1
|
Dali A, Sebastiani F, Gabler T, Frattini G, Moreno DM, Estrin DA, Becucci M, Hofbauer S, Smulevich G. Proximal ligand tunes active site structure and reactivity in bacterial L. monocytogenes coproheme ferrochelatase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124120. [PMID: 38479228 DOI: 10.1016/j.saa.2024.124120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 04/02/2024]
Abstract
Ferrochelatases catalyze the insertion of ferrous iron into the porphyrin during the heme b biosynthesis pathway, which is fundamental for both prokaryotes and eukaryotes. Interestingly, in the active site of ferrochelatases, the proximal ligand coordinating the porphyrin iron of the product is not conserved, and its catalytic role is still unclear. Here we compare the L. monocytogenes bacterial coproporphyrin ferrochelatase native enzyme together with selected variants, where the proximal Tyr residue was replaced by a His (i.e. the most common ligand in heme proteins), a Met or a Phe (as in human and actinobacterial ferrochelatases, respectively), in their Fe(III), Fe(II) and Fe(II)-CO adduct forms. The study of the active site structure and the activity of the proteins in solution has been performed by UV-vis electronic absorption and resonance Raman spectroscopies, biochemical characterization, and classical MD simulations. All the mutations alter the H-bond interactions between the iron porphyrin propionate groups and the protein, and induce effects on the activity, depending on the polarity of the proximal ligand. The overall results confirm that the weak or non-existing coordination of the porphyrin iron by the proximal residue is essential for the binding of the substrate and the release of the final product.
Collapse
Affiliation(s)
- Andrea Dali
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Federico Sebastiani
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Thomas Gabler
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Gianfranco Frattini
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Diego M Moreno
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Darío A Estrin
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes, 2160 Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, Buenos Aires, Argentina
| | - Maurizio Becucci
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy.
| | - Stefan Hofbauer
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria.
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy; INSTM Research Unit of Firenze, via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy.
| |
Collapse
|
2
|
Proximal and distal control for ligand binding in neuroglobin: role of the CD loop and evidence for His64 gating. Sci Rep 2019; 9:5326. [PMID: 30926858 PMCID: PMC6441039 DOI: 10.1038/s41598-019-41780-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/13/2019] [Indexed: 11/24/2022] Open
Abstract
Neuroglobin (Ngb) is predominantly expressed in neurons of the central and peripheral nervous systems and it clearly seems to be involved in neuroprotection. Engineering Ngb to observe structural and dynamic alterations associated with perturbation in ligand binding might reveal important structural determinants, and could shed light on key features related to its mechanism of action. Our results highlight the relevance of the CD loop and of Phe106 as distal and proximal controls involved in ligand binding in murine neuroglobin. We observed the effects of individual and combined mutations of the CD loop and Phe106 that conferred to Ngb higher CO binding velocities, which we correlate with the following structural observations: the mutant F106A shows, upon CO binding, a reduced heme sliding hindrance, with the heme present in a peculiar double conformation, whereas in the CD loop mutant “Gly-loop”, the original network of interactions between the loop and the heme was abolished, enhancing binding via facilitated gating out of the distal His64. Finally, the double mutant, combining both mutations, showed a synergistic effect on CO binding rates. Resonance Raman spectroscopy and MD simulations support our findings on structural dynamics and heme interactions in wild type and mutated Ngbs.
