonato complexes (4-6) displayed a Cu(ii)/Cu(i) couple at ∼0.1 V vs. Ag/AgCl reference electrode in DMF. Complexes 1-3 showed an intense curcumin-based band at ∼440 nm in DMF-Tris-HCl buffer (pH = 7.2) (1 : 9 v/v) which masks the copper based d-d band. The complexes bind to human serum albumin (HSA) with moderate efficacy. They also displayed significant binding affinity for calf-thymus (CT) DNA. The lipophilic curcumin complexes show remarkable visible light induced cytotoxicity (IC50 = ∼4 μM) with high phototoxic indices (PI) with low dark toxicity in human cervical carcinoma (HeLa) and human lung carcinoma (A549) cells. The corresponding acetylacetonato controls (4-6) did not show significant cytotoxicity in the dark or light. DCFDA and annexin V-FITC/PI assays using flow cytometry confirm the induction of significant apoptosis in cancer cells via generation of cytotoxic reactive oxygen species upon photoactivation. Confocal microscopic images using complex 3 demonstrate localization of the complexes predominantly in the endoplasmic reticulum of HeLa cells.
Collapse
Affiliation(s)
- Atrayee Banaspati
- Department of Chemistry, Gauhati University Guwahati 781014 Assam India
| | - Vanitha Ramu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Tridib K Goswami
- Department of Chemistry, Gauhati University Guwahati 781014 Assam India
| |
Collapse
|
9
|
Bashir M, Yousuf I, Prakash Prasad C. Mixed Ni(II) and Co(II) complexes of nalidixic acid drug: Synthesis, characterization, DNA/BSA binding profile and in vitro cytotoxic evaluation against MDA-MB-231 and HepG2 cancer cell lines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120910. [PMID: 35077983 DOI: 10.1016/j.saa.2022.120910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
In this work, herein we report the synthesis, structural characterization and in vitro cytotoxic evaluation of two mixed Co(II)/Ni(II)-nalidixic acid-bipyridyl complexes (1 and 2). The structural analysis of metal complexes 1 and 2 was carried out by analytical and multispectroscopic techniques (FT-IR, UV-vis, EPR, sXRD). The crystallographic details of complexes 1 and 2 revealed a monoclinic crystal system with P21/c space group. DFT studies of complexes were performed to get electronic structure and localization of HOMO and LUMO electron densities. Hirshfeld surface analysis of metal complexes 1 and 2 was employed to understand the various intermolecular interactions (C-H···O, N-H···H and O-H···O) that define the stability of crystal lattice structures. The comparative interaction studies of complex 1 and complex 2 with DNA/BSA were performed by diverse multispectroscopic and analytical techniques to evaluate their chemotherapeutic potential. The magnitude of the DNA binding propensity and binding mode was verified by calculating Kb, K and Ksv values. Higher binding affinity was observed in case of complex 2via intercalative mode. Furthermore, the cytotoxic assessment of complexes 1 and 2 was examined against MDA-MB-231 (triple negative human breast cancer cell line) and HepG2 (liver carcinoma cell line) employing MTT assay which revealed remarkably effecient and specific cytotoxic activity of complex 2.
Collapse
Affiliation(s)
- Masrat Bashir
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Imtiyaz Yousuf
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | | |
Collapse
|
10
|
Spectroanalytical, computational, DNA/BSA binding and in vitro cytotoxic activity studies of new transition metal complexes of novel aryl hydrazone. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Synthesis, structural characterization and in vitro cytotoxic evaluation of mixed Cu(II)/Co(II) levofloxacin–bipyridyl complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Design, Synthesis, Bioanalytical, Photophysical and Chemo-phototherapeutic Studies of Heteroleptic Cu(II) Complexes. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Gourdon L, Cariou K, Gasser G. Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. Chem Soc Rev 2022; 51:1167-1195. [PMID: 35048929 DOI: 10.1039/d1cs00609f] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are therapeutic techniques based on a photosensitizer (PS) and light. These techniques allow the spatial and temporal control of the activation of drugs with light. Transition metal complexes are attractive compounds as photoactivatable prodrugs since their excited states can be appropriately designed by subtle modifications of the ligands, the metal centre, or the oxidation state. However, most metal-based PSs contain heavy metals such as Ru, Os, Ir, Pt or Au, which are expensive and non-earth-abundant, contrary to first-row transition metals. In this context, the exploration of the photochemical properties of complexes based on first-row transition metals appears to be extremely promising. This did encourage several groups to develop promising PSs based on these metals. This review presents up-to-date state-of-the-art information on first-row-transition metal complexes, from titanium to zinc in regard to their application as PSs for phototherapeutic applications.
