1
|
Řezníčková E, Bárta O, Milde D, Kryštof V, Štarha P. Anticancer dinuclear Ir(III) complex activates Nrf2 and interferes with NAD(H) in cancer cells. J Inorg Biochem 2025; 262:112704. [PMID: 39255589 DOI: 10.1016/j.jinorgbio.2024.112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Abstract
Dinuclear complex [Ir2(μ-L1)(η5-Cp*)2Cl2](PF6)2 (1) exhibits low micromolar cytotoxic activity in vitro in various human cancer cells (GI50 = 1.7-3.0 μM) and outperformed its mononuclear analogue [Ir(η5-Cp*)Cl(L2)]PF6 (2; GI50 > 40.0 μM); Cp* = pentamethylcyclopentadienyl, L1 = 4-chloro-2,6-bis[5-(pyridin-2-yl)-1,3,4-thiadiazol-2-yl]pyridine, L2 = 5-(pyridin-2-yl)-1,3,4-thiadiazol-2-amine. Compound 1 upregulated the Keap1/Nrf2 oxidative stress-protective pathway in the treated MV4-11 acute myeloid leukemia cells. In connection with the redox-mediated mode of action of 1, its NADH-oxidizing activity was detected in solution (1H NMR), while NAD+ remained intact (with formate as a hydride source). Surprisingly, only negligible NADH oxidation was detected in the presence of the reduced glutathione and ascorbate. Following the results of in-solution experiments, NAD(H) concentration was assessed in 1-treated MV4-11 cancer cells. Besides the intracellular NADH oxidation in the presence of 1, the induced oxidative stress also led to a decrease of NAD+, resulting in depletion of both NAD+/NADH coenzymes. The discussed findings provide new insight into the biochemical effects of catalytic anticancer compounds that induce cell death via a redox-mediated mode of action.
Collapse
Affiliation(s)
- Eva Řezníčková
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Ondřej Bárta
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Huang J, Ding W, Zhu X, Li B, Zeng F, Wu K, Wu X, Wang F. Ligand Evolution in the Photoactivatable Platinum(IV) Anticancer Prodrugs. Front Chem 2022; 10:876410. [PMID: 35755267 PMCID: PMC9218644 DOI: 10.3389/fchem.2022.876410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Photoactivatable Pt(IV) anticancer prodrugs with the structure of [PtIV(N1)(N2)(L1)(L2)(A1)(A2)], where N1 and N2 are non-leaving nitrogen donor ligands, L1 and L2 are leaving ligands, and A1 and A2 are axial ligands, have attracted increasing attention due to their promising photo-cytotoxicity even to cisplatin-resistant cancer cells. These photochemotherapeutic prodrugs have high dark-stability under physiological conditions, while they can be activated by visible light restrained at the disease areas, as a consequence showing higher spatial and temporal controllability and much more safety than conventional chemotherapy. The coordinated ligands to the Pt center have been proved to be pivotal in determining the function and activity of the photoactivatable Pt(IV) prodrugs. In this review, we will focus on the development of the coordinated ligands in such Pt(IV) prodrugs and discuss the effects of diverse ligands on their photochemistry and photoactivity as well as the future evolution directions of the ligands. We hope this review can help to facilitate the design and development of novel photoactivatable Pt(IV) anticancer prodrugs.
Collapse
Affiliation(s)
- Jingjing Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Weize Ding
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xingfan Zhu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Bingbing Li
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Fangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Fuyi Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Masaryk L, Zoufalý P, Słoczyńska K, Zahradniková E, Milde D, Koczurkiewicz-Adamczyk P, Štarha P. New Pt(II) diiodido complexes containing bidentate 1,3,4-thiadiazole-based ligands: synthesis, characterization, cytotoxicity. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Masaryk L, Orvoš J, Słoczyńska K, Herchel R, Moncol J, Milde D, Halaš P, Křikavová R, Koczurkiewicz-Adamczyk P, Pękala E, Fischer R, Šalitroš I, Nemec I, Štarha P. Anticancer half-sandwich Ir( iii) complex and its interaction with various biomolecules and their mixtures – a case study with ascorbic acid. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00535b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An anticancer azo bond-containing half-sandwich Ir(iii) complex oxidizes ascorbate to dehydroascorbate, and ascorbate recovers in the presence of reduced glutathione.
Collapse
Affiliation(s)
- Lukáš Masaryk
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Jakub Orvoš
- Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Ján Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Halaš
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Radka Křikavová
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Róbert Fischer
- Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Ivan Šalitroš
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
5
|
Bolitho E, Sanchez-Cano C, Shi H, Quinn PD, Harkiolaki M, Imberti C, Sadler PJ. Single-Cell Chemistry of Photoactivatable Platinum Anticancer Complexes. J Am Chem Soc 2021; 143:20224-20240. [PMID: 34808054 PMCID: PMC8662725 DOI: 10.1021/jacs.1c08630] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 02/08/2023]
Abstract
The Pt(IV) prodrug trans, trans, trans-[Pt(pyridine)2(N3)2(OH)2] (Pt1) and its coumarin derivative trans, trans, trans-[Pt(pyridine)2(N3)2(OH)(coumarin-3-carboxylate)] (Pt2) are promising agents for photoactivated chemotherapy. These complexes are inert in the dark but release Pt(II) species and radicals upon visible light irradiation, resulting in photocytotoxicity toward cancer cells. Here, we have used synchrotron techniques to investigate the in-cell behavior of these prodrugs and visualize, for the first time, changes in cellular morphology and Pt localization upon treatment with and without light irradiation. We show that photoactivation of Pt2 induces remarkable cellular damage with extreme alterations to multiple cellular components, including formation of vacuoles, while also significantly increasing the cellular accumulation of Pt species compared to dark conditions. X-ray absorption near-edge structure (XANES) measurements in cells treated with Pt2 indicate only partial reduction of the prodrug upon irradiation, highlighting that phototoxicity in cancer cells may involve not only Pt(II) photoproducts but also photoexcited Pt(IV) species.