Collapse
|
3
|
Milazzo L, Hofbauer S, Howes BD, Gabler T, Furtmüller PG, Obinger C, Smulevich G. Insights into the Active Site of Coproheme Decarboxylase from Listeria monocytogenes. Biochemistry 2018. [PMID: 29536725 PMCID: PMC5940323 DOI: 10.1021/acs.biochem.8b00186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coproheme decarboxylases (ChdC) catalyze the hydrogen peroxide-mediated conversion of coproheme to heme b. This work compares the structure and function of wild-type (WT) coproheme decarboxylase from Listeria monocytogenes and its M149A, Q187A, and M149A/Q187A mutants. The UV-vis, resonance Raman, and electron paramagnetic resonance spectroscopies clearly show that the ferric form of the WT protein is a pentacoordinate quantum mechanically mixed-spin state, which is very unusual in biological systems. Exchange of the Met149 residue to Ala dramatically alters the heme coordination, which becomes a 6-coordinate low spin species with the amide nitrogen atom of the Q187 residue bound to the heme iron. The interaction between M149 and propionyl 2 is found to play an important role in keeping the Q187 residue correctly positioned for closure of the distal cavity. This is confirmed by the observation that in the M149A variant two CO conformers are present corresponding to open (A0) and closed (A1) conformations. The CO of the latter species, the only conformer observed in the WT protein, is H-bonded to Q187. In the absence of the Q187 residue or in the adducts of all the heme b forms of ChdC investigated herein (containing vinyls in positions 2 and 4), only the A0 conformer has been found. Moreover, M149 is shown to be involved in the formation of a covalent bond with a vinyl substituent of heme b at excess of hydrogen peroxide.
Collapse
Affiliation(s)
- Lisa Milazzo
- Dipartimento di Chimica "Ugo Schiff" , Università di Firenze , Via della Lastruccia 3-13 , 50019 Sesto Fiorentino (Fi) , Italy
| | - Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18 , A-1190 Vienna , Austria
| | - Barry D Howes
- Dipartimento di Chimica "Ugo Schiff" , Università di Firenze , Via della Lastruccia 3-13 , 50019 Sesto Fiorentino (Fi) , Italy
| | - Thomas Gabler
- Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18 , A-1190 Vienna , Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18 , A-1190 Vienna , Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18 , A-1190 Vienna , Austria
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff" , Università di Firenze , Via della Lastruccia 3-13 , 50019 Sesto Fiorentino (Fi) , Italy
| |
Collapse
|
4
|
Kanai Y, Harada A, Shibata T, Nishimura R, Namiki K, Watanabe M, Nakamura S, Yumoto F, Senda T, Suzuki A, Neya S, Yamamoto Y. Characterization of Heme Orientational Disorder in a Myoglobin Reconstituted with a Trifluoromethyl-Group-Substituted Heme Cofactor. Biochemistry 2017; 56:4500-4508. [DOI: 10.1021/acs.biochem.7b00457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Kanai
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Ayaka Harada
- Structural
Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tomokazu Shibata
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Ryu Nishimura
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Kosuke Namiki
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Miho Watanabe
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Shunpei Nakamura
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Fumiaki Yumoto
- Structural
Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural
Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Akihiro Suzuki
- Department
of Materials Engineering, National Institute of Technology, Nagaoka College, Nagaoka 940-8532, Japan
| | - Saburo Neya
- Department
of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chuoh-Inohana, Chiba 260-8675, Japan
| | - Yasuhiko Yamamoto
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
- Life
Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
5
|
Helbo S, Bundgaard AG, Fago A. Myoglobin oxygenation and autoxidation in three reptilian species. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:8-12. [DOI: 10.1016/j.cbpa.2015.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 11/30/2022]
|
6
|
Howes BD, Boechi L, Boffi A, Estrin DE, Smulevich G. Bridging Theory and Experiment to Address Structural Properties of Truncated Haemoglobins: Insights from Thermobifida fusca HbO. Adv Microb Physiol 2015; 67:85-126. [PMID: 26616516 DOI: 10.1016/bs.ampbs.2015.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter, we will discuss the paradigmatic case of Thermobifida fusca (Tf-trHb) HbO in its ferrous and ferric states and its behaviour towards a battery of possible ligands. This choice was dictated by the fact that it has been one of the most extensively studied truncated haemoglobins, both in terms of spectroscopic and molecular dynamics studies. Tf-trHb typifies the structural properties of group II trHbs, as the active site is characterized by a highly polar distal environment in which TrpG8, TyrCD1, and TyrB10 provide three potential H-bond donors in the distal cavity capable of stabilizing the incoming ligands. The role of these residues in key topological positions, and their interplay with the iron-bound ligands, has been addressed in studies carried out on the CO, F(-), OH(-), CN(-), and HS(-) adducts formed with the wild-type protein and a combinatorial set of mutants, in which the distal polar residues, TrpG8, TyrCD1, and TyrB10, have been singly, doubly, or triply replaced by a Phe residue. In this context, such a complete analysis provides an excellent benchmark for the investigation of the relationship between protein structure and function, allowing one to translate physicochemical properties of the active site into the observed functional behaviour. Tf-trHb will be compared with other members of the group II trHbs and, more generally, with members of the other trHb subgroups.