Collapse
Affiliation(s)
- Lisa Gourdon
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
14
|
Burgart Y, Shchegolkov E, Shchur I, Kopchuk D, Gerasimova N, Borisevich S, Evstigneeva N, Zyryanov G, Savchuk M, Ulitko M, Zilberberg N, Kungurov N, Saloutin V, Charushin V, Chupakhin O. Promising Antifungal and Antibacterial Agents Based on 5-Aryl-2,2'-bipyridines and Their Heteroligand Salicylate Metal Complexes: Synthesis, Bioevaluation, Molecular Docking. ChemMedChem 2021; 17:e202100577. [PMID: 34783161 DOI: 10.1002/cmdc.202100577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/11/2021] [Indexed: 12/25/2022]
Abstract
A series of new 5-aryl-2,2'-bipyridines and their (polyfluoro)salicylate complexes of Cu(II), Co(II) and Mn(II) were synthesized. Their antimicrobial activity was evaluated in vitro against six strains of Trichophytons, E. floccosum, M. canis, C. ablicans and Gram-negative bacteria N. gonorrhoeae. Among azo-ligands, Ph-bipy and Tol-bipy showed promising antifungal activity (minimum inhibitory concentration (MIC)<0.8-27 μM). Their antifungal action was found can be realized via binding Fe(III) ions. Tol-bipy suppressed growth of Gram-positive bacteria S. aureus, S. aureus MRSA and their monospecies biofilms (MIC 6-16 μM). Using molecular docking, the anti-staphylococcal action mechanism based on the inhibition of S. aureus DNA gyrase GyrB was proposed for the lead compounds. Among metal complexes, Cu(II) and Mn(II) complexes based on tetrafluorosalicylic acid and Tol-bipy or Ph-bipy had the high antifungal activity (MIC<0.24-32 μM). Mn(SalF4 -2H)2 (Tol-bipy)2 ] suppressed the growth of seven Candida strains at MIC 12-24 μM. [Cu(Sal-2H)(Ph-bipy)] and [Cu(SalF3 -2H)(Ph-bipy)2 ] showed the promising anti-gonorrhoeae activity (MIC 4.2-5.2 μM). (Cu(SalFn -2H)(Tol-bipy)2 ], [Cu(SalF4 -2H)(Ph-bipy)2 ] and [Cu(SalF3 -2H)(Ph-bipy)2 ]) were found active against the bacteria of S. aureus, S. aureus MRSA and their biofilms (MIC 2.4-41.4 μM). The most active compounds were tested for toxicity in vitro against human embryonic kidney (HEK-293) cells and in vivo experiments with CD-1 mice.
Collapse
Affiliation(s)
- Yanina Burgart
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia
| | - Evgeny Shchegolkov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia
| | - Irina Shchur
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia
| | - Dmitry Kopchuk
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Natalia Gerasimova
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Sophia Borisevich
- Ufa Institute of Chemistry of, Russian Academy of Science, Octyabrya St., 71, Ufa, 450078, Russia
| | - Natalia Evstigneeva
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Grigory Zyryanov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Maria Savchuk
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Maria Ulitko
- Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Natalia Zilberberg
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Nikolai Kungurov
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Victor Saloutin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia
| | - Valery Charushin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Oleg Chupakhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| |
Collapse
|
15
|
Cu(II) complex with auxin (3-indoleacetic acid) and an aromatic planar ligand: synthesis, crystal structure, biomolecular interactions and radical scavenging activity. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:771-785. [PMID: 33929571 DOI: 10.1007/s00249-021-01525-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/26/2020] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
A novel water soluble ternary copper(II) complex,-[Cu2(phen)2(3-IAA)2(H2O)](ClO4)2·H2O-(phen: 1,10-phenanthroline, 3-IAA: 3-indoleacetic acid), has been synthesized and characterized by elemental CHN analysis, ESI-TOF, FTIR and single-crystal X-ray diffraction techniques. Interaction of the complex with calf thymus DNA (CT-DNA) has been investigated by absorption spectral titration, ethidium bromide (EB) and Hoechst 33258 displacement assay. The interactions between the complex and bovine serum albumin (BSA) were investigated by electronic absorption and fluorescence spectroscopy methods. The experimental results indicate that the fluorescence quenching mechanism between the complex and BSA is a static quenching process. The Stern-Volmer constants, binding constants, binding sites and the corresponding thermodynamic parameters (ΔG, ΔH, ΔS) of BSA + complex systems were determined at different temperatures. The binding distance between the complex and BSA was calculated according to Förster non-radiation energy transfer theory (FRET). The effect of the complex on the conformation of BSA was also examined using synchronous, two dimensional (2D) and three dimensional (3D) fluorescence spectroscopy. Furthermore, the oxygen radical scavenging activity of the complex was determined in terms of IC50, using the DPPH and H2O2 method, to show that it particularly enables electron loss from radical species. This study highlights the importance of indole and moieties in the development of antioxidant agents. A potent drug candidate novel water soluble ternary copper(II) complex,-[Cu2(phen)2(3-IAA)2(H2O)] (ClO4)2·H2O-(phen: 1,10-phenanthroline, 3-IAA: 3-indoleacetic acid), has been synthesized and characterized by elemental CHN analysis, FTIR, ESI-MS and single-crystal X-ray diffraction techniques. The complex has been tested for in vitro biomacromolecular interactions by spectroscopic methods. Furthermore, radical scavenging activities of the complex were also investigated.