Collapse
Affiliation(s)
- Elizabeth
M. Bolitho
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Diamond
Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, United
Kingdom
| | - Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research
and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 San Sebastián, Spain
| | - Huayun Shi
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Paul D. Quinn
- Diamond
Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, United
Kingdom
| | - Maria Harkiolaki
- Diamond
Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, United
Kingdom
| | - Cinzia Imberti
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Research progress of azido-containing Pt(IV) antitumor compounds. Eur J Med Chem 2021; 227:113927. [PMID: 34695775 DOI: 10.1016/j.ejmech.2021.113927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Cancer is a long-known incurable disease, and the medical use of cisplatin has been a significant discovery. However, the side-effects of cisplatin necessitate the development of new and improved drug. Therefore, in this study, we focused on the photoactivatable Pt(IV) compounds Pt[(X1)(X2)(Y1)(Y2)(N3)2], which have a completely novel mechanism of action. Pt(IV) can efficiently overcome the side-effects of cisplatin and other drugs. Here, we have demonstrated, summarized and discussed the effects and mechanism of these compounds. Compared to the relevant articles in the literature, we have provided a more detailed introduction and a made comprehensive classification of these compounds. We believe that our results can effectively provide a reference for the development of these drugs.
Collapse
|
7
|
Bakhonsky VV, Pashenko AA, Becker J, Hausmann H, De Groot HJM, Overkleeft HS, Fokin AA, Schreiner PR. Synthesis and antiproliferative activity of hindered, chiral 1,2-diaminodiamantane platinum(II) complexes. Dalton Trans 2021; 49:14009-14016. [PMID: 33078783 DOI: 10.1039/d0dt02391d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platinum-based antineoplastic agents play a major role in the treatment of numerous types of cancer. A new bulky, lipophilic, and chiral ligand based on 1,2-diaminodiamantane in both of its enantiomeric forms was employed for the preparation of new platinum(ii) complexes with chloride and oxalate ligands. The dichloride complexes have a higher solubility and were evaluated as anti-proliferation agents for human ovarian cancer cell lines A2780 and cisplatin-resistant A2780cis. Its R,R-enantiomer showed increased efficacy compared to cisplatin for both cancer cell lines. A chromatographic approach was used to estimate the solvent partition coefficient of the dichloride complex. The binding of diamondoid-based platinum complexes to nucleotides was tested for both enantiomers with guanosine monophosphate (GMP) and deoxyguanosine monophosphate (dGMP) and occurs at a similar or faster rate for both isomers compared to cisplatin despite greatly increased steric demand. These findings highlight the potential in 1,2-diaminodiamantane as a viable pharmacophore.
Collapse
Affiliation(s)
- Vladyslav V Bakhonsky
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany. and Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, Pobedy Ave. 37, 03056 Kiev, Ukraine.
| | - Aleksander A Pashenko
- Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, Pobedy Ave. 37, 03056 Kiev, Ukraine. and Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300RA Leiden, The Netherlands
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Heike Hausmann
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| | - Huub J M De Groot
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300RA Leiden, The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300RA Leiden, The Netherlands
| | - Andrey A Fokin
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany. and Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, Pobedy Ave. 37, 03056 Kiev, Ukraine.
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| |
Collapse
|
8
|
Masaryk L, Koczurkiewicz-Adamczyk P, Milde D, Nemec I, Słoczyńska K, Pękala E, Štarha P. Dinuclear half-sandwich Ir(III) complexes containing 4,4′-methylenedianiline-based ligands: Synthesis, characterization, cytotoxicity. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Creutzberg J, Hedegård ED. Investigating the influence of relativistic effects on absorption spectra for platinum complexes with light-activated activity against cancer cells. Phys Chem Chem Phys 2021; 22:27013-27023. [PMID: 33210700 DOI: 10.1039/d0cp05143h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the first systematic investigation of relativistic effects on the UV-vis spectra of two prototype complexes for so-called photo-activated chemotherapy (PACT), trans-trans-trans-[Pt(N3)2(OH)2(NH3)2] and cis-trans-cis-[Pt(N3)2(OH)2(NH3)2]. In PACT, design of new drugs requires in-depth understanding of the photo-activation mechanisms. A first step is usually to rationalize their UV-vis spectra for which time-dependent density functional theory (TD-DFT) is an indispensable tool. We carried out TD-DFT calculations with a systematic series of non-relativistic (NR), scalar-relativistic (SR), and four-component (4c) Hamiltonians. As expected, large differences are found between spectra calculated within 4c and NR frameworks, while the most intense features (found at higher energies below 300 nm) can be reasonably well reproduced within a SR framework. It is also shown that effective core potentials (ECPs) yield essentially similar results as all-electron SR calculations. Yet the underlying transitions can be strongly influenced by spin-orbit coupling, which is only present in the 4c framework: while this can affect both intense and less intense transitions in the spectra, the effect is most pronounced for weaker transitions at lower energies, above 300 nm. Since the investigated complexes are activated with light of wavelengths above 300 nm, employing a method with explicit inclusion of spin-orbit coupling may be crucial to rationalize the activation mechanism.
