1
|
Al-Asbahy WM, Shamsi M, Senan A, Al-Areqi N. Binding mechanism, photo-induced cleavage and computational studies of interaction cefepime drug with Human serum albumin. J Biomol Struct Dyn 2024:1-11. [PMID: 38234057 DOI: 10.1080/07391102.2024.2304668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
The binding interaction of cefepime to human serum albumin (HSA) in aqueous solution was investigated by molecular spectroscopy (UV spectra, fluorescence spectra and CD spectra), photo-cleavage and modeling studies under simulative physiological conditions. Spectrophotometric results are rationalized in terms of a static quenching process and binding constant (Kb) and the number of binding sites (n ≈ 1) were calculated using fluorescence quenching approaches at three temperature settings. Thermodynamic data of ΔG, ΔH and ΔS at different temperatures were evaluated. The results showed that the electrostatic and hydrogen bonding interactions play a major role in the binding of cefepime to HSA. The value of 3.4 nm for the distance r between the donor (HSA) and acceptor (cefepime) was derived from the fluorescence resonance energy transfer (FRET). FTIR and CD measurements has been reaffirmed HSA-cefepime association and demonstrated reduction in α-helical content of HSA. Furthermore, the study of molecular modeling also indicated that cefepime could strongly bind to the site I (subdomain IIA) of HSA. Additionally, cefepime shows efficient photo- cleavage of HSA cleavage. Our results may provide valuable information to understand the pharmacological profile of cefepime drug delivery in blood stream.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Waddhaah M Al-Asbahy
- Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Manal Shamsi
- Department of Biochemistry, Faculty of Medicine and Medical Sciences, Taiz University, Taiz, Yemen
| | - Ahmed Senan
- Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Niyazi Al-Areqi
- Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Yemen
| |
Collapse
|
2
|
Kothandan S, Thirumoorthy K, Rodríguez-Diéguez A, Sheela A. Oxoperoxovanadium Complexes of Hetero Ligands: X-Ray Crystal Structure, Density Functional Theory, and Investigations on DNA/BSA Interactions, Cytotoxic, and Molecular Docking Studies. Bioinorg Chem Appl 2022; 2022:8696420. [PMID: 36034769 PMCID: PMC9402336 DOI: 10.1155/2022/8696420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Oxoperoxovanadium (V) complexes [VO (O)2 (nf) (bp)] (1) and [VO (O)2 (ox) (bp)] (2) based on 5-nitro-2-furoic acid (nf), oxine (ox) and 2, 2' bipyridine (bp) bidentate ligands have been synthesized and characterized by FT-IR, UV-visible, mass, and NMR spectroscopic techniques. The structure of complex 2 shows distorted pentagonal-bipyramidal geometry, as confirmed by a single-crystal XRD diffraction study. The interactions of complexes with bovine serum albumin (BSA) and calf thymus DNA (CT-DNA) are investigated using UV-visible and fluorescence spectroscopic techniques. It has been observed that CT-DNA interacts with complexes through groove binding mode and the binding constants for complexes 1 and 2 are 8.7 × 103 M-1 and 8.6 × 103 M-1, respectively, and BSA quenching constants for complexes 1 and 2 are 0.0628 × 106 M-1 and 0.0163 × 106 M-1, respectively. The ability of complexes to cleave DNA is investigated using the gel electrophoresis method with pBR322 plasmid DNA. Furthermore, the cytotoxic effect of the complexes is evaluated against the HeLa cell line using an MTT assay. The complexes are subjected to density functional theory calculations to gain insight into their molecular geometries and are in accordance with the results of docking studies. Furthermore, based on molecular docking studies, the intermolecular interactions responsible for the stronger binding affinities between metal complexes and DNA are discussed.