Collapse
|
16
|
Alisufi N, Mansouri-Torshizi H. Preparation, characterization, DNA/BSA interaction and computational binding analyses of a dinuclear, biopotency Pd+2 coordinated with 1,4-phenylenediamine and ethylenediamine as ligands. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Camargo TP, Oliveira JAF, Costa TG, Szpoganicz B, Bortoluzzi AJ, Marzano IM, Silva-Caldeira PP, Bucciarelli-Rodriguez M, Pereira-Maia EC, Castellano EE, Peralta RA, Neves A. New Al IIIZn II and Al IIICu II dinuclear complexes: Phosphatase-like activity and cytotoxicity. J Inorg Biochem 2021; 219:111392. [PMID: 33752123 DOI: 10.1016/j.jinorgbio.2021.111392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 10/21/2022]
Abstract
Herein, we report the synthesis and characterization of the first two AlIII(μ-OH)MII (M = Zn (1) and Cu (2)) complexes with the unsymmetrical ligand H2L{2-[[(2-hydroxybenzyl)(2-pyridylmethyl)]aminomethyl]-6-bis(pyridylmethyl)aminomethyl}-4-methylphenol. The complexes were characterized through elemental analysis, X-ray crystallography, IR spectroscopy, mass spectrometry and potentiometric titration. In addition, complex 2 was characterized by electronic spectroscopy. Kinetics studies on the hydrolysis of the model substrate bis(2,4-dinitrophenyl)phosphate by 1 and 2 show Michaelis-Menten behavior, with 1 being slightly more active (8.31%) than 2 (at pH 7.0). The antimicrobial effect of the compounds was studied using four bacterial strains (Staphylococcus aureus, Pseudomonas aeuruginosa, Shigella sonnei and Shigella dysenteriae) and for both complexes the inhibition of bacterial growth was superior to that caused by sulfapyridine, but inferior to that of tetracycline. The dark cytotoxicity and photocytotoxicity (under UV-A light) of the complexes in a chronic myelogenous leukemia cell line were investigated. Complexes 1 and 2 exhibited significant cytotoxic activity against K562 cells, which undergoes a 2-fold increase on applying 5 min of irradiation with UV-A light. Complex 2 was more effective and a good correlation between cytotoxicity and intracellular concentration was observed, the intracellular copper concentration required to inhibit 50% of cell growth being 3.5 × 10-15 mol cell-1.
Collapse
Affiliation(s)
- Tiago P Camargo
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - José A F Oliveira
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Thiago G Costa
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Bruno Szpoganicz
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Adailton J Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Ivana M Marzano
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | | | - Elene C Pereira-Maia
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Eduardo E Castellano
- Instituto de Física, Universidade de São Paulo, São Carlos, SP 13360-979, Brazil
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Ademir Neves
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
18
|
Investigation on water soluble copper(II) mono-anionic glutamate complexes with planar aromatic ligands: synthesis, crystal structures, biomacromolecular interactions and radical scavenging activities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
C.E. S, P. RK, P.A. S, H. R, S. F. New (N,O) Schiff bases of 2-hydroxynaphthaldehyde and their homoleptic Zn(II) and Cu(II) complexes – Synthesis, structural characterization, Hirshfeld surface analysis and antimicrobial activity studies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
NOO-type tridentate Schiff base ligand and its one-dimensional Cu(II) coordination polymer: Synthesis, crystal structure, biomacromolecular interactions and radical scavenging activities. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
İNCİ D. A new ternary Cu (II) complex with 4,7‐dimethyl‐1,10‐phenanthroline and NOO‐type tridentate Schiff base ligand: Synthesis, crystal structure,
biomacromolecular interactions
, and radical scavenging activities. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Duygu İNCİ
- Department of Chemistry, Faculty of Arts and Sciences Kocaeli University Kocaeli 41380 Turkey
| |
Collapse
|
22
|
Xu YR, Jia Z, Liu YJ, Wang XZ. Novel dibenzoxanthenes compounds inhibit human gastric cancer SGC-7901 cell growth by apoptosis. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Chetioui S, Zouchoune B, Merazig H, Bouaoud SE, Rouag D, Djukic JP. Synthesis, spectroscopic characterization, crystal structure and theoretical investigation of two azo-palladium (II) complexes derived from substituted (1-phenylazo)-2-naphtol. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
İnci D, Aydın R, Vatan Ö, Zorlu Y. A potent drug candidature of Cu(II) pyrazino[2,3-f][1,10]phenanthroline complexes with bioactive ligands: synthesis, crystal structures, biomolecular interactions, radical scavenging and cytotoxicities. J Biomol Struct Dyn 2020; 39:7194-7212. [PMID: 32811370 DOI: 10.1080/07391102.2020.1808070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A novel ternary copper(II) complexes, - [Cu(py-phen)(asn)(NO3)(H2O)] (1) and [Cu(py-phen)(trp)(H2O)]NO3 (2)- (py-phen: pyrazino[2,3-f][1,10]phenanthroline, asn: asparagine, trp: tryptophan), have been synthesized and characterized by CHN analysis, ESI-MS, FTIR and single-crystal X-ray diffraction techniques. Interaction of the complexes 1 and 2 with CT-DNA has been investigated by absorption spectral titration, EB and Hoechst 33258 displacement assay. The interaction between the complexes 1 and 2 and BSA was investigated by electronic absorption and fluorescence spectroscopy methods. The experimental outcomes indicate that the fluorescence quenching mechanism between the complexes 1 and 2 and BSA is a static quenching process. The Stern-Volmer constants, binding constants, binding sites and the corresponding thermodynamic parameters (ΔG, ΔH, ΔS) of BSA + complex systems were determined at different temperatures. The binding distance between the complexes 1 and 2 and BSA was calculated according to FRET. The effect of the complexes 1 and 2 on the conformation of BSA was also examined using synchronous, two dimensional (2D) and three dimensional (3D) fluorescence spectroscopy. Radical scavenging activity of the complex was determined in terms of EC50, using the DPPH and H2O2 method. The anticancer activities of the complexes 1 and 2 were investigated using an XTT assay against three cancer cell lines (MCF-7, Caco-2 and A549) and non-tumor cell line (BEAS-2B). Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Duygu İnci