Collapse
Affiliation(s)
- Joel Creutzberg
- Division of Theoretical Chemistry, Lund University, Lund, Sweden.
| | | |
Collapse
|
10
|
Kumar A, Gatto G, Delogu F, Pilia L. DFT study of [Pt(Cl)2L] complex (L = rubeanic acid) and its derived compounds with DNA purine bases. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Richert M, Walczyk M, Cieślak MJ, Kaźmierczak-Barańska J, Królewska-Golińska K, Wrzeszcz G, Muzioł T, Biniak S. Synthesis, X-ray structure, physicochemical properties and anticancer activity of mer and fac Ru(iii) triphenylphosphine complexes with a benzothiazole derivative as a co-ligand. Dalton Trans 2020; 48:10689-10702. [PMID: 31241117 DOI: 10.1039/c9dt01803d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two mononuclear ruthenium(iii) mer- and fac-isomers of the formula [RuCl3(PPh3)(dmpbt)] (where PPh3 = triphenylphosphine, dmpbt = 2-(3,5-dimethylpyrazoll-yl)benzothiazole) have been synthesised from the reaction of [RuCl3(PPh3)3] with a bidentate ligand - dmpbt. Appropriate reaction conditions allowed obtaining the two isomers separately without separation techniques. X-ray crystallography has determined the crystal and molecular structures of the new complexes. mer-Ru(iii) (1) crystallised in the monoclinic P2(1)/n group, and fac-Ru(iii) (2, 2') in the triclinic P1[combining macron] space group. The composition of the ruthenium coordination sphere was confirmed and characterised using spectroscopic techniques (FT-IR, UV-vis and EPR), elemental analysis and mass spectrometry (MS-FAB). The structures of the complexes obtained were analysed using X-ray and other spectroscopic methods (IR and UV-vis). The electrochemical properties of the ligand and the complex compound were identified using cyclic voltammetry, determining the potential and charge of faradaic processes. Both isomers are redox active and display quasi-reversible metal centered redox processes for the Ru(iii)/Ru(ii) pair. Moreover, preliminary tests of their biological activity were performed. The cytotoxicity of these compounds has been tested for human lung carcinoma (A549), chronic myelogenous leukemia (K562), human cervix carcinoma (HeLa) cells, acute lymphoblastic leukemia (MOLT-4), human breast adenocarcinoma cell line (MCF-7) and normal human umbilical vein endothelial cells (HUVEC). The ability to induce apoptosis has been demonstrated in caspase 3/7 activity assay. In addition, the lipophilicity of both isomers was described by a partition coefficient, log P, values of which were estimated by the shake-flask method. The interesting and promising preliminary results of the biological and chemical activities of the new octahedral mer/fac Ru(iii) complexes motivate further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Monika Richert
- Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-094 Bydgoszcz, Poland.
| | - Mariusz Walczyk
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Marcin Janusz Cieślak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lódź, Poland.
| | - Julia Kaźmierczak-Barańska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lódź, Poland.
| | - Karolina Królewska-Golińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lódź, Poland.
| | - Grzegorz Wrzeszcz
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Tadeusz Muzioł
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Stanisław Biniak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
12
|
Imberti C, Zhang P, Huang H, Sadler PJ. New Designs for Phototherapeutic Transition Metal Complexes. Angew Chem Int Ed Engl 2020; 59:61-73. [PMID: 31310436 PMCID: PMC6973108 DOI: 10.1002/anie.201905171] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/19/2019] [Indexed: 12/17/2022]
Abstract
In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), and discuss the challenges and opportunities for the translation of such agents into clinical use. New designs for light-activated transition metal complexes offer photoactivatable prodrugs with novel targeted mechanisms of action. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side-effects. The photophysical and photochemical properties of transition metal complexes can be controlled by the appropriate choice of the metal, its oxidation state, the number and types of ligands, and the coordination geometry.
Collapse
Affiliation(s)
- Cinzia Imberti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Pingyu Zhang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen)Sun Yat-sen UniversityGuangzhou510275China
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
13
|
Shi H, Imberti C, Sadler PJ. Diazido platinum(iv) complexes for photoactivated anticancer chemotherapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00288j] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diazido Pt(iv) complexes with a general formula [Pt(N3)2(L)(L′)(OR)(OR′)] are a new generation of anticancer prodrugs designed for use in photoactivated chemotherapy.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | |
Collapse
|
14
|
Imran M, Ayub W, Butler IS, Zia-ur-Rehman. Photoactivated platinum-based anticancer drugs. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Shi H, Romero-Canelón I, Hreusova M, Novakova O, Venkatesh V, Habtemariam A, Clarkson GJ, Song JI, Brabec V, Sadler PJ. Photoactivatable Cell-Selective Dinuclear trans-Diazidoplatinum(IV) Anticancer Prodrugs. Inorg Chem 2018; 57:14409-14420. [PMID: 30365308 PMCID: PMC6257630 DOI: 10.1021/acs.inorgchem.8b02599] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
A series of dinuclear
octahedral PtIV complexes trans,trans,trans-[{Pt(N3)2(py)2(OH)(OC(O)CH2CH2C(O)NH)}2R] containing pyridine (py) and bridging
dicarboxylate [R = −CH2CH2– (1), trans-1,2-C6H10– (2), p-C6H4– (3), −CH2CH2CH2CH2– (4)] ligands have
been synthesized and characterized, including the X-ray crystal structures
of complexes 1·2MeOH and 4, the first
photoactivatable dinuclear PtIV complexes with azido ligands.
