1
|
Kostić M, Marjanović J, Divac V. Organoselenium transition metal complexes as promising candidates in medicine area. J Biol Inorg Chem 2024; 29:555-571. [PMID: 39123093 DOI: 10.1007/s00775-024-02072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The medicinal properties of transition metal complexes are greatly influenced by the nature and physico-chemical features of the ligand present in the complex structure. Due to the unique biological properties of the organoselenium compounds reflected in the variety of pharmacological activities (such as antioxidative, antiviral, antimicrobial and anticancer), the last years have brought increased interest for their use as a ligands compounds in the design and syntheses of range of transition metal-based coordination compounds that have been explored as antitumor and antimicrobial agents. Our aim in this review is to provide the overview of an recent development of the transition metal complexes bearing organoselenium ligands in the structure that could be promising choice for the treatment of various diseases, particularly cancer and infective diseases. For this purpose, the complexes of Co, Ni, Cu, Zn, Ru, Pd, Pt, Au and Sn as the most explored examples will be included and discussed.
Collapse
Affiliation(s)
- Marina Kostić
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia.
| | - Jovana Marjanović
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Vera Divac
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| |
Collapse
|
2
|
Novel organoselenium-based N-mealanilic acid and its zinc (II) chelate: Catalytic, anticancer, antimicrobial, antioxidant, and computational assessments. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Synthesis, Structure and Biological Evaluations of Zn(II) Pincer Complexes Based on S-Triazine Type Chelator. Molecules 2022; 27:molecules27113625. [PMID: 35684561 PMCID: PMC9182043 DOI: 10.3390/molecules27113625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
2,4-bis (3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (BPMT) pincer ligand was used to synthesize the new [Zn(BPMT)(NCS)2] (1) and [Zn(BPMT)(Br)2] (2) complexes by a reaction with Zn(NO3)2.6H2O in the presence of either KSCN or KBr, respectively. The structure of complex 1 has been exclusively confirmed using single crystal X-ray diffraction. In this neutral heteroleptic complex, the BPMT is a pincer chelate coordinating the Zn(II) ion via three interactions with the two pyrazole moieties and the s-triazine core. Hence, BPMT is a tridentate NNN-chelate. The coordination environment of Zn(II) is completed by two strong interactions with two terminal SCN− ions via the N-atom. Hence, the Zn(II) is penta-coordinated with a distorted square pyramidal coordination geometry. Hirshfeld analysis indicated the predominance of H…H, H…C and N…H intermolecular interactions. Additionally, the S…H, S…C and S…N contacts are the most significant. The free ligand has no or weak antimicrobial, antioxidant and anticancer activities while the studied Zn(II) complexes showed interesting biological activity. Complex 1 has excellent antibacterial activity against B. subtilis (2.4 μg/mL) and P. vulgaris (4.8 μg/mL) compared to Gentamycin (4.8 μg/mL). Additionally, complex 1 (78.09 ± 4.23 µg/mL) has better antioxidant activity than 2 (365.60 ± 20.89 µg/mL). In addition, complex 1 (43.86 ± 3.12 µg/mL) and 2 (30.23 ± 1.26 µg/mL) have 8 and 12 times the anticancer activity of the free BPMT ligand (372.79 ± 13.64 µg/mL).
Collapse
|
4
|
Sohrabi M, Binaeizadeh MR, Iraji A, Larijani B, Saeedi M, Mahdavi M. A review on α-glucosidase inhibitory activity of first row transition metal complexes: a futuristic strategy for treatment of type 2 diabetes. RSC Adv 2022; 12:12011-12052. [PMID: 35481063 PMCID: PMC9020348 DOI: 10.1039/d2ra00067a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by high blood glucose levels and has emerged as a controversial public health issue worldwide. The increasing number of patients with T2DM on one hand, and serious long-term complications of the disease such as obesity, neuropathy, and vascular disorders on the other hand, have induced a huge economic impact on society globally. In this regard, inhibition of α-glucosidase, the enzyme responsible for the hydrolysis of carbohydrates in the body has been the main therapeutic approach to the treatment of T2DM. As α-glucosidase inhibitors (α-GIs) have occupied a special position in the current research and prescription drugs are generally α-GIs, researchers have been encouraged to design and synthesize novel and efficient inhibitors. Previously, the presence of a sugar moiety seemed to be crucial for designing α-GIs since they can attach to the carbohydrate binding site of the enzyme mimicking the structure of disaccharides or oligosaccharides. However, inhibitors lacking glycosyl structures have also shown potent inhibitory activity and development of non-sugar based inhibitors is accelerating. In this respect, in vitro anti-α-glucosidase activity of metal complexes has attracted lots of attention and this paper has reviewed the inhibitory activity of first-row transition metal complexes toward α-glucosidase and discussed their probable mechanisms of action.
Collapse
Affiliation(s)
- Marzieh Sohrabi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | | | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences Shiraz Iran
- Central Research Laboratory, Shiraz University of Medical Sciences Shiraz Iran
- Liosa Pharmed Parseh Company Shiraz Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
5
|
Darshani T, Weldeghiorghis TK, Fronczek FR, Perera T. The first structurally characterized sulfonamide derivatized Zn(II)-dipicolylamine complexes with eight membered chelate rings. Synthetic and structural studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Soliman SM, Elsilk SE, El-Faham A. Synthesis, structure and biological activity of zinc(II) pincer complexes with 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Adjuvant Therapies in Diabetic Retinopathy as an Early Approach to Delay Its Progression: The Importance of Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3096470. [PMID: 32256949 PMCID: PMC7086452 DOI: 10.1155/2020/3096470] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a progressive disease induced by a sustained state of chronic hyperglycemia that can lead to several complications targeting highly metabolic cells. Diabetic retinopathy (DR) is a multifactorial microvascular complication of DM, with high prevalence, which can ultimately lead to visual impairment. The genesis of DR involves a complex variety of pathways such as oxidative stress, inflammation, apoptosis, neurodegeneration, angiogenesis, lipid peroxidation, and endoplasmic reticulum (ER) stress, each possessing potential therapeutic biomarkers. A specific treatment has yet to be developed for early stages of DR since no management is given other than glycemic control until the proliferative stage develops, offering a poor visual prognosis to the patient. In this narrative review article, we evaluate different dietary regimens, such as the Mediterranean diet, Dietary Pattern to Stop Hypertension (DASH) and their functional foods, and low-calorie diets (LCDs). Nutraceuticals have also been assessed in DR on account of their antioxidant, anti-inflammatory, and antiangiogenic properties, which may have an important impact on the physiopathology of DR. These nutraceuticals have shown to lower reactive oxygen species (ROS), important inflammatory factors, cytokines, and endothelial damage biomarkers either as monotherapies or combined therapies or concomitantly with established diabetes management or nonconventional adjuvant drugs like topical nonsteroidal anti-inflammatory drugs (NSAIDs).