- Department of Chemistry, Faculty of Arts and Sciences, Kocaeli University, Kocaeli, Turkey
| | - Rahmiye Aydın
- Department of Chemistry, Faculty of Arts and Sciences, Bursa Uludag University, Bursa, Turkey
| | - Özgür Vatan
- Department of Biology, Faculty of Arts and Sciences, Bursa Uludag University, Bursa, Turkey
| | - Yunus Zorlu
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
25
|
Günsel A, Bilgiçli AT, Barut B, Taslimi P, Özel A, Gülçin İ, Biyiklioglu Z, Yarasir MN. Synthesis of water soluble tetra-substituted phthalocyanines: Investigation of DNA cleavage, cytotoxic effects and metabolic enzymes inhibition. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Kiran T, Pathak M, Chanda K, Balamurali MM. DNA and Protein Interaction Studies of Heteroleptic Copper (II) Derivatives of Benzothiazole‐Based Schiff Base and N,N‐Donor Ligands. ChemistrySelect 2020. [DOI: 10.1002/slct.202001246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tummalapalli Kiran
- Department of ChemistryScience and HumanitiesJ. B. Institute of Engineering and Technology Moinabad Hyderabad 500075 India
| | - Madhvesh Pathak
- Department of ChemistrySchool of Advanced SciencesVellore Institute of Technology Vellore 632014 Tamilnadu India
| | - Kaushik Chanda
- Department of ChemistrySchool of Advanced SciencesVellore Institute of Technology Vellore 632014 Tamilnadu India
| | - M. M. Balamurali
- Chemistry DivisionSchool of Advanced SciencesVellore Institute of Technology Chennai Campus Chennai 600127 Tamilnadu India
| |
Collapse
|
27
|
Bao RD, Song XQ, Kong YJ, Li FF, Liao WH, Zhou J, Zhang JH, Zhao QH, Xu JY, Chen CS, Xie MJ. A new Schiff base copper(II) complex induces cancer cell growth inhibition and apoptosis by multiple mechanisms. J Inorg Biochem 2020; 208:111103. [PMID: 32505045 DOI: 10.1016/j.jinorgbio.2020.111103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 11/26/2022]
Abstract
A new Schiff base copper(II) complex [N,N'-bis(2'-hydroxyphenylacetone)-o-ethanediamine] copper (II) (M1) has been synthesized and characterized by single X-ray crystallography. The cytotoxicity of complex M1 was evaluated against HeLa, LoVo, A549, A549/cis cancer cell lines, and the normal cell lines LO2 and HUVEC, by MTT (3-(4,5-dimethylthiazoyl-2-yl)2,5-diphenyltetrazoliumbromide) assays. The IC50 (50% inhibition concentrations) is in the range of 5.13-11.68 μM, which is somewhat lower than cisplatin on the basis of platinum molar concentration. Furthermore, anticancer mechanistic studies showed that the complex M1 inhibited cell proliferation by blocking DNA synthesis and then acted on nuclear division of HeLa cells over time. Moreover, M1 increased intracellular ROS (Reactive oxygen species) levels in a dose-dependent manner. Western blot analysis indicated M1 dramatically decrease c-Myc transcription factor and KLF5 (Krüppel-like factor 5) protein expression levels in HeLa. M1 did not inhibit proteasomal activity. Finally, M1 induced DNA damages and activated the DNA damage repair pathways.
Collapse
Affiliation(s)
- Rui-Dan Bao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Xue-Qing Song
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yan-Jie Kong
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, 518035 Shenzhen, China
| | - Fang-Fang Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Wen-Hui Liao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Jie Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Ji-Hong Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Qi-Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Ce-Shi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Ming-Jin Xie
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China.
| |
Collapse
|
28
|
Revathi N, Sankarganesh M, Dhaveethu Raja J, Vinoth Kumar GG, Sakthivel A, Rajasekaran R. Bio-active mixed ligand Cu(II) and Zn(II) complexes of pyrimidine derivative Schiff base: DFT calculation, antimicrobial, antioxidant, DNA binding, anticancer and molecular docking studies. J Biomol Struct Dyn 2020; 39:3012-3024. [DOI: 10.1080/07391102.2020.1759454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nagaraj Revathi
- Department of Chemistry, Ramco Institute of Technology, Virudhunagar, Tamil Nadu, India
- Department of Chemistry, Manonmanium Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, K. Ramakrishnan College of Technology, Trichy, Tamil Nadu, India
| | | | | | - Arumugam Sakthivel
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | - Ramalingam Rajasekaran
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
29
|
Adak P, Ghosh B, Bauzá A, Frontera A, Herron SR, Chattopadhyay SK. Binuclear and tetranuclear Zn(ii) complexes with thiosemicarbazones: synthesis, X-ray crystal structures, ATP-sensing, DNA-binding, phosphatase activity and theoretical calculations. RSC Adv 2020; 10:12735-12746. [PMID: 35492083 PMCID: PMC9051056 DOI: 10.1039/c9ra10549b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/13/2020] [Indexed: 11/21/2022] Open
Abstract