The complexes are highly stable in the dark, but upon photoactivation
with blue light (420 nm), they release the bridging ligand and mononuclear
photoproducts. Upon irradiation with blue light (465 nm), they generate
azidyl and hydroxyl radicals, detected using a 5,5-dimethyl-1-pyrroline N-oxide electron paramagnetic resonance spin trap, accompanied
by the disappearance of the ligand-to-metal charge-transfer (N3 → Pt) band at ca. 300 nm. The dinuclear complexes
are photocytotoxic to human cancer cells (465 nm, 4.8 mW/cm2, 1 h), including A2780 human ovarian and esophageal OE19 cells with
IC50 values of 8.8–78.3 μM, whereas cisplatin
is inactive under these conditions. Complexes 1, 3, and 4 are notably more photoactive toward
cisplatin-resistant ovarian A2780cis compared to A2780 cells. Remarkably,
all of the complexes were relatively nontoxic toward normal cells
(MRC5 lung fibroblasts), with IC50 values >100 μM,
even after irradiation. The introduction of an aromatic bridging ligand
(3) significantly enhanced cellular uptake. The populations
in the stages of the cell cycle remained unchanged upon treatment
with complexes in the dark, while the population of the G2/M phase
increased upon irradiation, suggesting that DNA is a target for these
photoactivated dinuclear PtIV complexes. Liquid chromatography–mass
spectrometry data show that the photodecomposition pathway of the
dinuclear complexes results in the release of two molecules of mononuclear
platinum(II) species. As a consequence, DNA binding of the dinuclear
complexes after photoactivation in cell-free media is, in several
respects, qualitatively similar to that of the photoactivated mononuclear
complex FM-190. After photoactivation, they were 2-fold
more effective in quenching the fluorescence of EtBr bound to DNA,
forming DNA interstrand cross-links and unwinding DNA compared to
the photoactivated FM-190. Novel all-trans dinuclear
PtIV complexes bridged
by a dicarboxylate linker, highly stable in the dark, generate azidyl
and hydroxyl radicals upon irradiation with blue light. They are photocytotoxic
to human cancer cells, whereas cisplatin was inactive under these
conditions and more photoactive toward cisplatin-resistant ovarian
cancer cells compared to wild-type cells. Remarkably, the dinuclear
complexes were relatively nontoxic toward normal human cells. Cell
cycle and DNA binding experiments suggested that DNA is a target.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Isolda Romero-Canelón
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K.,School of Pharmacy, Institute of Clinical Sciences , University of Birmingham , Birmingham B15 2TT , U.K
| | - Monika Hreusova
- Department of Biophysics, Faculty of Science , Palacky University , 17 listopadu 12 , Olomouc CZ-77146 , Czech Republic.,Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - Olga Novakova
- Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - V Venkatesh
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Abraha Habtemariam
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Guy J Clarkson
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Ji-Inn Song
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Viktor Brabec
- Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| |
Collapse
|
16
|
Mitra K. Platinum complexes as light promoted anticancer agents: a redefined strategy for controlled activation. Dalton Trans 2018; 45:19157-19171. [PMID: 27883129 DOI: 10.1039/c6dt03665a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Site-specific delivery and amenable activation of prodrugs are indispensible criteria for designing novel anticancer agents. Platinum based drugs vanguard the chemotherapeutic regimes and over the years significant attention has been paid to achieve more efficacious drugs with fewer adverse effects. The switch from platinum(ii) drugs to the inert platinum(iv) analogues proved advantageous but the new prodrugs still suffered from unspecific cytotoxic actions. Thus the photoactivation of an inert platinum prodrug specifically within neoplastic cells provided the desired spatio-temporal control over drug activation by means of illumination, thereby limiting the cytotoxic events to only at the targeted tumors. This article collates research on platinum complexes which exhibit potential light mediated anticancer effects and provides insights into the underlying mechanisms of activation. Fine tuning of the coordination sphere results in dramatic alteration of the redox and spectral properties of both ground and excited states and the cellular properties of the molecules. This concise article highlights the various light promoted strategies employed to attain a controlled release of active platinum(ii) and/or reactive oxygen species such as photoreduction, photocaging, photodissociation and photosensitization. Such dual action photoactive metal complexes with improved aqueous solubility and versatility are promising candidates for combination therapy which is likely to be the future of anticancer research.
Collapse
Affiliation(s)
- Koushambi Mitra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560-012, India.
| |
Collapse
|
17
|
Tsipis AC, Karapetsas IN. Prediction of 195 Pt NMR of photoactivable diazido- and azine-Pt(IV) anticancer agents by DFT computational protocols. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:145-153. [PMID: 27628024 DOI: 10.1002/mrc.4523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/03/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
195 Pt NMR chemical shifts for a series of large-sized photoactivable anticancer diazido-Pt(IV), homopiperizine-Pt(IV) and multifunctional azine-Pt(IV) complexes hardly to be probed experimentally and by sophisticated four-component and two-component relativistic calculations are predicted with high accuracy by density functional theory computational protocols. The calculated 195 Pt NMR chemical shifts constitute a crucial descriptor for making highly predictive one-parameter quantitative structure activity relationships models that help in designing photoactivable Pt(IV)-based antitumor agents with high cytotoxicity and selectivity. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Athanassios C Tsipis
- Laboratory of Inorganic and General Chemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Ioannis N Karapetsas
- Laboratory of Inorganic and General Chemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