Collapse
|
8
|
A comprehensive review on zinc(II) complexes as anti-diabetic agents: The advances, scientific gaps and prospects. Pharmacol Res 2020; 155:104744. [PMID: 32156651 DOI: 10.1016/j.phrs.2020.104744] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/22/2019] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Zinc has gained notable attention in the development of potent anti-diabetic agents, due to its role in insulin storage and secretion, as well as its reported insulin mimetic properties. Consequently, zinc(II) has been complexed with numerous organic ligands as an adjuvant to develop anti-diabetic agents with improved and/or broader scope of pharmacological properties. This review focuses on the research advances thus far to identify the major scientific gaps and prospects. Peer-reviewed published data on the anti-diabetic effects of zinc(II) complexes were sourced from different scientific search engines, including, but not limited to "PubMed", "Google Scholar", "Scopus" and ScienceDirect to identify potent anti-diabetic zinc(II) complexes. The complexes were subcategorized according to their precursor ligands. A critical analysis of the outcomes from published studies shows promising leads, with Zn(II) complexes having a "tri-facet" mode of exerting pharmacological effects. However, the promising leads have been flawed by some major scientific gaps. While zinc(II) complexes of synthetic ligands with little or no anti-diabetic pharmacological history remain the most studied (about 72 %), their toxicity profile was not reported, which raises safety concerns for clinical relevance. The zinc(II) complexes of plant polyphenols; natural ligands, such as maltol and hinokitiol; and supplements, such as ascorbic acid (a natural antioxidant), l-threonine and l-carnitine, showed promising insulin mimetic and glycemic control properties but remain understudied and lack clinical validation, in spite of their minimal safety concerns and health benefits. A paradigm shift toward probing (including clinical studies) supplements, plant polyphenol and natural ligands as anti-diabetic zinc(II) complex is, therefore, recommended. Also, promising anti-diabetic Zn(II) complexes of synthetic ligands should undergo critical toxicity evaluation to address possible safety concerns.
Collapse
|
9
|
Naito Y, Yamamoto H, Yoshikawa Y, Yasui H. In Vivo Effect of Bis(Maltolato)Zinc(II) Complex on Akt Phosphorylation in Adipose Tissues of Mice. Biol Trace Elem Res 2019; 192:206-213. [PMID: 30706355 DOI: 10.1007/s12011-019-1648-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
The risk of serious complication gradually increases as diabetes mellitus (DM) progresses. Thus, strategies for the prevention and delay of symptom progression are urgently needed. Previously, we synthesized zinc (Zn) complexes estimated to have a high bioavailability and evaluated their insulin-like anti-DM effects. However, in vivo studies of the effects of Zn compounds on the insulin signaling pathway and the molecular mechanisms underlying the anti-diabetic activities of Zn complexes were unresolved. In this study, we evaluated the effect of bis(maltolato)zinc(II) complex [Zn(mal)2] on male ICR mice (6-week-old) that received intraperitoneal (i.p.) injection of [Zn(mal)2]. The liver, skeletal muscle, and adipose tissues were collected from mice under anesthesia with isoflurane 40 or 90 min after i.p. injection. The [Zn(mal)2]-treatment did not affect Akt phosphorylation in the liver or skeletal muscle. In contrast, in adipose tissues, [Zn(mal)2]-treatment showed increased Akt phosphorylation at 40 min and 90 min after injection (p < 0.01 vs. control). The Zn distribution in the organs was evaluated using inductively coupled plasma mass spectrometry. Notably, high Zn accumulation was observed in the adipose tissue (4.5 ± 2.7 μg Zn/g wet weight), and this value was about six times higher than in the control mice (p < 0.01). Based on the observed organ-specific distribution of [Zn(mal)2], we suggest that it does not directly promote glycogen synthesis in the liver but may impact the insulin signaling pathway in adipose tissues. Our results may contribute to the clinical use of zinc compounds for the treatment of diabetes.
Collapse
Affiliation(s)
- Yuki Naito
- Department of Analytical & Bioinorganic Chemistry, Division of Analytical & Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Hiroaki Yamamoto
- Department of Analytical & Bioinorganic Chemistry, Division of Analytical & Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yutaka Yoshikawa
- Department of Analytical & Bioinorganic Chemistry, Division of Analytical & Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4-7-2 Minatojima-Nakamachi, Chuo-ku, Kobe, 650-0046, Japan
| | - Hiroyuki Yasui
- Department of Analytical & Bioinorganic Chemistry, Division of Analytical & Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| |
Collapse
|
10
|
Cecilia OM, José Alberto CG, José NP, Ernesto Germán CM, Ana Karen LC, Luis Miguel RP, Ricardo Raúl RR, Adolfo Daniel RC. Oxidative Stress as the Main Target in Diabetic Retinopathy Pathophysiology. J Diabetes Res 2019; 2019:8562408. [PMID: 31511825 PMCID: PMC6710812 DOI: 10.1155/2019/8562408] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/17/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus (DM) causing vision impairment even at young ages. There are numerous mechanisms involved in its development such as inflammation and cellular degeneration leading to endothelial and neural damage. These mechanisms are interlinked thus worsening the diabetic retinopathy outcome. In this review, we propose oxidative stress as the focus point of this complication onset.