Two Zinc(ii) complexes [Zn4(L1)4]·2H2O (1) and [Zn2(L2)2]·2H2O (2) of pyruvaldehydethiosemicarbazone ligands are reported. The complexes were characterized by elemental analysis, IR, NMR, UV-vis spectroscopy and by single-crystal X-ray crystallography. X-ray crystal structure determinations of the complexes show that though Zn : ligand stoichiometry is 1 : 1 in both the complexes, the molecular unit is tetranuclear for 1 and binuclear for 2. Both the complexes show selective sensing of ATP at pH 7.4 (0.01 M HEPES) in CH3CN–H2O (9 : 1) medium in the presence of other anions like AcO−, NO3−, F−, Cl−, H2PO4−, HPO42− and P2O72−. The UV-titration experiments of complexes 1 and 2 with ATP results in binding constants of 2.0(±0.07) × 104 M−1 and 7.1(±0.05) × 103 M−1 respectively. The calculated detection limits of 6.7 μM and 1.7 μM for 1 and 2 respectively suggest that the complexes are sensitive detectors of ATP. High selectivity of the complexes is confirmed by the addition of ATP in presence of an excess of other anions. DFT studies confirm that the ATP complexes are more favorable than those with the other inorganic phosphate anions, in agreement with the experimental results. Phosphatase like activity of both complexes is investigated spectrophotometrically using 4-nitrophenylphosphate (NPP) as a substrate, indicating the complexes possess significant phosphate ester hydrolytic efficiency. The kinetics for the hydrolysis of the substrate NPP was studied by the initial rate method at 25 °C. Michaelis–Menten derived kinetic parameters indicate that rate of hydrolysis of the P–O bond by complex 1 is much greater than that of complex 2, the kcat values being 212(±5) and 38(±2) h−1 respectively. The DNA binding studies of the complexes were investigated using electronic absorption spectroscopy and fluorescence quenching. The absorption spectral titrations of the complexes with DNA indicate that the CT-DNA binding affinity (Kb) of complex 1 (2.10(±0.07) × 106 M−1) is slightly greater than that of 2 (1.11(±0.04) × 106 M−1). From fluorescence spectra the apparent binding constant (Kapp) values were calculated and they are found to be 5.41(±0.01) × 105 M−1 for 1 and 3.93(±0.02) × 105 M−1 for 2. The molecular dynamics simulation demonstrates that the Zn(ii) complex 1 is a good intercalator of DNA. A binuclear and a tetranuclear zinc(ii) of pyruvaldehyde thiosemicarbazone show selective sensing of ATP at pH 7.4 (0.01 M HEPES) in CH3CN–H2O (9 : 1) medium. The DNA binding and phosphatase activities of the complexes are also reported.![]()
Collapse
Affiliation(s)
- Piyali Adak
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howarh-711 103 India
| | - Bipinbihari Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howarh-711 103 India
| | - Antonio Bauzá
- Department of Chemistry, University of the Balearic Islands Carretera de Valldemossa km 7.5 07122 Palma de Mallorca IllesBalears Spain
| | - Antonio Frontera
- Department of Chemistry, University of the Balearic Islands Carretera de Valldemossa km 7.5 07122 Palma de Mallorca IllesBalears Spain
| | - Steven R Herron
- Department of Chemistry, Utah Valley University 800W University Pkwy Orem UT 84058 USA
| | - Shyamal Kumar Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howarh-711 103 India
| |
Collapse
|
30
|
Mukherjee N, Raghavan A, Podder S, Majumdar S, Kumar A, Nandi D, Chakravarty AR. Photocytotoxic Activity of Copper(II) and Zinc(II) Complexes of Curcumin and (Acridinyl)dipyridophenazine. ChemistrySelect 2019. [DOI: 10.1002/slct.201902281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nandini Mukherjee
- Department of Inorganic and Physical ChemistryIndian Institute of Science Sir C.V. Raman Avenue Bangalore 560012 India
| | - Abinaya Raghavan
- Department of BiochemistryIndian Institute of Science Sir C.V. Raman Avenue Bangalore 560012 India
| | - Santosh Podder
- Department of BiochemistryIndian Institute of Science Sir C.V. Raman Avenue Bangalore 560012 India
| | - Shamik Majumdar
- Department of BiochemistryIndian Institute of Science Sir C.V. Raman Avenue Bangalore 560012 India
| | - Arun Kumar
- Department of Inorganic and Physical ChemistryIndian Institute of Science Sir C.V. Raman Avenue Bangalore 560012 India
| | - Dipankar Nandi
- Department of BiochemistryIndian Institute of Science Sir C.V. Raman Avenue Bangalore 560012 India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical ChemistryIndian Institute of Science Sir C.V. Raman Avenue Bangalore 560012 India
| |
Collapse
|
31
|
Synthesis, structural characterization, antimicrobial and DNA binding studies of homoleptic zinc and copper complexes of NO Schiff bases derived from homoveratrylamine. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Li S, Miao T, Fu X, Ma F, Gao H, Zhang G. Theoretical study on the DNA interaction properties of copper(II) complexes. Comput Biol Chem 2019; 80:244-248. [PMID: 31026737 DOI: 10.1016/j.compbiolchem.2019.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 11/28/2022]
Abstract
Theoretical studies on DNA-cleavage and DNA-binding properties of a series of Cu(II) complexes [Cu(bimda)(diimine)] 1-5 have been carried out by density functional theory (DFT). The optimized structures of Cu(II) complexes were docked into parallel, antiparallel and mixed G-quadruplexes, with which the binding energies of complexes 1-5 were obtained. The cytotoxicities of these complexes can be predicted preliminarily by the binding energies. To explore the energy changes of Cu(II) complexes in duplex DNA, the optimized structures of these complexes were docked into the duplex DNA, and the obtained docking models were further optimized using QM/MM method. The DNA-cleavage abilities of complexes 1-5 can be predicted accurately and explained reasonably by the computed intra-molecular reorganization energies of these complexes. This work reported here has implications for the understanding of the interaction Cu(II) complexes with the DNA, which might be helpful for the future directing the design of novel anticancer Cu(II) complexes.