18
|
Tabrizi L, Chiniforoshan H. Discovery of organometallic Ruthenium(II)-arene complexes of lidocaine as improved photocytotoxic agents. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Perfahl S, Natile MM, Mohamad HS, Helm CA, Schulzke C, Natile G, Bednarski PJ. Photoactivation of Diiodido-Pt(IV) Complexes Coupled to Upconverting Nanoparticles. Mol Pharm 2016; 13:2346-62. [PMID: 27215283 DOI: 10.1021/acs.molpharmaceut.6b00108] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The preparation, characterization, and surface modification of upconverting lanthanide-doped hexagonal NaGdF4 nanocrystals attached to light sensitive diiodido-Pt(IV) complexes is presented. The evaluation for photoactivation and cytotoxicity of the novel carboxylated diiodido-Pt(IV) cytotoxic prodrugs by near-infrared (NIR) light (λ = 980 nm) is also reported. We attempted two different strategies for attachment of light-sensitive diiodido-Pt(IV) complexes to Yb,Er- and Yb,Tm-doped β-NaGdF4 upconverting nanoparticles (UCNPs) in order to provide nanohybrids, which offer unique opportunities for selective drug activation within the tumor cells and subsequent spatiotemporal controlled drug release by NIR-to-visible light-upconversion: (A) covalent attachment of the Pt(IV) complex via amide bond formation and (B) carboxylate exchange of oleate on the surface of the UCNPs with diiodido-Pt(IV) carboxylato complexes. Initial feasibility studies showed that NIR applied by a 980 nm laser had only a slight effect on the stability of the various diiodido-Pt(IV) complexes, but when UCNPs were present more rapid loss of the ligand-metal-charge transfer (LMCT) bands of the diiodido-Pt(IV) complexes was observed. Furthermore, Pt released from the Pt(IV) complexes platinated calf-thymus DNA (ct-DNA) more rapidly when NIR was applied compared to dark controls. Of the two attachment strategies, method A with the covalently attached diiodido-Pt(IV) carboxylates via amide bond formation proved to be the most effective method for generating UCNPs that release Pt when irradiated with NIR; the released Pt was also able to bind irreversibly to calf thymus DNA. Nonetheless, only ca. 20% of the Pt on the surface of the UCNPs was in the Pt(IV) oxidation state, the rest was Pt(II), indicating chemical reduction of the diiodido-Pt(IV) prodrug by the UCNPs. Cytotoxicity studies with the various UCNP-Pt conjugates and constructs, tested on human leukemia HL60 cells in culture, indicated a substantial increase in cytotoxicity when modified UCNPs were combined with five rounds of 30 min irradiation with NIR compared to dark controls, but NIR alone also had a significant cytotoxic effect at this duration.
Collapse
Affiliation(s)
- Stefanie Perfahl
- Institute of Pharmacy, Ernst-Moritz-Arndt University of Greifswald , 17487 Greifswald, Germany
| | - Marta M Natile
- CNR-ICMATE, Department of Chemical Sciences, University of Padova , 35131 Padova, Italy
| | - Heba S Mohamad
- Institute of Physics, Ernst-Moritz-Arndt University of Greifswald , 17487 Greifswald, Germany
| | - Christiane A Helm
- Institute of Physics, Ernst-Moritz-Arndt University of Greifswald , 17487 Greifswald, Germany
| | - Carola Schulzke
- Institute of Biochemistry, Ernst-Moritz-Arndt University of Greifswald , 17489 Greifswald, Germany
| | - Giovanni Natile
- Department of Chemistry, University of Bari , 70125 Bari, Italy
| | - Patrick J Bednarski
- Institute of Pharmacy, Ernst-Moritz-Arndt University of Greifswald , 17487 Greifswald, Germany
| |
Collapse
|
20
|
Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P. New trends in platinum and palladium complexes as antineoplastic agents. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Bravo I, Alonso-Moreno C, Posadas I, Albaladejo J, Carrillo-Hermosilla F, Ceña V, Garzón A, López-Solera I, Romero-Castillo L. Phenyl-guanidine derivatives as potential therapeutic agents for glioblastoma multiforme: catalytic syntheses, cytotoxic effects and DNA affinity. RSC Adv 2016. [DOI: 10.1039/c5ra17920c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma is a highly malignant form of brain tumor. In the work described here, several substituted phenyl-guanidine derivatives were developed for application in glioblastoma treatment.
Collapse
Affiliation(s)
- I. Bravo
- Departamento de Química-Física
- Universidad de Castilla-La Mancha
- Facultad de Farmacia
- Campus Universitario de Albacete
- 02071-Albacete
| | - C. Alonso-Moreno
- Departamento de Química Inorgánica
- Orgánica y Bioquímica
- Universidad de Castilla-La Mancha
- Facultad de Farmacia
- Campus Universitario de Albacete
| | - I. Posadas
- Unidad Asociada Neurodeath CSIC-UCLM
- Departamento de Ciencias Médicas
- Facultad de Farmacia
- Universidad de Castilla-La Mancha
- Campus Universitario de Albacete
| | - J. Albaladejo
- Departamento de Química-Física
- Universidad de Castilla-La Mancha
- Facultad de Ciencias y Tecnologías Químicas
- Campus Universitario de Ciudad Real
- 13071-Ciudad Real
| | - F. Carrillo-Hermosilla
- Departamento de Química Inorgánica
- Orgánica y Bioquímica
- Universidad de Castilla-La Mancha
- Facultad de Ciencias y Tecnologías Químicas
- Campus Universitario de Ciudad Real
| | - V. Ceña
- Unidad Asociada Neurodeath CSIC-UCLM
- Departamento de Ciencias Médicas
- Facultad de Medicina
- Universidad de Castilla-La Mancha
- Campus Universitario de Albacete
| | - A. Garzón
- Departamento de Química-Física
- Universidad de Castilla-La Mancha
- Facultad de Farmacia
- Campus Universitario de Albacete
- 02071-Albacete
| | - I. López-Solera
- Departamento de Química Inorgánica
- Orgánica y Bioquímica
- Universidad de Castilla-La Mancha
- Facultad de Ciencias y Tecnologías Químicas
- Campus Universitario de Ciudad Real
| | - L. Romero-Castillo
- Unidad Asociada Neurodeath CSIC-UCLM
- Departamento de Ciencias Médicas
- Facultad de Farmacia
- Universidad de Castilla-La Mancha
- Campus Universitario de Albacete
| |
Collapse
|
22
|
Gosangi M, Mujahid TY, Gopal V, Patri SV. Effects of heterocyclic-based head group modifications on the structure–activity relationship of tocopherol-based lipids for non-viral gene delivery. Org Biomol Chem 2016; 14:6857-70. [DOI: 10.1039/c6ob00974c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene therapy, a promising strategy for the delivery of therapeutic nucleic acids, is greatly dependent on the development of efficient vectors.