Collapse
Affiliation(s)
- Olvera-Montaño Cecilia
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | - Castellanos-González José Alberto
- Department of Ophthalmology, Specialties Hospital of the National Occidental Medical Center, Mexican Institute of Social Security, Mexico
| | - Navarro-Partida José
- Tecnológico de Monterrey Institute, School of Medicine and Health Sciences, Campus Guadalajara, Mexico
| | - Cardona-Muñoz Ernesto Germán
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | - López-Contreras Ana Karen
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | | | - Robles-Rivera Ricardo Raúl
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | - Rodríguez-Carrizalez Adolfo Daniel
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| |
Collapse
|
11
|
Fujie T, Yamamoto T, Yamamoto C, Kaji T. Bis(1,4-dihydro-2-methyl-1-phenyl-4-thioxo-3-pyridiolato)zinc(II) exhibits strong cytotoxicity and a high intracellular accumulation in cultured vascular endothelial cells. J Toxicol Sci 2019; 44:113-120. [PMID: 30726811 DOI: 10.2131/jts.44.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although cytotoxicity of inorganic metals has been well investigated, little is known about the cytotoxicity of organic-inorganic hybrid molecules. The cytotoxicity of zinc complexes was evaluated using a culture system of vascular endothelial cells. We found that bis(1,4-dihydro-2-methyl-1-phenyl-4-thioxo-3-pyridiolato)zinc(II), termed Zn-06, exhibited strong cytotoxicity in vascular smooth muscle cells, epithelial cells, fibroblastic cells, and vascular endothelial cells. This study showed that the tetracoordinate structure of the Zn-06 molecule, which contains two sulfur and two oxygen atoms attached to the zinc atom, facilitated its accumulation within vascular endothelial cells whereas the whole structure of the zinc complex was involved in its cytotoxicity in the cells. The present data suggest that a part of the structure, especially the binding site of the metal atom, was responsible for accumulation of zinc complexes, and the entire structure is responsible for their cytotoxicity in vascular endothelial cells.
Collapse
Affiliation(s)
- Tomoya Fujie
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University
| | - Taro Yamamoto
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University
| | - Chika Yamamoto
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
12
|
Nishiguchi T, Yoshikawa Y, Yasui H. Investigating the target organs of novel anti-diabetic zinc complexes with organo‑selenium ligands. J Inorg Biochem 2018; 185:103-112. [DOI: 10.1016/j.jinorgbio.2018.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 04/25/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
|
13
|
Synthesis, Characterization, and BSA-Binding Studies of Novel Sulfonated Zinc-Triazine Complexes. Bioinorg Chem Appl 2018; 2018:7563820. [PMID: 29670646 PMCID: PMC5835287 DOI: 10.1155/2018/7563820] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022] Open
Abstract
Four Zn(II) complexes containing a pyridyl triazine core (L1 = 3-(2-pyridyl)-5,6-di(2-furyl)-1,2,4-triazine-5′,5″-disulfonic acid disodium salt and L2 = 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-4′,4″-disulfonic acid sodium salt) were synthesized, and their chemical formulas were finalized as [Zn(L1)Cl2]·5H2O·ZnCl2 (1), [Zn(L1)2Cl2]·4H2O·2CH3OH (2), [Zn(L2)Cl2]·3H2O·CH3OH (3), and [Zn(L2)2Cl2] (4). The synthesized complexes are water soluble, making them good candidates for biological applications. All four complexes have been characterized by elemental analysis and 1H NMR, IR, and UV-Vis spectroscopy. The IR stretching frequency of N=N and C=N bonds of complexes 1–4 have shifted to lower frequencies in comparison with free ligands, and a bathochromic shift was observed in UV-Vis spectra of all four complexes. The binding studies of ligands and complexes 1–4 with bovine serum albumin (BSA) resulted binding constants (Kb) of 3.09 × 104 M−1, 12.30 × 104 M−1, and 16.84 × 104 M−1 for ferene, complex 1, and complex 2, respectively, indicating potent serum distribution via albumins.
Collapse
|
14
|
Koleša-Dobravc T, Maejima K, Yoshikawa Y, Meden A, Yasui H, Perdih F. Bis(picolinato) complexes of vanadium and zinc as potential antidiabetic agents: synthesis, structural elucidation and in vitro insulin-mimetic activity study. NEW J CHEM 2018. [DOI: 10.1039/c7nj04189f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The studied vanadium(iv), vanadium(v) and zinc(ii) complexes show inhibition of the free fatty acid release from rat adipocytes.
Collapse
Affiliation(s)
- Tanja Koleša-Dobravc
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- Večna pot 113
- SI-1000 Ljubljana
- Slovenia
| | - Keiichi Maejima
- Department of Analytical and Bioinorganic Chemistry
- Division of Analytical and Physical Chemistry
- Kyoto Pharmaceutical University
- Kyoto 607-8414
- Japan
| | - Yutaka Yoshikawa
- Department of Health, Sports, and Nutrition
- Faculty of Health and Welfare
- Kobe Women's University
- Kobe
- Japan
| | - Anton Meden
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- Večna pot 113
- SI-1000 Ljubljana
- Slovenia
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry
- Division of Analytical and Physical Chemistry
- Kyoto Pharmaceutical University
- Kyoto 607-8414
- Japan
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- Večna pot 113
- SI-1000 Ljubljana
- Slovenia
| |
Collapse
|
15
|
Anti-Diabetic Effect of Organo-Chalcogen (Sulfur and Selenium) Zinc Complexes with Hydroxy-Pyrone Derivatives on Leptin-Deficient Type 2 Diabetes Model ob/ob Mice. Int J Mol Sci 2017; 18:ijms18122647. [PMID: 29215553 PMCID: PMC5751249 DOI: 10.3390/ijms18122647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the anti-diabetic effects of zinc (Zn) complex, we synthesized several Zn complexes and evaluated their effects using the KKAy type 2 diabetes mouse model. Recently, we demonstrated that organo-chalcogen (sulfur and selenium) Zn complexes elicit strong anti-diabetic effects. In this study, we treated leptin-deficient ob/ob mice with organo-chalcogen Zn complexes, and evaluated the resulting anti-diabetic effects in a mouse model of diabetes arising from pathogenic mechanisms different from those in KKAy mice. C57BL/6J ob/ob mice orally received either bis(3-hydroxy-2-methyl-4(H)-pyran-4-thiono)Zn, [Zn(hmpt)2] or bis(3-hydroxy-2-methyl-4(H)-pyran-4-seleno)Zn, [Zn(hmps)2], daily for 28 days. Both Zn complexes elicited potent blood glucose-lowering effects and improved HbA1c values. Moreover, glucose intolerance improved as evidenced by the oral glucose tolerance test, and fasting plasma insulin levels decreased in both types of Zn complex-treated mice. Zn concentrations in the liver and pancreas of [Zn(hmpt)2]-treated mice and in the pancreas of [Zn(hmps)2]-treated mice were increased, respectively. The results suggest that the present Zn complexes mainly exerted an anti-diabetic effect in the liver or pancreas. This study is the first to demonstrate that potent Zn complexes elicit anti-diabetic effects in not only KKAy but also ob/ob mice via a normalizing effect on insulin secretion and fasting blood glucose levels.