Collapse
Affiliation(s)
- Saraswathi Kothandan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India
| | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av/Severo Ochoa s/n, Granada 18071, Spain
| | - Angappan Sheela
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India
| |
Collapse
|
3
|
Parsekar S, Paliwal K, Haldar P, Antharjanam PKS, Kumar M. Synthesis, Characterization, Crystal Structure, DNA and HSA Interactions, and Anticancer Activity of a Mononuclear Cu(II) Complex with a Schiff Base Ligand Containing a Thiadiazoline Moiety. ACS OMEGA 2022; 7:2881-2896. [PMID: 35097283 PMCID: PMC8792924 DOI: 10.1021/acsomega.1c05750] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 05/07/2023]
Abstract
A mononuclear Cu(II) complex [Cu(HL)(o-phen)]·H2O (1) [H3L =, o-phen = 1,10-phenanthroline] was isolated from methanol, and its X-ray single-crystal structure was determined. Frozen glass X-band EPR of 1 in dimethylformamide (DMF) at LNT showed a spectrum that is characteristic of a monomeric tetragonal character with g ∥ = 2.164, g ⊥ = 2.087, A ∥ = 19.08 mT, and A ⊥ ≤ 4 mT. Electronic spectroscopic studies using calf thymus DNA (CT-DNA) showed strong binding affinity of 1 as reflected from its intrinsic binding constant (K b) value of 2.85 × 105 M-1. Competitive behavior of 1 with ethidium bromide (EB) displayed intercalative binding of DNA (K app = 1.3 × 106 M-1). The compound displayed significant oxidative cleavage of pUC19 DNA. The interaction between HSA and complex 1 was examined by employing fluorescence and electronic absorption spectroscopic experiments. The secondary and tertiary structures of HSA were found to be altered as suggested by three-dimensional (3D) fluorescence experiments. The affinity of 1 to bind to HSA was found to be strong as indicated from its value of the binding constant (K a = 2.89 × 105 M-1). Intrinsic fluorescence of the protein was found to be reduced through a mechanism of static quenching as suggested from the k q (2.01 × 1013 M-1 s-1) value, the bimolecular quenching constant. The Förster resonance energy transfer (FRET) process may also be accounted for such a high k q value. The r value (2.85 nm) calculated from FRET theory suggested that the distance between complex 1 (acceptor) and HSA (donor) is quite close. Complex 1 primarily bound to HSA in subdomain IIA as suggested by molecular docking studies. IC50 values (0.80 and 0.43 μM, respectively) obtained from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with HeLa and MCF7 cells suggested remarkable in vitro anticancer activity of 1. Nuclear dual staining assays revealed that cell death occurred via apoptosis in HeLa cells and reactive oxygen species (ROS) accumulation caused apoptosis induction. On treatment with a 5 μM dose of 1 in HeLa cells, the cell population significantly increased in the G2/M phase, while it was decreased in G0/G1 and S phases as compared to the control, clearly indicating G2/M phase arrest.
Collapse
Affiliation(s)
- Sidhali
U. Parsekar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Kumudini Paliwal
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Paramita Haldar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | | | - Manjuri Kumar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| |
Collapse
|
4
|
Catalyst-free Direct Ring-opening of Cyclic Aldimines with Aliphatic Primary Amines to Construct o-Hydroxy Schiff Bases. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Parsekar SU, Haldar P, Antharjanam PS, Kumar M, Koley AP. Synthesis, characterization, crystal structure, DNA and human serum albumin interactions, as well as antiproliferative activity of a Cu(II) complex containing a Schiff base ligand formed in situ from the Cu(II)‐induced cyclization of 1,5‐bis(salicylidene)thiocarbohydrazide. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sidhali U. Parsekar
- Department of Chemical Engineering Birla Institute of Technology and Science‐Pilani, K.K. Birla Goa Campus Zuarinagar India
| | - Paramita Haldar
- Department of Chemical Engineering Birla Institute of Technology and Science‐Pilani, K.K. Birla Goa Campus Zuarinagar India
| | | | - Manjuri Kumar
- Department of Chemical Engineering Birla Institute of Technology and Science‐Pilani, K.K. Birla Goa Campus Zuarinagar India
| | - Aditya P. Koley
- Department of Chemistry Birla Institute of Technology and Science‐Pilani, K.K. Birla Goa Campus Zuarinagar India
| |
Collapse
|
6
|
Castilho N, Gabriel P, Camargo TP, Neves A, Terenzi H. Targeting an Artificial Metal Nuclease to DNA by a Simple Chemical Modification and Its Drastic Effect on Catalysis. ACS Med Chem Lett 2020; 11:286-291. [PMID: 32184958 DOI: 10.1021/acsmedchemlett.9b00289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
A novel metal complex was synthesized containing a purine derived ligand in order to increase its binding to DNA. We observed a huge increase in nuclease activity and, quite interestingly, an improvement on DNA sequence selectivity. A potential site of specific cleavage in the presence of a reductant in the reaction medium is suggested. We were able to synthesize a novel metal nuclease with improved activity on DNA, and with sequence specificity when exposed to a coreactant, this opens up new possibilities to create site specific and redox status modulated artificial nucleases.
