1
|
Kelley EH, Osipiuk J, Korbas M, Endres M, Bland A, Ehrman V, Joachimiak A, Olsen KW, Becker DP. N α -acetyl-L-ornithine deacetylase from Escherichia coli and a ninhydrin-based assay to enable inhibitor identification. Front Chem 2024; 12:1415644. [PMID: 39055043 PMCID: PMC11270798 DOI: 10.3389/fchem.2024.1415644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 07/27/2024] Open
Abstract
Bacteria are becoming increasingly resistant to antibiotics, therefore there is an urgent need for new classes of antibiotics to fight antibiotic resistance. Mammals do not express N ɑ -acetyl-L-ornithine deacetylase (ArgE), an enzyme that is critical for bacterial survival and growth, thus ArgE represents a promising new antibiotic drug target, as inhibitors would not suffer from mechanism-based toxicity. A new ninhydrin-based assay was designed and validated that included the synthesis of the substrate analog N 5, N 5-di-methyl N α-acetyl-L-ornithine (kcat/Km = 7.32 ± 0.94 × 104 M-1s-1). This new assay enabled the screening of potential inhibitors that absorb in the UV region, and thus is superior to the established 214 nm assay. Using this new ninhydrin-based assay, captopril was confirmed as an ArgE inhibitor (IC50 = 58.7 μM; Ki = 37.1 ± 0.85 μM), and a number of phenylboronic acid derivatives were identified as inhibitors, including 4-(diethylamino)phenylboronic acid (IC50 = 50.1 μM). Selected inhibitors were also tested in a thermal shift assay with ArgE using SYPRO Orange dye against Escherichia coli ArgE to observe the stability of the enzyme in the presence of inhibitors (captopril Ki = 35.9 ± 5.1 μM). The active site structure of di-Zn EcArgE was confirmed using X-ray absorption spectroscopy, and we reported two X-ray crystal structures of E. coli ArgE. In summary, we describe the development of a new ninhydrin-based assay for ArgE, the identification of captopril and phenylboronic acids as ArgE inhibitors, thermal shift studies with ArgE + captopril, and the first two published crystal structures of ArgE (mono-Zn and di-Zn).
Collapse
Affiliation(s)
- Emma H. Kelley
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Jerzy Osipiuk
- Structural Biology Center, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- eBERlight, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
| | | | - Michael Endres
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
| | - Alayna Bland
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Victoria Ehrman
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Andrzej Joachimiak
- Structural Biology Center, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Kenneth W. Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Wang W, Tang W, Wang X, Liu W, Zhu F. Genes from Carboxypeptidase A, glutathione S-transferase, and cytochrome b families were found involved in lead transport in insect Musca domestica. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113113. [PMID: 34968798 DOI: 10.1016/j.ecoenv.2021.113113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Lead (Pb) is a typical toxic contamination source all over the world. In this research, larvae of the housefly (Musca domestica) were fed a Pb-contaminated diet at different Pb doses of 0, 20 and 5000 mg/kg. RNA sequencing was used to identify genes that were differentially expressed in relation to lead transport or detoxification. RNA interference (RNAi) was carried on 12 candidate genes. The results showed that three luminal pH regions of mid-gut were at pH values of 6.33, 3.10, and 7.80. With increasing Pb concentration, the pH of the middle mid-gut decreased by one unit. The expression levels of carboxypeptidase A (CPA1), glutathione S-transferase (GST), and cytochrome b (Cyt b) were linked to Pb treatments, particularly high Pb concentration of 5000 mg/kg. RNAi-mediated down expression of CPA1, GST2, and CYTb-c1 resulted in low Pb accumulation in the larvae of 5000 mg/kg Pb group. These proteins played key roles in Pb transport and detoxification in M. domestica larvae.