Collapse
|
16
|
Yadav MK, Maurya AK, Rajput G, Manar KK, Vinayak M, Drew MGB, Singh N. Synthesis, characterization, DNA binding and cleavage activity of homoleptic zinc(II) β-oxodithioester chelate complexes. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1377835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Manoj Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Akhilendra Kumar Maurya
- Biochemistry & Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Gunjan Rajput
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar Manar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Manjula Vinayak
- Biochemistry & Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | | | - Nanhai Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
17
|
Munekane M, Ueda M, Motomura S, Kamino S, Haba H, Yoshikawa Y, Yasui H, Enomoto S. Investigation of Biodistribution and Speciation Changes of Orally Administered Dual Radiolabeled Complex, Bis(5-chloro-7-[ 131I]iodo-8-quinolinolato)[ 65Zn]zinc. Biol Pharm Bull 2017; 40:510-515. [PMID: 28381805 DOI: 10.1248/bpb.b16-00945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many zinc (Zn) complexes have been developed as promising oral antidiabetic agents. In vitro assays using adipocytes have demonstrated that the coordination structures of Zn complexes affect the uptake of Zn into cells and have insulinomimetic activities, for which moderate stability of Zn complexes is vital. The complexation of Zn plays a major role improving its bioavailability. However, investigation of the speciation changes of Zn complexes after oral administration is lacking. A dual radiolabeling approach was applied in order to investigate the speciation of bis(5-chloro-7-iodo-8-quinolinolato)zinc complex [Zn(Cq)2], which exhibits the antidiabetic activity in diabetic mice. In the present study, 65Zn- and 131I-labeled [Zn(Cq)2] were synthesized, and their biodistribution were analyzed after an oral administration using both invasive conventional assays and noninvasive gamma-ray emission imaging (GREI), a novel nuclear medicine imaging modality that enables analysis of multiple radionuclides simultaneously. The GREI experiments visualized the behavior of 65Zn and [131I]Cq from the stomach to large intestine and through the small intestine; most of the administered Zn was transported together with clioquinol (5-chloro-7-iodo-8-quinolinol) (Cq). Higher accumulation of 65Zn for [Zn(Cq)2] than ZnCl2 suggests that the Zn associated with Cq was highly absorbed by the intestinal tract. In particular, the molar ratio of administered iodine to Zn decreased during the distribution processes, indicating the dissociation of most [Zn(Cq)2] complexes. In conclusion, the present study successfully evaluated the speciation changes of orally administered [Zn(Cq)2] using the dual radiolabeling method.
Collapse
Affiliation(s)
- Masayuki Munekane
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Naito Y, Yoshikawa Y, Shintani M, Kamoshida S, Kajiwara N, Yasui H. Anti-hyperglycemic Effect of Long-Term Bis(hinokitiolato)zinc Complex ([Zn(hkt) 2]) Ingestion on Insulin Resistance and Pancreatic Islet Cells Protection in Type 2 Diabetic KK-A y Mice. Biol Pharm Bull 2017; 40:318-326. [PMID: 28250273 DOI: 10.1248/bpb.b16-00797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zinc (Zn) is a trace element with anti-diabetes mellitus (anti-DM) effects. Zn complexes exhibit stronger insulin-like activity than Zn ions. Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) was recently reported to be a potent anti-DM candidate. We examined the effects of [Zn(hkt)2] on insulin resistance and pancreatic islet cells through in vivo long-term ingestion studies. In an in vivo study, we performed 4-month long-term [Zn(hkt)2] administration experiments in KK-Ay mice as a type 2 DM animal model. Ingestion of [Zn(hkt)2] resulted in lower blood glucose levels compared with the non-treated KK-Ay mice (control group). Additionally, [Zn(hkt)2] treatment decreased plasma insulin concentration compared with that of the non-treated KK-Ay group. [Zn(hkt)2] treatment resulted in a significant suppression of islet cell enlargement and a significantly decreased number of insulin-positive cells compared with the non-treated KK-Ay control group. The [Zn(hkt)2] treatment group showed the increasing tendency in the amount of Zn levels in peripheral organs; liver, muscle, adipose, and pancreas, compared with the non-treated KK-Ay control group. However, the Zn level in the pancreas of the [Zn(hkt)2] treatment group did not show the significant increase compared with the non-treated KK-Ay control group. This accumulation of Zn in pancreas suggested that [Zn(hkt)2] mainly effects on the peripheral tissue, and [Zn(hkt)2] has the less effect on the pancreas directly. Thus, we concluded that [Zn(hkt)2] exerted the main effect on peripheral organs by ameliorating insulin resistance.