Collapse
Affiliation(s)
- Shuang Li
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Tifang Miao
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China.
| | - Xianliang Fu
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Fang Ma
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Hui Gao
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Guoping Zhang
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
33
|
Hassan AA, Aly AA, Mohamed NK, El Shaieb KM, Makhlouf MM, Abdelhafez ESMN, Bräse S, Nieger M, Dalby KN, Kaoud TS. Design, synthesis, and DNA interaction studies of furo-imidazo[3.3.3]propellane derivatives: Potential anticancer agents. Bioorg Chem 2019; 85:585-599. [PMID: 30878891 PMCID: PMC6543821 DOI: 10.1016/j.bioorg.2019.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
A large number of natural products containing the propellane scaffold have been reported to exhibit cytotoxicity against several cancers; however, their mechanism of action is still unknown. Anticancer drugs targeting DNA are mainly composed of small planar molecule/s that can interact with the DNA helix, causing DNA malfunction and cell death. The aim of this study was to design and synthesize propellane derivatives that can act as DNA intercalators and/or groove binders. The unique structure of the propellane derivatives and their ability to display planar ligands with numerous possible geometries, renders them potential starting points to design new drugs targeting DNA in cancer cells. New substituted furo-imidazo[3.3.3]propellanes were synthesized via the reaction of substituted alkenylidene-hydrazinecarbothioamides with 2-(1,3-dioxo-2,3-dihydro-1H-2-ylidene)propanedinitrile in tetrahydrofuran at room temperature. The structures of the products were confirmed by a combination of elemental analysis, NMR, ESI-MS, IR and single crystal X-ray analysis. Interestingly, 5c, 5d and 5f showed an ability to interact with Calf Thymus DNA (CT-DNA). Their DNA-binding mode was investigated using a combination of absorption spectroscopy, DNA melting, viscosity, CD spectroscopy measurements, as well as competitive binding studies with several dyes. Their cytotoxicity was evaluated against the NCI-60 panel of cancer cell lines. 5c, 5d and 5f exhibited similar anti-proliferative activity against the A549 non-small cell lung cancer (NSCLC) cell line. Further mechanistic studies revealed their ability to induce DNA damage in the A549 cell line, as well as apoptosis, evidenced by elevated Annexin V expression, enhanced caspase 3/7 activation and PARP cleavage. In this study, we present the potential for designing novel propellanes to provoke cytotoxic activity, likely through DNA binding-induced DNA damage and apoptosis.
Collapse
Affiliation(s)
- Alaa A Hassan
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt.
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Nasr K Mohamed
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Kamal M El Shaieb
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Maysa M Makhlouf
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | | | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany; Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio I, Helsinki 00014, Finland
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tamer S Kaoud
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, El-Minia 61519, Egypt; Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
34
|
Jayamani A, Bellam R, Gopu G, Ojwach SO, Sengottuvelan N. Copper(II) complexes of bidentate mixed ligands as artificial nucleases: Synthesis, crystal structure, characterization and evaluation of biological properties. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Zhang CL, Liu YX, Zhang XM, Chen S, Shen F, Xiong YH, Liu W, Mao ZW, Le XY. Synthesis, characterization, DNA/HSA interactions and in vitro cytotoxic activities of two novel water-soluble copper(II) complexes with 1,3,5-triazine derivative ligand and amino acids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:414-425. [DOI: 10.1016/j.msec.2018.05.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 04/19/2018] [Accepted: 05/19/2018] [Indexed: 12/21/2022]
|
36
|
Gao E, Xing J, Qu Y, Qiu X, Zhu M. Synthesis, characterization, DNA binding, cytotoxicity and molecular docking properties of Cu (II) and Mn (II) complexes with 1,4-bis (pyrazol-1-yl) terephthalic acid. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Enjun Gao
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 People's Republic of China
| | - Jialing Xing
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 People's Republic of China
| | - Yun Qu
- Department of Oncology; Shengjing Hospital of China Medical University; Shenyang People's Republic of China
| | - Xue Qiu
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 People's Republic of China
| | - Mingchang Zhu
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 People's Republic of China
| |
Collapse
|
37
|