Collapse
Affiliation(s)
- Nathalia Castilho
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040900 Florianópolis-SC, Brazil
| | - Philipe Gabriel
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040900 Florianópolis-SC, Brazil
| | - Tiago Pacheco Camargo
- Departamento de Química, Universidade Federal de Santa Catarina, 88040900 Florianópolis-SC, Brazil
| | - Ademir Neves
- Departamento de Química, Universidade Federal de Santa Catarina, 88040900 Florianópolis-SC, Brazil
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040900 Florianópolis-SC, Brazil
| |
Collapse
|
7
|
Li S, Miao T, Fu X, Ma F, Gao H, Zhang G. Theoretical study on the DNA interaction properties of copper(II) complexes. Comput Biol Chem 2019; 80:244-248. [PMID: 31026737 DOI: 10.1016/j.compbiolchem.2019.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 11/28/2022]
Abstract
Theoretical studies on DNA-cleavage and DNA-binding properties of a series of Cu(II) complexes [Cu(bimda)(diimine)] 1-5 have been carried out by density functional theory (DFT). The optimized structures of Cu(II) complexes were docked into parallel, antiparallel and mixed G-quadruplexes, with which the binding energies of complexes 1-5 were obtained. The cytotoxicities of these complexes can be predicted preliminarily by the binding energies. To explore the energy changes of Cu(II) complexes in duplex DNA, the optimized structures of these complexes were docked into the duplex DNA, and the obtained docking models were further optimized using QM/MM method. The DNA-cleavage abilities of complexes 1-5 can be predicted accurately and explained reasonably by the computed intra-molecular reorganization energies of these complexes. This work reported here has implications for the understanding of the interaction Cu(II) complexes with the DNA, which might be helpful for the future directing the design of novel anticancer Cu(II) complexes.
Collapse
Affiliation(s)
- Shuang Li
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Tifang Miao
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China.
| | - Xianliang Fu
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Fang Ma
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Hui Gao
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Guoping Zhang
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
8
|
Arabahmadi R. Cobalt (II) Complexes Derived from Azo‐Azomethine Ligands: Synthesis, Characterization, Solvatochromic, Fluorescence, Thermal, Electrochemical and Antimicrobial Properties. ChemistrySelect 2019. [DOI: 10.1002/slct.201900075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Ambika S, Manojkumar Y, Arunachalam S, Gowdhami B, Meenakshi Sundaram KK, Solomon RV, Venuvanalingam P, Akbarsha MA, Sundararaman M. Biomolecular Interaction, Anti-Cancer and Anti-Angiogenic Properties of Cobalt(III) Schiff Base Complexes. Sci Rep 2019; 9:2721. [PMID: 30804454 PMCID: PMC6389928 DOI: 10.1038/s41598-019-39179-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Two cobalt(III) Schiff base complexes, trans-[Co(salen)(DA)2](ClO4) (1) and trans-[Co(salophen)(DA)2](ClO4) (2) (where salen: N,N'-bis(salicylidene)ethylenediamine, salopen: N,N'-bis(salicylidene)-1,2-phenylenediamine, DA: dodecylamine) were synthesised and characterised using various spectroscopic and analytical techniques. The binding affinity of both the complexes with CT-DNA was explored adopting UV-visible, fluorescence, circular dichroism spectroscopy and cyclic voltammetry techniques. The results revealed that both the complexes interacted with DNA via intercalation as well as notable groove binding. Protein (BSA) binding ability of these complexes was investigated by absorption and emission spectroscopy which indicate that these complexes engage in strong hydrophobic interaction with BSA. The mode of interaction between these complexes and CT-DNA/BSA was studied by molecular docking analysis. The in vitro cytotoxic property of the complexes was evaluated in A549 (human small cell lung carcinoma) and VERO (African green monkey kidney cells). The results revealed that the complexes affect viability of the cells. AO and EB staining and cell cycle analysis revealed that the mode of cell death is apoptosis. Both the complexes showed profound inhibition of angiogenesis as revealed in in-vivo chicken chorioallantoic membrane (CAM) assay. Of the two complexes, the complex 2 proved to be much more efficient in affecting the viability of lung cancer cells than complex 1. These results indicate that the cobalt(III) Schiff base complexes in this study can be potentially used for cancer chemotherapy and as inhibitor of angiogenesis, in general, and lung cancer in particular, for which there is need for substantiation at the level of signalling mechanisms and gene expressions.