Collapse
Affiliation(s)
| | | | - Vijaya Gopal
- CSIR-Centre for Cellular and Molecular Biology
- Hyderabad-500007
- India
| | | |
Collapse
|
23
|
Increasing DNA reactivity and in vitro antitumor activity of trans diiodido Pt(II) complexes with UVA light. J Inorg Biochem 2015; 153:211-218. [DOI: 10.1016/j.jinorgbio.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/20/2015] [Accepted: 07/10/2015] [Indexed: 11/20/2022]
|
24
|
Target-selective delivery and activation of platinum-based anticancer agents. Future Med Chem 2015; 7:911-27. [DOI: 10.4155/fmc.15.37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
25
|
Li Z, David A, Albani BA, Pellois JP, Turro C, Dunbar KR. Optimizing the Electronic Properties of Photoactive Anticancer Oxypyridine-Bridged Dirhodium(II,II) Complexes. J Am Chem Soc 2014; 136:17058-70. [DOI: 10.1021/ja5078359] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhanyong Li
- Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States
| | - Amanda David
- Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States
| | - Bryan A. Albani
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jean-Philippe Pellois
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Claudia Turro
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kim R. Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|
26
|
Novohradsky V, Zerzankova L, Stepankova J, Kisova A, Kostrhunova H, Liu Z, Sadler PJ, Kasparkova J, Brabec V. A dual-targeting, apoptosis-inducing organometallic half-sandwich iridium anticancer complex. Metallomics 2014; 6:1491-1501. [PMID: 24828756 DOI: 10.1039/c4mt00112e] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The cellular mechanism of action of an iridium(III) half-sandwich complex [(η(5)-C5Me4C6H4C6H5)Ir(phen)Cl]PF6 (phen = phenanthroline) (1) is reported. Complex 1 was used to treat several cell lines, including cisplatin-sensitive, cisplatin-resistant (with intrinsic and acquired resistance) carcinoma cells with wild type p53 status as well as the cells with no intact p53 gene, and nontumorigenic cells. Complex 1 preferentially kills cancer cells over nontumorigenic cells and exhibits no cross-resistance with cisplatin. It appears to retain significant activity in human tumor cell lines that are refractory or poorly responsive to cisplatin, and in contrast to cisplatin it displays a high activity in human tumor cell lines that are characterized by both wild type and mutant p53 gene. The mechanism of cell killing was established through detailed cell-based assays. Complex 1 exhibits dual effects in killing cancer cells causing nuclear DNA damage and mitochondrial dysfunction involving ROS production simultaneously. Flow cytometric studies and impedance-based monitoring of cellular responses to 1 demonstrated that 1 acts more quickly than cisplatin to induce cell death and that 1 is a more effective apoptosis inducer than cisplatin in particular in early stages of treatment, when the apoptotic effects predominate over necrosis. Overall, our findings confirm that 1 and its iridium derivatives represent promising candidates for further pre-clinical studies and new additions to the growing family of nonplatinum metal-based anticancer complexes.
Collapse
Affiliation(s)
- Vojtech Novohradsky
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The Photochemistry of Transition Metal Complexes and Its Application in Biology and Medicine. LUMINESCENT AND PHOTOACTIVE TRANSITION METAL COMPLEXES AS BIOMOLECULAR PROBES AND CELLULAR REAGENTS 2014. [DOI: 10.1007/430_2014_165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Wilson JJ, Lippard SJ. Synthetic methods for the preparation of platinum anticancer complexes. Chem Rev 2013; 114:4470-95. [PMID: 24283498 DOI: 10.1021/cr4004314] [Citation(s) in RCA: 499] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Justin J Wilson
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
29
|
Bednarski PJ, Korpis K, Westendorf AF, Perfahl S, Grünert R. Effects of light-activated diazido-PtIV complexes on cancer cells in vitro. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20120118. [PMID: 23776289 DOI: 10.1098/rsta.2012.0118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Various Pt(IV) diazides have been investigated over the years as light-activatable prodrugs that interfere with cell proliferation, accumulate in cancer cells and cause cell death. The potencies of the complexes vary depending on the substituted amines (pyridine=piperidine>ammine) as well as the coordination geometry (trans diazide>cis). Light-activated Pt(IV) diazides tend to be less specific than cisplatin at inhibiting cancer cell growth, but cells resistant to cisplatin show little cross-resistance to Pt(IV) diazides. Platinum is accumulated in the cancer cells to a similar level as cisplatin, but only when activated by light, indicating that reactive Pt species form photolytically. Studies show that Pt also becomes attached to cellular DNA upon the light activation of various Pt(IV) diazides. Structures of some of the photolysis products were elucidated by LC-MS/MS; monoaqua- and diaqua-Pt(II) complexes form that are reactive towards biomolecules such as calf thymus DNA. Platination of calf thymus DNA can be blocked by the addition of nucleophiles such as glutathione and chloride, further evidence that aqua-Pt(II) species form upon irradiation. Evidence is presented that reactive oxygen species may be generated in the first hours following photoactivation. Cell death does not take the usual apoptotic pathways seen with cisplatin, but appears to involve autophagy. Thus, photoactivated diazido-Pt(IV) complexes represent an interesting class of potential anti-cancer agents that can be selectively activated by light and kill cells by a mechanism different to the anti-cancer drug cisplatin.