Synthesis, spectral characterization, theoretical, antimicrobial, DNA interaction and in vitro anticancer studies of Cu(II) and Zn(II) complexes with pyrimidine-morpholine based Schiff base ligand. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2017.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Multispectroscopic DNA-Binding studies and antimicrobial evaluation of new mixed-ligand Silver(I) complex and nanocomplex: A comparative study. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Al Hageh C, Al Assaad M, El Masri Z, Samaan N, El-Sibai M, Khalil C, Khnayzer RS. A long-lived cuprous bis-phenanthroline complex for the photodynamic therapy of cancer. Dalton Trans 2018; 47:4959-4967. [DOI: 10.1039/c8dt00140e] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An earth-abundant cuprous bis-phenanthroline photosensitizer showed potential use in the photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Cynthia Al Hageh
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Majd Al Assaad
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Zeinab El Masri
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Nawar Samaan
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Christian Khalil
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Rony S. Khnayzer
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| |
Collapse
|
40
|
Li S, Ma Z, Liu X, Tian J, Yan S. Synthesis, crystal structures, DNA/bovine serum albumin binding, DNA cleavage and cytotoxicity of five mononuclear zinc(II) complexes. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Si‐Tong Li
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin 300071 People's Republic of China
| | - Zhong‐Ying Ma
- School of Pharmaceutical SciencesTianjin Medical University Tianjin 300070 People's Republic of China
| | - Xin Liu
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Jin‐Lei Tian
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin 300071 People's Republic of China
| | - Shi‐Ping Yan
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
| |
Collapse
|
41
|
Jayamani A, Sethupathi M, Ojwach SO, Sengottuvelan N. Synthesis, characterization and biomolecular interactions of Cu(II) and Ni(II) complexes of acyclic Schiff base ligand. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Ferreira GR, de Oliveira LFC. Synthesis, spectroscopic and structural studies of new azo dyes metal chelates derivated from 1-phenil-azo-2-naphthol. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Ritterskamp N, Sharples K, Richards E, Folli A, Chiesa M, Platts JA, Murphy DM. Understanding the Coordination Modes of [Cu(acac) 2(imidazole) n=1,2] Adducts by EPR, ENDOR, HYSCORE, and DFT Analysis. Inorg Chem 2017; 56:11862-11875. [PMID: 28933856 DOI: 10.1021/acs.inorgchem.7b01874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of imidazole with a [Cu(acac)2] complex was studied using electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), hyperfine sublevel correlation spectroscopy (HYSCORE), and density functional theory (DFT). At low Im ratios (Cu:Im 1:10), a 5-coordinate [Cu(acac)2Imn=1] monoadduct is formed in frozen solution with the spin Hamiltonian parameters g1 = 2.063, g2 = 2.063, g3 = 2.307, A1 = 26, A2 = 15, and A3 = 472 MHz with Im coordinating along the axial direction. At higher Im concentrations (Cu:Im 1:50), a 6-coordinate [Cu(acac)2Imn=2] bis-adduct is formed with the spin Hamiltonian parameters g1 = 2.059, g2 = 2.059, g3 = 2.288, A1 = 30, A2 = 30, and A3 = 498 MHz with a poorly resolved 14N superhyperfine pattern. The isotropic EPR spectra revealed a distribution of species ([Cu(acac)2], [Cu(acac)2Imn=1], and [Cu(acac)2Imn=2]) at Cu:Im ratios of 1:0, 1:10, and 1:50. The superhyperfine pattern originates from two strongly coordinating N3 imino nitrogens of the Im ring. Angular selective 14N ENDOR analysis revealed the NA tensor of [34.8, 43.5, 34.0] MHz, with e2qQ/h = 2.2 MHz and η = 0.2 for N3. The hyperfine and quadrupole values for the remote N1 amine nitrogens (from HYSCORE) were found to be [1.5, 1.4, 2.5] MHz with e2qQ/h = 1.4 MHz and η = 0.9. 1H ENDOR also revealed three sets of HA tensors corresponding to the nearly equivalent H2/H4 protons in addition to the H5 and H1 protons of the Im ring. The spin Hamiltonian parameters for the geometry optimized structures of [Cu(acac)2Imn=2], including cis-mixed plane, trans-axial, and trans-equatorial, were calculated. The best agreement between theory and experiment indicated the preferred coordination is trans-equatorial [Cu(acac)2Imn=2]. A number of other Im derivatives were also investigated. 4(5)-methyl-imidazole forms a [Cu(acac)2(Im-3)n=2] trans-equatorial adduct, whereas the bulkier 2-methyl-imidazole (Im-2) and benzimidazole (Im-4) form the [Cu(acac)2(Im-2,4)n=1] monoadduct only. Our data therefore show that subtle changes in the substrate structure lead to controllable changes in coordination behavior, which could in turn lead to rational design of complexes for use in catalysis, imaging, and medicine.