Collapse
Affiliation(s)
- Subramanian Ambika
- Department of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India.,Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Yesaiyan Manojkumar
- Department of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India.,Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Sankaralingam Arunachalam
- Department of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India. .,Plot-46, Nagappa Nagar, Airport (Post), Tiruchirappalli, 620007, India.
| | - Balakrishnan Gowdhami
- Mahatma Gandhi-Doerenkamp Centre, Bharathidasan University, Tiruchirappalli, 620 024, India.,National Center for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Kishore Kumar Meenakshi Sundaram
- Centre for Environmental Research and Development (CERD), Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, 600 034, India
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College (Autonomous), East Tambaram, Chennai, 600 059, India
| | | | - Mohammad Abdulkader Akbarsha
- Mahatma Gandhi-Doerenkamp Centre, Bharathidasan University, Tiruchirappalli, 620 024, India.,Research Coordinator, National College (Autonomous), Tiruchirappalli, 620001, India
| | - Muthuraman Sundararaman
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024, India
| |
Collapse
|
10
|
|
11
|
Al Hageh C, Al Assaad M, El Masri Z, Samaan N, El-Sibai M, Khalil C, Khnayzer RS. A long-lived cuprous bis-phenanthroline complex for the photodynamic therapy of cancer. Dalton Trans 2018; 47:4959-4967. [DOI: 10.1039/c8dt00140e] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An earth-abundant cuprous bis-phenanthroline photosensitizer showed potential use in the photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Cynthia Al Hageh
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Majd Al Assaad
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Zeinab El Masri
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Nawar Samaan
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Christian Khalil
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Rony S. Khnayzer
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| |
Collapse
|
12
|
Kathiresan S, Mugesh S, Annaraj J, Murugan M. Mixed-ligand copper(ii) Schiff base complexes: the vital role of co-ligands in DNA/protein interactions and cytotoxicity. NEW J CHEM 2017. [DOI: 10.1039/c6nj03501a] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new mixed-ligand copper(ii) complexes display an antibacterial mechanism of cell death via cell-wall rupture and cytotoxicity via apoptotic cell death.
Collapse
Affiliation(s)
- Sellamuthu Kathiresan
- Department of Materials Science
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
- India
| | - Subramanian Mugesh
- Department of Microbial Technology
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai-625 021
- India
| | - Jamespandi Annaraj
- Department of Materials Science
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
- India
| | - Maruthamuthu Murugan
- Department of Microbial Technology
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai-625 021
- India
| |
Collapse
|
13
|
Ma ZY, Qiao Z, Wang DB, Hou X, Qiao X, Xie CZ, Qiang ZY, Xu JY. A mixed-ligand copper(II) complex that inhibits growth and induces apoptosis by DNA targeting in human epithelial cervical cancer cells. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Zhong-Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Zheng Qiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Dong-Bo Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Xuan Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Xin Qiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Zhao-Yan Qiang
- School of Basic Medicine; Tianjin Medical University; Tianjin 300070 China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| |
Collapse
|
14
|
Evaluations of AMBER force field parameters by MINA approach for copper-based nucleases. Struct Chem 2016. [DOI: 10.1007/s11224-016-0764-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Kathiresan S, Mugesh S, Murugan M, Ahamed F, Annaraj J. Mixed-ligand copper(ii)-phenolate complexes: structure and studies on DNA/protein binding profiles, DNA cleavage, molecular docking and cytotoxicity. RSC Adv 2016. [DOI: 10.1039/c5ra20607c] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Copper(ii) complexes with simple and mixed ligands, [Cu(L)(ClO4)] and [Cu(L)(diimine)]ClO4 were synthesized and characterized by elemental analysis, UV-vis, FT-IR, electrospray ionization-mass spectrometry (ESI-MS) and electrochemical studies.