Collapse
Affiliation(s)
- Wanqiang Wang
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenzheng Tang
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wen Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fen Zhu
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Terrazas-López M, Lobo-Galo N, Aguirre-Reyes LG, Cuen-Andrade JL, de la Rosa LA, Alvarez-Parrilla E, Martínez-Martínez A, Díaz-Sánchez ÁG. Interaction of N-succinyl-diaminopimelate desuccinylase with flavonoids. Biochimie 2020; 177:198-212. [DOI: 10.1016/j.biochi.2020.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 12/27/2022]
|
4
|
Dutta D, Mishra S. Active Site Dynamics in Substrate Hydrolysis Catalyzed by DapE Enzyme and Its Mutants from Hybrid QM/MM-Molecular Dynamics Simulation. J Phys Chem B 2017; 121:7075-7085. [DOI: 10.1021/acs.jpcb.7b04431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Schulz A, Stöveken N, Binzen IM, Hoffmann T, Heider J, Bremer E. Feeding on compatible solutes: A substrate-induced pathway for uptake and catabolism of ectoines and its genetic control by EnuR. Environ Microbiol 2016; 19:926-946. [PMID: 27318028 DOI: 10.1111/1462-2920.13414] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/19/2016] [Indexed: 01/19/2023]
Abstract
Ectoine and 5-hydroxyectoine are widely synthesized microbial osmostress protectants. They are also versatile nutrients but their catabolism and the genetic regulation of the corresponding genes are incompletely understood. Using the marine bacterium Ruegeria pomeroyi DSS-3, we investigated the utilization of ectoines and propose a seven steps comprising catabolic route that entails an initial conversion of 5-hydroxyectoine to ectoine, the opening of the ectoine ring, and the subsequent degradation of this intermediate to l-aspartate. The catabolic genes are co-transcribed with three genes encoding a 5-hydroxyectoine/ectoine-specific TRAP transporter. A chromosomal deletion of this entire gene cluster abolishes the utilization of ectoines as carbon and nitrogen sources. The presence of ectoines in the growth medium triggers enhanced expression of the importer and catabolic operon, a process dependent on a substrate-inducible promoter that precedes this gene cluster. EnuR, a member of the MocR/GabR-type transcriptional regulators, controls the activity of this promoter and functions as a repressor. EnuR contains a covalently bound pyridoxal-5'-phosphate, and we suggest that this co-factor is critical for the substrate-mediated induction of the 5-hydroxyectoine/ectoine import and catabolic genes. Bioinformatics showed that ectoine consumers are restricted to the Proteobacteria and that EnuR is likely a central regulator for most ectoine/5-hydroxyectoine catabolic genes.
Collapse
Affiliation(s)
- Annina Schulz
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany
| | - Nadine Stöveken
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany.,Philipps-University Marburg, LOEWE-Center for Synthetic Microbiology, Hans-Meerwein Str. 6, Marburg, D-35043, Germany
| | - Ina M Binzen
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany
| | - Tamara Hoffmann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany
| | - Johann Heider
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany.,Philipps-University Marburg, LOEWE-Center for Synthetic Microbiology, Hans-Meerwein Str. 6, Marburg, D-35043, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany.,Philipps-University Marburg, LOEWE-Center for Synthetic Microbiology, Hans-Meerwein Str. 6, Marburg, D-35043, Germany
| |
Collapse
|
6
|
Varga G, Timár Z, Schemhl H, Csendes Z, Bajnóczi ÉG, Carlson S, Sipos P, Pálinkó I. Bioinspired covalently grafted Cu(II)–C protected amino acid complexes: selective catalysts in the epoxidation of cyclohexene. REACTION KINETICS MECHANISMS AND CATALYSIS 2015. [DOI: 10.1007/s11144-014-0796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Csendes Z, Varga G, Nagy N, Bajnóczi É, Sipiczki M, Carlson S, Canton S, Metzinger A, Galbács G, Sipos P, Pálinkó I. Synthesis, structural characterisation, and catalytic activity of Mn(II)–protected amino acid complexes covalently immobilised on chloropropylated silica gel. Catal Today 2015. [DOI: 10.1016/j.cattod.2013.11.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
McGregor WC, Gillner DM, Swierczek SI, Liu D, Holz RC. Identification of a Histidine Metal Ligand in the argE-Encoded N-Acetyl-L-Ornithine Deacetylase from Escherichia coli. SPRINGERPLUS 2013; 2:482. [PMID: 25674394 PMCID: PMC4320195 DOI: 10.1186/2193-1801-2-482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/28/2013] [Indexed: 11/15/2022]
Abstract
The H355A, H355K, H80A, and H80K mutant enzymes of the argE-encoded N-acetyl-L-ornithine deacetylase (ArgE) from Escherichia coli were prepared, however, only the H355A enzyme was found to be soluble. Kinetic analysis of the Co(II)-loaded H355A exhibited activity levels that were 380-fold less than Co(II)-loaded WT ArgE. Electronic absorption spectra of Co(II)-loaded H355A-ArgE indicate that the bound Co(II) ion resides in a distorted, five-coordinate environment and Isothermal Titration Calorimetry (ITC) data for Zn(II) binding to the H355A enzyme provided a dissociation constant (Kd) of 39 μM. A three-dimensional homology model of ArgE was generated using the X-ray crystal structure of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae confirming the assignment of H355 as well as H80 as active site ligands.
Collapse
Affiliation(s)
- Wade C McGregor
- The Department of Applied Sciences and Mathematics, College of Technology and Innovation, Arizona State University, Mesa, AZ 85212 USA
| | - Danuta M Gillner
- Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60626 USA ; The Department of Chemistry, Silesian University of Technology, Gliwice, 44-100 Poland
| | - Sabina I Swierczek
- Contribution from the Department of Chemistry, Marquette University, Milwaukee, WI 53233 USA
| | - Dali Liu
- Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60626 USA
| | - Richard C Holz
- Contribution from the Department of Chemistry, Marquette University, Milwaukee, WI 53233 USA ; Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60626 USA
| |
Collapse
|