Collapse
Affiliation(s)
- Patrick J Bednarski
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17487 Greifswald, Germany.
| | | | | | | | | |
Collapse
|
30
|
Garino C, Salassa L. The photochemistry of transition metal complexes using density functional theory. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20120134. [PMID: 23776295 DOI: 10.1098/rsta.2012.0134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The use of density functional theory (DFT) and time-dependent DFT (TD-DFT) to study the photochemistry of metal complexes is becoming increasingly important among chemists. Computational methods provide unique information on the electronic nature of excited states and their atomic structure, integrating spectroscopy observations on transient species and excited-state dynamics. In this contribution, we present an overview on photochemically active transition metal complexes investigated by DFT. In particular, we discuss a representative range of systems studied up to now, which include CO- and NO-releasing inorganic and organometallic complexes, haem and haem-like complexes dissociating small diatomic molecules, photoactive anti-cancer Pt and Ru complexes, Ru polypyridyls and diphosphino Pt derivatives.
Collapse
Affiliation(s)
- Claudio Garino
- Department of Chemistry and NIS Centre of Excellence, University of Turin, via P. Giuria 7, 10125 Turin, Italy
| | | |
Collapse
|
31
|
Zhao Y, Woods JA, Farrer NJ, Robinson KS, Pracharova J, Kasparkova J, Novakova O, Li H, Salassa L, Pizarro AM, Clarkson GJ, Song L, Brabec V, Sadler PJ. Diazido mixed-amine platinum(IV) anticancer complexes activatable by visible-light form novel DNA adducts. Chemistry 2013; 19:9578-91. [PMID: 23733242 PMCID: PMC4280898 DOI: 10.1002/chem.201300374] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Indexed: 01/09/2023]
Abstract
Platinum diam(m)ine complexes, such as cisplatin, are successful anticancer drugs, but suffer from problems of resistance and side-effects. Photoactivatable Pt(IV) prodrugs offer the potential of targeted drug release and new mechanisms of action. We report the synthesis, X-ray crystallographic and spectroscopic properties of photoactivatable diazido complexes trans,trans,trans-[Pt(N3)2(OH)2(MA)(Py)] (1; MA=methylamine, Py=pyridine) and trans,trans,trans-[Pt(N3)2(OH)2(MA)(Tz)] (2; Tz=thiazole), and interpret their photophysical properties by TD-DFT modelling. The orientation of the azido groups is highly dependent on H bonding and crystal packing, as shown by polymorphs 1p and 1q. Complexes 1 and 2 are stable in the dark towards hydrolysis and glutathione reduction, but undergo rapid photoreduction with UVA or blue light with minimal amine photodissociation. They are over an order of magnitude more potent towards HaCaT keratinocytes, A2780 ovarian, and OE19 oesophageal carcinoma cells than cisplatin and show particular potency towards cisplatin-resistant human ovarian cancer cells (A2780cis). Analysis of binding to calf-thymus (CT), plasmids, oligonucleotide DNA and individual nucleotides reveals that photoactivated 1 and 2 form both mono- and bifunctional DNA lesions, with preference for G and C, similar to transplatin, but with significantly larger unwinding angles and a higher percentage of interstrand cross-links, with evidence for DNA strand cross-linking further supported by a comet assay. DNA lesions of 1 and 2 on a 50 bp duplex were not recognised by HMGB1 protein, in contrast to cisplatin-type lesions. The photo-induced platination reactions of DNA by 1 and 2 show similarities with the products of the dark reactions of the Pt(II) compounds trans-[PtCl2(MA)(Py)] (5) and trans-[PtCl2(MA)(Tz)] (6). Following photoactivation, complex 2 reacted most rapidly with CT DNA, followed by 1, whereas the dark reactions of 5 and 6 with DNA were comparatively slow. Complexes 1 and 2 can therefore give rapid potent photocytotoxicity and novel DNA lesions in cancer cells, with no activity in the absence of irradiation.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Julie A Woods
- Photobiology Unit, Department of Dermatology, University of DundeeNinewells Hospital and Medical School, Dundee, DD1 9SY (UK)
| | - Nicola J Farrer
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Kim S Robinson
- Photobiology Unit, Department of Dermatology, University of DundeeNinewells Hospital and Medical School, Dundee, DD1 9SY (UK)
| | - Jitka Pracharova
- Faculty of Science, Palacky University, 17Listopadu 12, 77146 Olomouc (Czech Republic)
| | - Jana Kasparkova
- Faculty of Science, Palacky University, 17Listopadu 12, 77146 Olomouc (Czech Republic)
| | - Olga Novakova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Huilin Li
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Luca Salassa
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Ana M Pizarro
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Guy J Clarkson
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Lijiang Song
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Viktor Brabec
- Faculty of Science, Palacky University, 17Listopadu 12, 77146 Olomouc (Czech Republic)
| | - Peter J Sadler
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| |
Collapse
|
32
|
Burya SJ, Palmer AM, Gallucci JC, Turro C. Photoinduced Ligand Exchange and Covalent DNA Binding by Two New Dirhodium Bis-Amidato Complexes. Inorg Chem 2012; 51:11882-90. [DOI: 10.1021/ic3017886] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Scott J. Burya
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Alycia M. Palmer
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Judith C. Gallucci
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Claudia Turro
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United
States
| |
Collapse
|
33
|