Collapse
Affiliation(s)
- Yuki Naito
- Department of Analytical & Bioinorganic Chemistry, Division of Analytical & Physical Sciences, Kyoto Pharmaceutical University
| | | | | | | | | | | |
Collapse
|
19
|
Asani SC, Umrani RD, Paknikar KM. Differential dose-dependent effects of zinc oxide nanoparticles on oxidative stress-mediated pancreatic β-cell death. Nanomedicine (Lond) 2017; 12:745-759. [PMID: 28322605 DOI: 10.2217/nnm-2016-0426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To study the effects of zinc oxide nanoparticles (ZON) on oxidative stress-mediated pancreatic β-cell death. METHODS Cellular uptake of ZON, effects on antioxidant factors and apoptosis were studied. RESULTS ZON get internalized by endocytosis and increase intracellular zinc ion levels. ZON treatment (30 and 100 μg/ml) to RIN5f cells resulted in cytotoxicity, oxidative stress and apoptosis. ZON (1, 3, 10 μg/ml, subcytotoxic concentrations) increased super oxide dismutase activity and levels of reduced glutathione in RIN5f cells. Furthermore, ZON (subcytotoxic concentrations) protected RIN5f cells from H2O2-induced oxidative stress as evidenced by reduced reactive oxygen species levels; increased super oxide dismutase activity and glutathione levels; and reduced apoptotic death. CONCLUSION ZON (subcytotoxic concentrations) protect pancreatic β cells from oxidative-stress-mediated cell death.
Collapse
Affiliation(s)
- Swati C Asani
- Nanobioscience, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
| | - Rinku D Umrani
- Nanobioscience, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
| | - Kishore M Paknikar
- Nanobioscience, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
| |
Collapse
|
20
|
Saito R, Tamura M, Kawano S, Yoshikawa Y, Kato A, Sasaki K, Yasui H. Synthesis and biological evaluation of 4-hydroxy-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxamides and their zinc(ii) complexes as candidate antidiabetic agents. NEW J CHEM 2017. [DOI: 10.1039/c7nj00970d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five new zinc(ii) complexes with 4-hydroxy-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxamides were synthesized, and four of them exhibited insulin-mimetic activity in vitro.
Collapse
Affiliation(s)
- Ryota Saito
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
- Research Center for Materials with Integrated Properties
| | - Moe Tamura
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
| | - Saya Kawano
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
| | - Yutaka Yoshikawa
- Department of Health
- Sports and Nutrition
- Kobe Women's University
- Kobe 650-0046
- Japan
| | - Akihiro Kato
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
| | - Kaname Sasaki
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry
- Kyoto Pharmaceutical University
- Kyoto 607-8414
- Japan
| |
Collapse
|
21
|
Koleša-Dobravc T, Maejima K, Yoshikawa Y, Meden A, Yasui H, Perdih F. Vanadium and zinc complexes of 5-cyanopicolinate and pyrazine derivatives: synthesis, structural elucidation and in vitro insulino-mimetic activity study. NEW J CHEM 2017. [DOI: 10.1039/c6nj02961b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inhibition of free fatty acid release from rat adipocytes was observed for vanadium(iv), vanadium(v) and zinc(ii) complexes.
Collapse
Affiliation(s)
- Tanja Koleša-Dobravc
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- SI-1000 Ljubljana
- Slovenia
| | - Keiichi Maejima
- Department of Analytical and Bioinorganic Chemistry
- Division of Analytical and Physical Chemistry
- Kyoto Pharmaceutical University
- Kyoto 607-8414
- Japan
| | - Yutaka Yoshikawa
- Department of Health, Sports, and Nutrition
- Faculty of Health and Welfare
- Kobe Women's University
- Kobe
- Japan
| | - Anton Meden
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- SI-1000 Ljubljana
- Slovenia
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry
- Division of Analytical and Physical Chemistry
- Kyoto Pharmaceutical University
- Kyoto 607-8414
- Japan
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- SI-1000 Ljubljana
- Slovenia
| |
Collapse
|
22
|
Frontier of Development for Metallodrugs on the Basis of Metallomic Pharmacology and Medicinal Inorganic Chemistry. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Mohiuddin M, Arbain D, Islam AKMS, Ahmad MS, Ahmad MN. Alpha-Glucosidase Enzyme Biosensor for the Electrochemical Measurement of Antidiabetic Potential of Medicinal Plants. NANOSCALE RESEARCH LETTERS 2016; 11:95. [PMID: 26887579 PMCID: PMC4759339 DOI: 10.1186/s11671-016-1292-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
A biosensor for measuring the antidiabetic potential of medicinal plants was developed by covalent immobilization of α-glucosidase (AG) enzyme onto amine-functionalized multi-walled carbon nanotubes (MWCNTs-NH2). The immobilized enzyme was entrapped in freeze-thawed polyvinyl alcohol (PVA) together with p-nitrophenyl-α-D-glucopyranoside (PNPG) on the screen-printed carbon electrode at low pH to prevent the premature reaction between PNPG and AG enzyme. The enzymatic reaction within the biosensor is inhibited by bioactive compounds in the medicinal plant extracts. The capability of medicinal plants to inhibit the AG enzyme on the electrode correlates to the potential of the medicinal plants to inhibit the production of glucose from the carbohydrate in the human body. Thus, the inhibition indicates the antidiabetic potential of the medicinal plants. The performance of the biosensor was evaluated to measure the antidiabetic potential of three medicinal plants such as Tebengau (Ehretis laevis), Cemumar (Micromelum pubescens), and Kedondong (Spondias dulcis) and acarbose (commercial antidiabetic drug) via cyclic voltammetry, amperometry, and spectrophotometry. The cyclic voltammetry (CV) response for the inhibition of the AG enzyme activity by Tebengau plant extracts showed a linear relation in the range from 0.423-8.29 μA, and the inhibition detection limit was 0.253 μA. The biosensor exhibited good sensitivity (0.422 μA/mg Tebengau plant extracts) and rapid response (22 s). The biosensor retains approximately 82.16 % of its initial activity even after 30 days of storage at 4 °C.