Collapse
Affiliation(s)
- Barry D Howes
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Italy
| | - Leonardo Boechi
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Alberto Boffi
- Dipartimento di Scienze Biochimiche, Università "Sapienza", Rome, Italy
| | - Dario E Estrin
- Departamento de Química Inorgánica, Analítica y Química Física and Inquimae-Conicet, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Italy.
| |
Collapse
|
7
|
Helbo S, Gow AJ, Jamil A, Howes BD, Smulevich G, Fago A. Oxygen-linked S-nitrosation in fish myoglobins: a cysteine-specific tertiary allosteric effect. PLoS One 2014; 9:e97012. [PMID: 24879536 PMCID: PMC4039430 DOI: 10.1371/journal.pone.0097012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/15/2014] [Indexed: 11/18/2022] Open
Abstract
The discovery that cysteine (Cys) S-nitrosation of trout myoglobin (Mb) increases heme O2 affinity has revealed a novel allosteric effect that may promote hypoxia-induced nitric oxide (NO) delivery in the trout heart and improve myocardial efficiency. To better understand this allosteric effect, we investigated the functional effects and structural origin of S-nitrosation in selected fish Mbs differing by content and position of reactive cysteine (Cys) residues. The Mbs from the Atlantic salmon and the yellowfin tuna, containing two and one reactive Cys, respectively, were S-nitrosated in vitro by reaction with Cys-NO to generate Mb-SNO to a similar yield (∼0.50 SH/heme), suggesting reaction at a specific Cys residue. As found for trout, salmon Mb showed a low O2 affinity (P50 = 2.7 torr) that was increased by S-nitrosation (P50 = 1.7 torr), whereas in tuna Mb, O2 affinity (P50 = 0.9 torr) was independent of S-nitrosation. O2 dissociation rates (koff) of trout and salmon Mbs were not altered when Cys were in the SNO or N-ethylmaleimide (NEM) forms, suggesting that S-nitrosation should affect O2 affinity by raising the O2 association rate (kon). Taken together, these results indicate that O2-linked S-nitrosation may occur specifically at Cys107, present in salmon and trout Mb but not in tuna Mb, and that it may relieve protein constraints that limit O2 entry to the heme pocket of the unmodified Mb by a yet unknown mechanism. UV-Vis and resonance Raman spectra of the NEM-derivative of trout Mb (functionally equivalent to Mb-SNO and not photolabile) were identical to those of the unmodified Mb, indicating that S-nitrosation does not affect the extent or nature of heme-ligand stabilization of the fully ligated protein. The importance of S-nitrosation of Mb in vivo is confirmed by the observation that Mb-SNO is present in trout hearts and that its level can be significantly reduced by anoxic conditions.