Westendorf AF, Woods JA, Korpis K, Farrer NJ, Salassa L, Robinson K, Appleyard V, Murray K, Grünert R, Thompson AM, Sadler PJ, Bednarski PJ. Trans,trans,trans-[PtIV(N3)2(OH)2(py)(NH3)]: a light-activated antitumor platinum complex that kills human cancer cells by an apoptosis-independent mechanism. Mol Cancer Ther 2012; 11:1894-904. [PMID: 22710878 PMCID: PMC5521251 DOI: 10.1158/1535-7163.mct-11-0959] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Photoactivatable Pt(IV) diazido complexes have unusual photobiologic properties. We show here that trans,trans,trans-[Pt(IV)(N(3))(2)(OH)(2)(py)(NH(3))] complex 3 is a potent photoactivated cytotoxin toward human cancer cells in culture, with an average IC(50) value in 13 cell lines of 55 ± 28 μmol/L after 30 minutes (0.12 mW/cm(2)) photoactivation with UVA, although visible light was also effective. Photoactivated complex 3 was noncross-resistant to cisplatin in 3 of 4 resistant cell lines. Cell swelling but very little blebbing was seen for HL60 cells treated with irradiated complex 3. Unlike cisplatin and etoposide, both of which cause apoptosis in HL60 cells, no apoptosis was observed for UVA-activated complex 3 by the Annexin V/propidium iodide flow cytotometry assay. Changes in the levels of the autophagic proteins LC3B-II and p62 in HL60 cells treated with UVA-activated complex 3 indicate autophagy is active during cell death. In a clonogenic assay with the SISO human cervix cancer cell line, 3 inhibited colony formation when activated by UVA irradiation. Antitumor activity of complex 3 in mice bearing xenografted OE19 esophageal carcinoma tumors was photoaugmented by visible light. Insights into the novel reaction pathways of complex 3 have been obtained from (14)N{(1)H} nuclear magnetic resonance studies, which show that photoactivation pathways can involve release of free azide in buffered solution. Density functional theory (DFT) and time-dependent DFT calculations revealed the dissociative character of singlet and triplet excited states of complex 3, which gives rise to reactive, possibly cytotoxic azidyl radicals.
Collapse
Affiliation(s)
- Aron F. Westendorf
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17487 Greifswald, Germany
| | - Julie A. Woods
- Dundee Cancer Centre, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Katharina Korpis
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17487 Greifswald, Germany
| | - Nicola J. Farrer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Luca Salassa
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Kim Robinson
- Dundee Cancer Centre, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Virginia Appleyard
- Dundee Cancer Centre, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Karen Murray
- Dundee Cancer Centre, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Renate Grünert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17487 Greifswald, Germany
| | - Alastair M. Thompson
- Dundee Cancer Centre, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Peter J. Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Patrick J. Bednarski
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
34
|
Wilson JJ, Lippard SJ. In vitro anticancer activity of cis-diammineplatinum(II) complexes with β-diketonate leaving group ligands. J Med Chem 2012; 55:5326-36. [PMID: 22606945 DOI: 10.1021/jm3002857] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Five cationic platinum(II) complexes of general formula, [Pt(NH(3))(2)(β-diketonate)]X are reported, where X is a noncoordinating anion and β-diketonate = acetylacetonate (acac), 1,1,1,-trifluoroacetylacetonate (tfac), benzoylacetonate (bzac), 4,4,4-trifluorobenzoylacetonate (tfbz), or dibenzoylmethide (dbm), corresponding, respectively, to complexes 1-5. The log P values and the stabilities of 1-5 in aqueous solution were evaluated. The phenyl ring substituents of 3-5 increase the lipophilicity of the resulting complexes, whereas the trifluoromethyl groups of 2 and 4 decrease the stability of the complexes in aqueous solution. The uptake of 1-5 in HeLa cells increases as the lipophilicity of the investigated complex increases. Cancer cell cytotoxicity studies indicate that 1 and 3 are the least active complexes whereas 2, 4, and 5 are comparable in activity to cisplatin.
Collapse
Affiliation(s)
- Justin J Wilson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
35
|
Baraldi PG, Saponaro G, Romagnoli R, Aghazadeh Tabrizi M, Baraldi S, Moorman AR, Cosconati S, Di Maro S, Marinelli L, Gessi S, Merighi S, Varani K, Borea PA, Preti D. Water-soluble pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines as human A₃ adenosine receptor antagonists. J Med Chem 2012; 55:5380-90. [PMID: 22568637 DOI: 10.1021/jm300323t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A relevant problem of the pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine nucleus, an attractive scaffold for the preparation of adenosine receptor antagonists, is the low water solubility. We originally functionalized the C(5) position with a salifiable 4-pyridylcarbamoyl moiety that conferred good water solubility at low pH (<4.0) but poor solubility at physiologic pH, indicative of the dissociation of the pyridinium species. Here we replaced the pyridin-4-yl moiety with a 1-(substituted)piperidin-4-yl ring to exploit the higher basicity of this nucleus and for the the possibility to generate stable, water-soluble salts. The hydrochloride salt of the 1-(cyclohexylmethyl)piperidin-4-yl derivative (10, K(i)(hA(3)) = 9.7 nM, IC(50)(hA(3)) = 30 nM, K(i)(hA(1)/hA(3)) = 351, K(i)(hA(2A)/hA(3)) > 515, IC(50)(hA(2B)) > 5 μM) showed a solubility of 8 mg/mL at physiological pH and gave a stable aqueous system suitable for intravenous infusion. Molecular modeling studies were helpful in rationalizing the available structure-activity relationships and the selectivity profile of the new ligands.
Collapse
|
36
|
Hussain A, Gadadhar S, Goswami TK, Karande AA, Chakravarty AR. Photo-induced DNA cleavage activity and remarkable photocytotoxicity of lanthanide(iii) complexes of a polypyridyl ligand. Dalton Trans 2012; 41:885-95. [DOI: 10.1039/c1dt11400j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Affiliation(s)
- Luca Salassa
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|