Collapse
Affiliation(s)
- M Mohiuddin
- Production Department, Palash Urea Fertilizer Factory Ltd., Bangladesh Chemical Industries Corporation, Dhaka, Bangladesh.
| | - D Arbain
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - A K M Shafiqul Islam
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
- Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - M S Ahmad
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - M N Ahmad
- Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| |
Collapse
|
24
|
Radovanović L, Rogan J, Poleti D, Milutinović M, Rodić MV. Polymeric zinc complexes with 2,2′-dipyridylamine and different benzenepolycarboxylato ligands: Synthesis, structure, characterization and antimicrobial activity. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Naito Y, Yoshikawa Y, Masuda K, Yasui H. Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) activates Akt/protein kinase B independent of insulin signal transduction. J Biol Inorg Chem 2016; 21:537-48. [PMID: 27251140 DOI: 10.1007/s00775-016-1364-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
Since many Zn complexes have been developed to enhance the insulin-like activity and increase the exposure and residence of Zn in the animal body, these complexes are recognized as one of the new candidates with action mechanism different from existing anti-diabetic drugs. However, the molecular mechanism by which Zn complexes exert an anti-DM effect is unknown. Therefore, we evaluated the activity of Zn complexes, especially related to the phosphorylation of insulin signaling pathway components. We focused on the insulin-like effects of the bis(hinokitiolato)zinc complex, [Zn(hkt)2], using 3T3-L1 adipocytes. [Zn(hkt)2] was taken up by cells and induced Akt phosphorylation in a time-dependent manner. Additionally, it showed inhibitory activity against PTP1B and PTEN, which are major negative regulators of insulin signaling. It did not promote the phosphorylation of IR (insulin receptor)-β or IRS (insulin receptor substrate)-1 by itself, but in combination with insulin, it enhanced the phosphorylation of IRβ. We conclude that [Zn(hkt)2] has effects on the proteins of insulin signaling pathway without insulin receptor mediation, and [Zn(hkt)2] promotes insulin function and shows the anti-DM effects. Thus, [Zn(hkt)2] may be the basis for improved DM treatments.
Collapse
Affiliation(s)
- Yuki Naito
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yutaka Yoshikawa
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4-7-2 Minatojima-nakamachi, Chuo-ku, Kobe, 650-0046, Japan.
| | - Kazufumi Masuda
- Department of Physical Chemistry, Graduate School of Clinical Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
26
|
Sharma N, Kumar S, Maurya IK, Bhasin KK, Verma A, Wangoo N, Bhasin AKK, Mehta SK, Kumar S, Sharma RK. Synthesis, structural analysis, antimicrobial evaluation and synergistic studies of imidazo[1,2-a]pyrimidine chalcogenides. RSC Adv 2016. [DOI: 10.1039/c6ra24020h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis and structural analysis of novel imidazo[1,2-a]pyrimidine chalcogenides exhibiting effective antimicrobial activity and synergistic effects with known antibiotics have been reported.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Sanjeev Kumar
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Indresh K. Maurya
- Department of Microbial Biotechnology
- Panjab University
- Chandigarh
- India
| | - K. K. Bhasin
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Ajay Verma
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Nishima Wangoo
- Department of Applied Sciences
- University Institute of Engineering and Technology (UIET)
- Panjab University
- Chandigarh
- India
| | - Aman K. K. Bhasin
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - S. K. Mehta
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Sangit Kumar
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Rohit K. Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| |
Collapse
|
27
|
Munekane M, Motomura S, Kamino S, Ueda M, Haba H, Yoshikawa Y, Yasui H, Hiromura M, Enomoto S. Visualization of biodistribution of Zn complex with antidiabetic activity using semiconductor Compton camera GREI. Biochem Biophys Rep 2015; 5:211-215. [PMID: 28955826 PMCID: PMC5600336 DOI: 10.1016/j.bbrep.2015.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/24/2015] [Accepted: 12/07/2015] [Indexed: 01/18/2023] Open
Abstract
Various types of zinc (Zn) complexes have been developed as promising antidiabetic agents in recent years. However, the pharmacological action of Zn complex is not elucidated because the biodistribution of the complex in a living organism has not been studied. Nuclear medicine imaging is superior technology for the noninvasive analysis of the temporal distribution of drug candidates in living organisms. Gamma-ray emission imaging (GREI), which was developed by our laboratory as a novel molecular imaging modality, was adopted to visualize various γ-ray–emitting radionuclides that are not detected by conventional imaging techniques such as positron emission tomography and single-photon emission computed tomography. Therefore, we applied GREI to a biodistribution assay of Zn complexes. In the present study, 65Zn was produced in the natCu(p,n) reaction in an azimuthal varying field cyclotron for the GREI experiment. The distribution was then noninvasively visualized using GREI after the intravenous administration of a 65Zn-labeled di(1-oxy-2-pyridinethiolato)zinc [Zn(opt)2], ZnCl2, and di(l-histidinato)zinc. The GREI images were validated using conventional invasive assays. This novel study showed that GREI is a powerful tool for the biodistribution analysis of antidiabetic Zn complexes in a living organism. In addition, accumulation of 65Zn in the cardiac blood pool was observed for [Zn(opt)2], which exhibits potent antidiabetic activity. These results suggest that the slow elimination of Zn from the blood is correlated to the antidiabetic activity of [Zn(opt)2]. GREI was applied to the biodistribution analysis of Zn complexes. The characteristic accumulation of 65Zn for [Zn(opt)2] was successfully visualized. Long retention in the blood may be related in the antidiabetic effect of [Zn(opt)2].