Collapse
Affiliation(s)
- Sellamuthu Kathiresan
- Department of Materials Science
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625021
- India
| | - Subramanian Mugesh
- Department of Microbial Technology
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai-625 021
- India
| | - Maruthamuthu Murugan
- Department of Microbial Technology
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai-625 021
- India
| | - Feroze Ahamed
- Department of Microbial Technology
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai-625 021
- India
| | - Jamespandi Annaraj
- Department of Materials Science
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625021
- India
| |
Collapse
|
16
|
Liu C, Zhu Y, Tang M. Theoretical studies on binding modes of copper-based nucleases with DNA. J Mol Graph Model 2015; 64:11-29. [PMID: 26766349 DOI: 10.1016/j.jmgm.2015.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/06/2023]
Abstract
In the present work, molecular simulations were performed for the purpose of predicting the binding modes of four types of copper nucleases (a total 33 compounds) with DNA. Our docking results accurately predicted the groove binding and electrostatic interaction for some copper nucleases with B-DNA. The intercalation modes were also reproduced by "gap DNA". The obtained results demonstrated that the ligand size, length, functional groups and chelate ring size bound to the copper center could influence the binding affinities of copper nucleases. The binding affinities obtained from the docking calculations herein also replicated results found using MM-PBSA approach. The predicted DNA binding modes of copper nucleases with DNA will ultimately help us to better understand the interaction of copper compounds with DNA.
Collapse
Affiliation(s)
- Chunmei Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yanyan Zhu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.
| | - Mingsheng Tang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.
| |
Collapse
|
17
|
Arun TR, Subramanian R, Packianathan S, Raman N. Fluorescence Titrations of Bio-relevant Complexes with DNA: Synthesis, Structural Investigation, DNA Binding/Cleavage, Antimicrobial and Molecular Docking Studies. J Fluoresc 2015; 25:1127-40. [DOI: 10.1007/s10895-015-1603-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/15/2015] [Indexed: 11/29/2022]
|
18
|
Kiran T, Prasanth VG, Balamurali M, Vasavi C, Munusami P, Sathiyanarayanan KI, Pathak M. Synthesis, spectroscopic characterization and in vitro studies of new heteroleptic copper (II) complexes derived from 2-hydroxy napthaldehyde Schiff’s bases and N, N donor ligands: Antimicrobial, DNA binding and cytotoxic investigations. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.04.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Pradeepa SM, Bhojya Naik HS, Vinay Kumar B, Indira Priyadarsini K, Barik A, Prabhakara MC. DNA binding, photoactivated DNA cleavage and cytotoxic activity of Cu(II) and Co(II) based Schiff-base azo photosensitizers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 141:34-42. [PMID: 25659740 DOI: 10.1016/j.saa.2015.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 12/12/2014] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
A new class of Cu(II) and Co(II) complexes of azo-containing Schiff base of the type [Cu(L1)2] and [Co(L1)2], where L1=4-[(E)-{2-hydroxy-3-[(E)-(4-bromophenyl)diazenyl]benzylidene}amino]benzoic acid have been synthesized and characterized. Extension of conjugation and the presence of free carboxylic acid group of the ligand L1 increased the wavelength of the complexes from visible region to the near IR region (620-850 nm). The Cu(II) and Co(II) complexes interacted with CT-DNA via intercalative mode with the respective Kb value of 3.2×10(4) M(-1) and 2.9×10(4) M(-1) and acted as proficient photocleavers of SC pUC19 DNA in UV-A light, forming (1)O2 as the reactive oxygen species with the quantum yield of 0.38 and 0.36, respectively. Furthermore, the Cu(II) and Co(II) complexes showed photocytotoxicity toward two selected tumor cell lines MCF-7 and A549 by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) method, and the Cu(II) complex exhibits higher photocytotoxicity than Co(II) complex against each of the selected cell lines, this result is identical with their DNA binding ability order.