Collapse
Affiliation(s)
- Signe Helbo
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Andrew J. Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States of America
| | - Amna Jamil
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States of America
| | - Barry D. Howes
- Department of Chemistry “Ugo Schiff”, University of Firenze, Sesto Fiorentino (FI), Italy
| | - Giulietta Smulevich
- Department of Chemistry “Ugo Schiff”, University of Firenze, Sesto Fiorentino (FI), Italy
| | - Angela Fago
- Department of Bioscience, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
8
|
Zhao J, de Serrano V, Franzen S. A model for the flexibility of the distal histidine in dehaloperoxidase-hemoglobin A based on X-ray crystal structures of the carbon monoxide adduct. Biochemistry 2014; 53:2474-82. [PMID: 24670063 PMCID: PMC4203366 DOI: 10.1021/bi5001905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Dehaloperoxidase
hemoglobin A (DHP A) is a multifunctional hemoglobin
that appears to have evolved oxidative pathways for the degradation
of xenobiotics as a protective function that complements the oxygen
transport function. DHP A possesses at least two internal binding
sites, one for substrates and one for inhibitors, which include various
halogenated phenols and indoles. Herein, we report the X-ray crystallographic
structure of the carbonmonoxy complex (DHPCO). Unlike other DHP structures
with 6-coordinated heme, the conformation of the distal histidine
(H55) in DHPCO is primarily external or solvent exposed, despite the
fact that the heme Fe is 6-coordinated. As observed generally in globins,
DHP exhibits two distal histidine conformations (one internal and
one external). In previous structural studies, we have shown that
the distribution of H55 conformations is weighted strongly toward
the external position when the DHP heme Fe is 5-coordinated. The large
population of the external conformation of the distal histidine observed
in DHPCO crystals at pH 6.0 indicates that some structural factor
in DHP must account for the difference from other globins, which exhibit
a significant external conformation only when pH < 4.5. While the
original hypothesis suggested that interaction with a heme-Fe-bound
ligand was the determinant of H55 conformation, the current study
forces a refinement of that hypothesis. The external or open conformation
of H55 is observed to have interactions with two propionate groups
in heme, at distances of 3.82 and 2.73 Å, respectively. A relatively
weak hydrogen bonding interaction between H55 and CO, combined with
strong interactions with heme propionate (position 6), is hypothesized
to strengthen the external conformation of H55. Density function theory
(DFT) calculations were conducted to test whether there is a weaker
hydrogen bond interaction between H55 and heme bonded CO or O2. Molecular dynamics simulations were conducted to examine
how the tautomeric forms of H55 affect the dynamic motions of the
distal histidine that govern the switching between open and closed
conformations. The calculations support the modified hypothesis suggesting
a competition between the strength of interactions with heme ligand
and the heme propionates as the factors that determine the conformation
of the distal histidine.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
9
|
Insights into the distal heme pocket of H-NOX using fluoride as a probe for H-bonding interactions. J Inorg Biochem 2013; 126:91-5. [DOI: 10.1016/j.jinorgbio.2013.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 11/19/2022]
|
10
|
Helbo S, Weber RE, Fago A. Expression patterns and adaptive functional diversity of vertebrate myoglobins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1832-9. [PMID: 23388387 DOI: 10.1016/j.bbapap.2013.01.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/23/2013] [Accepted: 01/26/2013] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed a new round of research on one of the most studied proteins - myoglobin (Mb), the oxygen (O2) carrier of skeletal and heart muscle. Two major discoveries have stimulated research in this field: 1) that Mb has additional protecting functions, such as the regulation of in vivo levels of the signaling molecule nitric oxide (NO) by scavenging and generating NO during normoxia and hypoxia, respectively; and 2) that Mb in vertebrates (particularly fish) is expressed as tissue-specific isoforms in other tissues than heart and skeletal muscle, such as vessel endothelium, liver and brain, as found in cyprinid fish. Furthermore, Mb has also been found to protect against oxidative stress after hypoxia and reoxygenation and to undergo allosteric, O2-linked S-nitrosation, as in rainbow trout. Overall, the emerging evidence, particularly from fish species, indicates that Mb fulfills a broader array of physiological functions in a wider range of different tissues than hitherto appreciated. This new knowledge helps to better understand how variations in Mb structure and function may correlate with differences in animals' lifestyles and hypoxia-tolerance. This review integrates old and new results on Mb expression patterns and functional properties amongst vertebrates and discusses how these may relate to adaptive variations in different species. This article is part of a special issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Signe Helbo
- Department of Bioscience, Aarhus University, Denmark.
| | | | | |
Collapse
|