Collapse
Affiliation(s)
- Masayuki Munekane
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Shinji Motomura
- Next-generation Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shinichiro Kamino
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.,Next-generation Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masashi Ueda
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hiromitsu Haba
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yutaka Yoshikawa
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Makoto Hiromura
- Next-generation Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shuichi Enomoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.,Next-generation Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
28
|
Ranasinghe P, Pigera S, Galappatthy P, Katulanda P, Constantine GR. Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. ACTA ACUST UNITED AC 2015; 23:44. [PMID: 26381880 PMCID: PMC4573932 DOI: 10.1186/s40199-015-0127-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023]
Abstract
Background Diabetes mellitus is a leading cause of morbidity and mortality worldwide. Studies have shown that Zinc has numerous beneficial effects in both type-1 and type-2 diabetes. We aim to evaluate the literature on the mechanisms and molecular level effects of Zinc on glycaemic control, β-cell function, pathogenesis of diabetes and its complications. Methods A review of published studies reporting mechanisms of action of Zinc in diabetes was undertaken in PubMed and SciVerse Scopus medical databases using the following search terms in article title, abstract or keywords; (“Zinc” or “Zn”) and (“mechanism” or “mechanism of action” or “action” or “effect” or “pathogenesis” or “pathology” or “physiology” or “metabolism”) and (“diabetes” or “prediabetes” or “sugar” or “glucose” or “insulin”). Results The literature search identified the following number of articles in the two databases; PubMed (n = 1799) and SciVerse Scopus (n = 1879). After removing duplicates the total number of articles included in the present review is 111. Our results show that Zinc plays an important role in β-cell function, insulin action, glucose homeostasis and the pathogenesis of diabetes and its complications. Conclusion Numerous in-vitro and in-vivo studies have shown that Zinc has beneficial effects in both type-1 and type-2 diabetes. However further randomized double-blinded placebo-controlled clinical trials conducted for an adequate duration, are required to establish therapeutic safety in humans. Electronic supplementary material The online version of this article (doi:10.1186/s40199-015-0127-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priyanga Ranasinghe
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Shehani Pigera
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | - Prasad Katulanda
- Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Godwin R Constantine
- Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
29
|
Tan YS, Ooi KK, Ang KP, Akim AM, Cheah YK, Halim SNA, Seng HL, Tiekink ERT. Molecular mechanisms of apoptosis and cell selectivity of zinc dithiocarbamates functionalized with hydroxyethyl substituents. J Inorg Biochem 2015; 150:48-62. [PMID: 26086852 DOI: 10.1016/j.jinorgbio.2015.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
In the solid state each of three binuclear zinc dithiocarbamates bearing hydroxyethyl groups, {Zn[S2CN(R)CH2CH2OH]2}2 for R = iPr (1), CH2CH2OH (2), and Me (3), and an all alkyl species, [Zn(S2CNEt2)2]2 (4), features a centrosymmetric {ZnSCS}2 core with a step topology; both 1 and 3 were isolated as monohydrates. All compounds were broadly cytotoxic, specifically against human cancer cell lines compared with normal cells, with greater potency than cisplatin. Notably, some selectivity were indicated with 2 being the most potent against human ovarian carcinoma cells (cisA2780), and 4 being more cytotoxic toward multidrug resistant human breast carcinoma cells (MCF-7R), human colon adenocarcinoma cells (HT-29), and human lung adenocarcinoma epithelial cells (A549). Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis in HT-29 cells is demonstrated via both extrinsic and intrinsic pathways. Compounds 2-4 activate the p53 gene while 1 activates both p53 and p73. Cell cycle arrest at the S and G2/M phases correlates with inhibition of HT-29 cell growth. Cell invasion is also inhibited by 1-4 which is correlated with down-regulation of NF-κB.
Collapse
Affiliation(s)
- Yee Seng Tan
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kah Kooi Ooi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Kok Pian Ang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Yoke-Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | | | - Hoi-Ling Seng
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biological Sciences, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Edward R T Tiekink
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Halevas E, Nday CM, Kaprara E, Psycharis V, Raptopoulou CP, Jackson GE, Litsardakis G, Salifoglou A. Sol-gel encapsulation of binary Zn(II) compounds in silica nanoparticles. Structure-activity correlations in hybrid materials targeting Zn(II) antibacterial use. J Inorg Biochem 2015. [PMID: 26198972 DOI: 10.1016/j.jinorgbio.2015.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the emerging issue of enhanced multi-resistant properties in infectious pathogens, new nanomaterials with optimally efficient antibacterial activity and lower toxicity than other species attract considerable research interest. In an effort to develop such efficient antibacterials, we a) synthesized acid-catalyzed silica-gel matrices, b) evaluated the suitability of these matrices as potential carrier materials for controlled release of ZnSO4 and a new Zn(II) binary complex with a suitably designed well-defined Schiff base, and c) investigated structural and textural properties of the nanomaterials. Physicochemical characterization of the (empty-loaded) silica-nanoparticles led to an optimized material configuration linked to the delivery of the encapsulated antibacterial zinc load. Entrapment and drug release studies showed the competence of hybrid nanoparticles with respect to the a) zinc loading capacity, b) congruence with zinc physicochemical attributes, and c) release profile of their zinc load. The material antimicrobial properties were demonstrated against Gram-positive (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus) and negative (Escherichia coli, Pseudomonas aeruginosa, Xanthomonas campestris) bacteria using modified agar diffusion methods. ZnSO4 showed less extensive antimicrobial behavior compared to Zn(II)-Schiff, implying that the Zn(II)-bound ligand enhances zinc antimicrobial properties. All zinc-loaded nanoparticles were less antimicrobially active than zinc compounds alone, as encapsulation controls their release, thereby attenuating their antimicrobial activity. To this end, as the amount of loaded zinc increases, the antimicrobial behavior of the nano-agent improves. Collectively, for the first time, sol-gel zinc-loaded silica-nanoparticles were shown to exhibit well-defined antimicrobial activity, justifying due attention to further development of antibacterial nanotechnology.