Collapse
Affiliation(s)
- S M Pradeepa
- Department of Studies and Research in Industrial Chemistry, Kuvempu University, Shankaraghatta 577 451, Shimoga, India
| | - H S Bhojya Naik
- Department of Studies and Research in Industrial Chemistry, Kuvempu University, Shankaraghatta 577 451, Shimoga, India.
| | - B Vinay Kumar
- Department of Chemistry, R N Shetty Institute of Technology, Uttarahalli Road, Channasandra, Bengaluru 560 098, India
| | - K Indira Priyadarsini
- Radiation Chemistry Section, Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Atanu Barik
- Radiation Chemistry Section, Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - M C Prabhakara
- Department of Studies and Research in Industrial Chemistry, Sir. M. V. Govt. Science College, Bommanakatte, Bhadravathi 577 302, India
| |
Collapse
|
20
|
Selvaganapathy M, Pravin N, Pothiraj K, Raman N. Photo biological activation of NSO donor mixed-ligand complexes: In vivo and preclinical perspectives. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 138:256-72. [DOI: 10.1016/j.jphotobiol.2014.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 11/29/2022]
|
21
|
Raman N, Arun TR, Mahalakshmi R, Packianathan S, Antony R. Appraisal of DNA obligatory, DNA cleavage and in vitro anti-biogram efficiency of 9,10-phenanthrenequinone based metal complexes. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Muniyandi V, Pravin N, Raman N. Impact of metallonucleases on DNA interactions: Structural validation and in-vitro antibiogram assay. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C. Advances in Copper Complexes as Anticancer Agents. Chem Rev 2013; 114:815-62. [DOI: 10.1021/cr400135x] [Citation(s) in RCA: 1128] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Carlo Santini
- Scuola
di Scienze e Tecnologie−Sez. Chimica, Università di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Maura Pellei
- Scuola
di Scienze e Tecnologie−Sez. Chimica, Università di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Valentina Gandin
- Dipartimento
di Scienze del Farmaco, Università di Padova, via Marzolo
5, 35131 Padova, Italy
| | | | | | - Cristina Marzano
- Dipartimento
di Scienze del Farmaco, Università di Padova, via Marzolo
5, 35131 Padova, Italy
| |
Collapse
|
24
|
Metal complex–DNA binding: Insights from molecular dynamics and DFT/MM calculations. J Inorg Biochem 2013; 124:63-9. [DOI: 10.1016/j.jinorgbio.2013.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 11/19/2022]
|
25
|
Li GY, Du KJ, Wang JQ, Liang JW, Kou JF, Hou XJ, Ji LN, Chao H. Synthesis, crystal structure, DNA interaction and anticancer activity of tridentate copper(II) complexes. J Inorg Biochem 2013. [DOI: 10.1016/j.jinorgbio.2012.09.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
He Q, Liang H, Lu J. A β-cyclodextrin-containing polymeric salicylidene Schiff base: synthesis, zinc ion coordination and fluorescence resonance energy transfer with protein. Polym Chem 2013. [DOI: 10.1039/c2py20832f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Terenzi A, Tomasello L, Spinello A, Bruno G, Giordano C, Barone G. (Dipyrido[3,2-a:2′,3′-c]phenazine)(glycinato)copper(II) perchlorate: A novel DNA-intercalator with anti-proliferative activity against thyroid cancer cell lines. J Inorg Biochem 2012; 117:103-10. [DOI: 10.1016/j.jinorgbio.2012.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 11/25/2022]
|