Collapse
Affiliation(s)
- Nadine Ritterskamp
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, U.K
| | - Katherine Sharples
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, U.K
| | - Emma Richards
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, U.K
| | - Andrea Folli
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, U.K
| | - Mario Chiesa
- Dipartimento di Chimica, Università di Torino , Via P. Giuria 7, 10125 Torino, Italy
| | - James A Platts
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, U.K
| | - Damien M Murphy
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
44
|
Zhang C, Zhang X, Liu W, Chen S, Mao Z, Le X. Synthesis, crystal structures and DNA/human serum albumin binding of ternary Cu(II) complexes containing amino acids and 6‐(pyrazin‐2‐yl)‐1,3,5‐triazine‐2,4‐diamino. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chun‐Lian Zhang
- Department of Applied ChemistrySouth China Agricultural University Guangzhou 510642 People's Republic of China
| | - Xue‐Mei Zhang
- Department of Applied ChemistrySouth China Agricultural University Guangzhou 510642 People's Republic of China
| | - Wei Liu
- College of Materials and EnergySouth China Agricultural University Guangzhou 510642 People's Republic of China
| | - Shi Chen
- Department of Applied ChemistrySouth China Agricultural University Guangzhou 510642 People's Republic of China
| | - Zong‐Wan Mao
- School of ChemistrySun Yat‐sen University Guangzhou 510275 People's Republic of China
| | - Xue‐Yi Le
- Department of Applied ChemistrySouth China Agricultural University Guangzhou 510642 People's Republic of China
| |
Collapse
|
45
|
Synthesis of novel indole derivatives as promising DNA-binding agents and evaluation of antitumor and antitopoisomerase I activities. Eur J Med Chem 2017; 136:511-522. [DOI: 10.1016/j.ejmech.2017.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022]
|
46
|
Singh N, Pagariya D, Jain S, Naik S, Kishore N. Interaction of copper (II) complexes by bovine serum albumin: spectroscopic and calorimetric insights. J Biomol Struct Dyn 2017; 36:2449-2462. [DOI: 10.1080/07391102.2017.1355848] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Namrata Singh
- Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai 400076, India
| | - Darshana Pagariya
- Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai 400076, India
| | - Surbhi Jain
- Department of Chemistry, Central University of Rajasthan, Ajmer-305817, Rajasthan, India
| | - Sunil Naik
- Department of Chemistry, Central University of Rajasthan, Ajmer-305817, Rajasthan, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai 400076, India
| |
Collapse
|
47
|
New silver(I) complex with diazafluorene based ligand: Synthesis, characterization, investigation of in vitro DNA binding and antimicrobial studies. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Jain S, Khan TA, Patil YP, Pagariya D, Kishore N, Tapryal S, Naik AD, Naik SG. Bio-affinity of copper(II) complexes with nitrogen and oxygen donor ligands: Synthesis, structural studies and in vitro DNA and HSA interaction of copper(II) complexes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:35-43. [PMID: 28753522 DOI: 10.1016/j.jphotobiol.2017.06.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/12/2017] [Accepted: 06/24/2017] [Indexed: 11/26/2022]
Abstract
Reported herein the binding affinity between Human Serum Albumin and the DNA binding and cleavage activity of three copper(II) complexes, [Cu(phen)(o-van)ClO4] (1), [Cu(phen)(gly)]ClO4 (2) and [Cu(L1)2(H2O)2] (3) wherein 1 and 2 are synthesized with 1,10-phenanthroline (phen) and co-ligands (o-van: o-vanillin; gly: glycine) and 3 with a ligand 2-hydroxy-3-methoxybenzylidene-4H-1,2,4-triazol-4-amine (H1L1). Complex 2 crystallizes in monoclinic (P21/n) space group shows square pyramidal geometry. The complex 3 crystallizes in monoclinic (P21/a) space group. All the three complexes exhibit binding affinity towards the transport protein Human Serum albumin (HSA). Quantitative evaluation of the thermodynamics of interaction and the results obtained from fluorescence spectroscopy suggest that metal coordinated glycynate, o-vanillin and perchlorate groups have a major role to play in the binding process, the latter two being stronger in the binding of complex 1. The coordinated water in complex 3 also plays an important role in the binding, which makes binding of complex 3 with HSA stronger than that of complex 2. Experimental results indicate that the binding affinity of the complexes towards CT-DNA is in the order 1>3>2 implying that complex 1 binds stronger than complex 3 and 2.The DNA cleaving activity of all the three complexes was explored in the presence of reactive oxygen compound, H2O2. All the three complexes have primarily shown the DNA cleaving activity.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri-305817, NH-8, Jaipur-Ajmer Express way, Ajmer district, Rajasthan, India
| | - Tanveer A Khan
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri-305817, NH-8, Jaipur-Ajmer Express way, Ajmer district, Rajasthan, India
| | - Yogesh P Patil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Darshana Pagariya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suman Tapryal
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri-305817, NH-8, Jaipur-Ajmer Express way, Ajmer district, Rajasthan, India
| | - Anil D Naik
- Laboratory-UMET, CNRS UMR 8207 Team ISP, Unit R2, Fire-Reaction, & Resistance to Fire Cite Scientifique, University Lille-1 ENSCL, Lille 59652, France
| | - Sunil G Naik
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri-305817, NH-8, Jaipur-Ajmer Express way, Ajmer district, Rajasthan, India.
| |
Collapse
|
49
|
ÇOL AYVAZ M, TURAN İ, DURAL B, DEMİR S, KARAOĞLU K, ALİYAZICIOĞLU Y, SERBEST K. Synthesis, in vitro DNA interactions, cytotoxicities, antioxidative activities, and topoisomerase inhibition potentials of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes with azo-oxime ligands. Turk J Chem 2017. [DOI: 10.3906/kim-1612-53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
50
|
Inci D, Aydin R, Sevgi T, Zorlu Y, Demirkan E. Synthesis, crystal structure, stability studies, DNA/albumin interactions, and antimicrobial activities of two Cu(II) complexes with amino acids and 5-nitro-1,10-phenanthroline. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1267729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Duygu Inci
- Faculty of Arts and Sciences, Department of Chemistry, Uludag University, Bursa, Turkey
| | - Rahmiye Aydin
- Faculty of Arts and Sciences, Department of Chemistry, Uludag University, Bursa, Turkey
| | - Tuba Sevgi
- Faculty of Arts and Sciences, Department of Biology, Uludag University, Bursa, Turkey
| | - Yunus Zorlu
- Department of Chemistry, Gebze Technical University, Gebze, Turkey
| | - Elif Demirkan
- Faculty of Arts and Sciences, Department of Biology, Uludag University, Bursa, Turkey
| |
Collapse
|