Collapse
Affiliation(s)
- E Halevas
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - C M Nday
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Department of Chemistry, University of Cape Town, Rondebosch 7700, Cape Town, South Africa
| | - E Kaprara
- Laboratory of Analytical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - V Psycharis
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, N.C.S.R. "Demokritos", Aghia Paraskevi 15310, Attiki, Greece
| | - C P Raptopoulou
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, N.C.S.R. "Demokritos", Aghia Paraskevi 15310, Attiki, Greece
| | - G E Jackson
- Department of Chemistry, University of Cape Town, Rondebosch 7700, Cape Town, South Africa
| | - G Litsardakis
- Laboratory of Materials for Electrotechnics, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - A Salifoglou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
31
|
Zamani A, Salehi M, Sajjadi SM, Kubicki M, Dutkiewicz G, Khaleghian A. Synthesis, characterization, spectrophotometric investigation, structural study, and antibacterial activities of a series of new zinc(II) complexes. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.921288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Azam Zamani
- Department of Chemistry, College of Science, Semnan University, Semnan, Iran
| | - Mehdi Salehi
- Department of Chemistry, College of Science, Semnan University, Semnan, Iran
| | - S. Maryam Sajjadi
- Department of Chemistry, College of Science, Semnan University, Semnan, Iran
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | | | - Ali Khaleghian
- Department of Biochemistry, Semnan University of Medical Science, Semnan, Iran
| |
Collapse
|
32
|
Fernandes C, Horn A, Vieira-da-Motta O, Kanashiro MM, Rocha MR, Moreira RO, Morcelli SR, Lopes BF, Mathias LDS, Borges FV, Borges LJ, Freitas WR, Visentin LC, Almeida JCDA, Schenk G. Synthesis, characterization, antibacterial and antitumoral activities of mononuclear zinc complexes containing tridentate amine based ligands with N3 or N2O donor groups. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.02.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Nejdl L, Ruttkay-Nedecky B, Kudr J, Kremplova M, Cernei N, Prasek J, Konecna M, Hubalek J, Zitka O, Kynicky J, Kopel P, Kizek R, Adam V. Behaviour of zinc complexes and zinc sulphide nanoparticles revealed by using screen printed electrodes and spectrometry. SENSORS 2013; 13:14417-37. [PMID: 24233071 PMCID: PMC3871106 DOI: 10.3390/s131114417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/03/2013] [Accepted: 10/08/2013] [Indexed: 01/08/2023]
Abstract
In this study, we focused on microfluidic electrochemical analysis of zinc complexes (Zn(phen)(his)Cl2, Zn(his)Cl2) and ZnS quantum dots (QDs) using printed electrodes. This method was chosen due to the simple (easy to use) instrumentation and variable setting of flows. Reduction signals of zinc under the strictly defined and controlled conditions (pH, temperature, flow rate, accumulation time and applied potential) were studied. We showed that the increasing concentration of the complexes (Zn(phen)(his)Cl2, Zn(his)Cl2) led to a decrease in the electrochemical signal and a significant shift of the potential to more positive values. The most likely explanation of this result is that zinc is strongly bound in the complex and its distribution on the electrode is very limited. Changing the pH from 3.5 to 5.5 resulted in a significant intensification of the Zn(II) reduction signal. The complexes were also characterized by UV/VIS spectrophotometry, chromatography, and ESI-QTOF mass spectrometry.
Collapse
Affiliation(s)
- Lukas Nejdl
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.N.); (B.-R.N.); (J.K.); (M.K.); (N.C.); (M.K.); (O.Z.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.P.); (J.H.); (P.K.); (R.K.)
| | - Branislav Ruttkay-Nedecky
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.N.); (B.-R.N.); (J.K.); (M.K.); (N.C.); (M.K.); (O.Z.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.P.); (J.H.); (P.K.); (R.K.)
| | - Jiří Kudr
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.N.); (B.-R.N.); (J.K.); (M.K.); (N.C.); (M.K.); (O.Z.)
| | - Monika Kremplova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.N.); (B.-R.N.); (J.K.); (M.K.); (N.C.); (M.K.); (O.Z.)
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.N.); (B.-R.N.); (J.K.); (M.K.); (N.C.); (M.K.); (O.Z.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.P.); (J.H.); (P.K.); (R.K.)
| | - Jan Prasek
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.P.); (J.H.); (P.K.); (R.K.)
| | - Marie Konecna
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.N.); (B.-R.N.); (J.K.); (M.K.); (N.C.); (M.K.); (O.Z.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.P.); (J.H.); (P.K.); (R.K.)
| | - Jaromir Hubalek
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.P.); (J.H.); (P.K.); (R.K.)
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.N.); (B.-R.N.); (J.K.); (M.K.); (N.C.); (M.K.); (O.Z.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.P.); (J.H.); (P.K.); (R.K.)
| | - Jindrich Kynicky
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mail:
- Karel Englis College, Sujanovo Square 356/1, Brno CZ-602 00, Czech Republic
| | - Pavel Kopel
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.P.); (J.H.); (P.K.); (R.K.)
| | - Rene Kizek
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.P.); (J.H.); (P.K.); (R.K.)
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.N.); (B.-R.N.); (J.K.); (M.K.); (N.C.); (M.K.); (O.Z.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.P.); (J.H.); (P.K.); (R.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +420-545-133-350; Fax: +420-545-212-044
| |
Collapse
|
34
|
Moroki T, Yoshikawa Y, Yoshizawa K, Tsubura A, Yasui H. Testicular Mineralization in KK-A(y) Mice Treated with an Oxovanadium Complex. J Toxicol Pathol 2013; 26:329-33. [PMID: 24155568 PMCID: PMC3787613 DOI: 10.1293/tox.26.329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/28/2013] [Indexed: 12/02/2022] Open
Abstract
Vanadium has potential for use in diabetes therapy. Many investigators have reported toxic effects of inorganic vanadium salts; however, there are few reports on toxic effects of oxovanadium(VO2+) complexes. Therefore, we studied VO2+ toxicity by examining histological changes and measuring the vanadium concentration in the testis after repeated oral administration of bis(1-oxy-2-pyridine-thiolato)oxovanadium(VO2+) (VO(opt)2) for 2 or 4 weeks in KK-Ay mice. Severe mineralization and degeneration/necrosis of the seminiferous tubules were detected after either 2 or 4 weeks of administration. Vacuolar changes in Sertoli cells and the seminiferous epithelia, and hyperplasia of Leydig cells were observed in the testes of some animals. Vanadium concentrations in the mineralized testis were much higher than those in the testis of untreated KK-Ay mice. These results represent the first report of the possibility for seminiferous tubules mineralization induced by VO(opt)2 administration. Therefore, our research provides important information about the potentially toxic effects of VO2+ complexes.
Collapse
Affiliation(s)
- Takayasu Moroki
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | | | | | |
Collapse
|