1
|
Soukup CRM, Duffin RN, Burke KJ, Meagher L, Andrews PC. The antibacterial activity and selectivity of bismuth(III) tris(8-hydroxyquinolinates). J Inorg Biochem 2025; 266:112836. [PMID: 39919434 DOI: 10.1016/j.jinorgbio.2025.112836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
The series of bismuth(III) tris(8-hydroxyquinolinates); [Bi(Q")3] (1), [Bi(Q'Cl)3] (2), [Bi(QCl2)3] (3), [Bi(QBr2)3] (4), and [Bi(QI2)3] (5) (where Q"-H = C9H7NO; Q'Cl-H = C9H6NOCl, QCl2-H = C9H5NOCl2; QBr2-H = C9H5NOBr2; and QI2-H = C9H5NOI2) were synthesised, fully characterised, and evaluated for their antibacterial activity towards three Gram-positive bacteria (vancomycin-resistant E. faecalis, S. aureus, methicillin-resistant S. aureus), and four Gram-negative bacteria (A. baumannii, P. aeruginosa, K. pneumoniae, and E. coli) and also their cytotoxicity towards mammalian cells. New crystallographic data on 4 indicates it is dimeric in the solid state through 'Bi2O2' bridging which is consistent with data previously reported for 5. The five complexes (1-5) all exhibited good but variable antibacterial activity and selectivity. Complexes 2 and 5 showed significant activity towards Gram-positive bacteria with MIC (minimum inhibitory concentration) values ranging from 0.78 μM - 3.13 μM and selectivity indices of 6.2 - ≥16.0. For Gram-negative species, complexes 3 and 4 exhibited highly selective activity towards multi-drug resistant strains of A. baumannii with a range of MIC values 0.39-1.56 μM and selectivity indices of 3.14-7.23 respectively. While some of the 8-hydroxyquinolines themselves show reasonable antibacterial activity this is generally enhanced through complexation to bismuth(III).
Collapse
Affiliation(s)
- Charles R M Soukup
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Rebekah N Duffin
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Kirralee J Burke
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
2
|
Liu L, Yang P, Qiu Z, Wang K, Liu D, Liang Y, Hu H, Zou H, Liang F, Chen Z. Russian Doll-like 3d-4f Cluster Wheels with Slow Relaxation of Magnetization. Molecules 2023; 28:5906. [PMID: 37570876 PMCID: PMC10421525 DOI: 10.3390/molecules28155906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The solvothermal reactions of LnCl3·6H2O and MCl2·6H2O (M = Co, Ni) with 2,2'-diphenol (H2L1) and 5,7-dichloro-8-hydroxyquinoline (HL2) gave three 3d-4f heterometallic wheel-like nano-clusters [Ln7M6(L1)6(L2)6(µ3-OH)6(OCH3)6Cl(CH3CN)6]Cl2·xH2O (Ln = Dy, M = Co, x = 3 for 1; Ln = Dy, M = Ni, x = 0 for 2; Ln = Tb, M = Ni, x = 0 for 3) with similar cluster structure. The innermost Ln(III) ion is encapsulated in a planar Ln6 ring which is further embedded in a chair-conformation M6 ring, constructing a Russian doll-like 3d-4f cluster wheel Ln(III)⸦Ln6⸦M6. 2 and 3 show obvious slow magnetic relaxation behavior with negligible opening of the magnetic hysteresis loop. Such a Russian doll-like 3d-4f cluster wheel with the lanthanide disc isolated by transition metallo-ring is rarely reported.
Collapse
Affiliation(s)
- Lan Liu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Panpan Yang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhihui Qiu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Dongcheng Liu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuning Liang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huancheng Hu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huahong Zou
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fupei Liang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zilu Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
3
|
Low-dimensional compounds containing bioactive ligands. Part XXI: Crystal structures, cytotoxic, antimicrobial activities and BSA binding of zinc complexes with 5-chloro-7-nitro-8-hydroxyquinoline. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
4
|
Insights of metal 8-hydroxylquinolinol complexes as the potential anticancer drugs. J Inorg Biochem 2023; 238:112051. [PMID: 36327497 DOI: 10.1016/j.jinorgbio.2022.112051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
8-Hydroxyquinoline and its derivatives, which belong to a well-known class of quinoline based drugs with varied biological activities, have been extensively explored for the treatments of cancer, Alzheimer's disease, neurodegenerative diseases and other life-threatening diseases. In virtue of the existence of bicyclic heterocyclic scaffold, their bidentate chelators can further bind to metal ions via O- and N-donors from 8-hydroxylquinolinol skeletons to yield a variety of metal 8-hydroxylquinolinol complexes appealing as the anticancer drugs with low toxicity, due to their better biological effects and higher anticancer activities than free 8-hydroxylquinolinol ligands and cis-diammine-dichloro-platinum. The present review summarizes the recent developments in the syntheses, crystal structures, and anticancer activities of metal 8-hydroxylquinolinol complexes, attempting to discover a correlation between their structures and anticancer activities, and to provide an evidence for their potential application perspectives. It means to offer the helpful and meaningful guidance for the researchers in the future syntheses of new and highly efficient anticancer metal 8-hydroxylquinolinol complexes based drugs.
Collapse
|
5
|
Low-Dimensional Compounds Containing Bioactive Ligands. Part XIX: Crystal Structures and Biological Properties of Copper Complexes with Halogen and Nitro Derivatives of 8-Hydroxyquinoline. INORGANICS 2022. [DOI: 10.3390/inorganics10120223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Six new copper(II) complexes were prepared: [Cu(ClBrQ)2] (1a, 1b), [Cu(ClBrQ)2]·1/2 diox (2) (diox = 1,4-dioxane), [Cu(BrQ)2] (3), [Cu(dNQ)2] (4), [Cu(dNQ)2(DMF)2] (5) and [Cu(ClNQ)2] (6), where HClBrQ is 5-chloro-7-bromo-8-hydroxyquinoline, HBrQ is 7-bromo-8-hydroxyquinoline, HClNQ is 5-chloro-7-nitro-8-hydroxyquinoline and HdNQ is 5,7-dinitro-8-hydroxyquinoline. Prepared compounds were characterised by infrared spectroscopy, elemental analysis and by X-ray structural analysis. Structural analysis revealed that all complexes are molecular. Square planar coordination of copper atoms in [Cu(XQ)2] (XQ = ClBrQ (1a, 1b), BrQ (3) and ClNQ (6)) and tetragonal bipyramidal coordination in [Cu(dNQ)2(DMF)2] (5) complexes were observed. In these four complexes, bidentate chelate coordination of XQ ligands via oxygen and nitrogen atoms was found. Hydrogen bonds stabilizing the structure were observed in [Cu(dNQ)2(DMF)2] (5) and [Cu(ClNQ)2] (6), no other nonbonding interactions were noticed in all five structures. The stability of the complexes in DMSO and DMSO/water was evaluated by UV-Vis spectroscopy. Cytotoxic activity of the complexes and ligands was tested against MCF-7, MDA-MB-231, HCT116, CaCo2, HeLa, A549 and Jurkat cancer cell lines. The selectivity of the complexes was verified on a noncancerous Cos-7 cell line. Antiproliferative activity of the prepared complexes was very low in comparison with cisplatin, except complex 3; however, its activity was not selective and was similar to the activity of its ligand HBrQ. Antibacterial potential was observed only with ligand HClNQ. Radical scavenging experiments revealed relatively high antioxidant activity of complex 3 against ABTS radical.
Collapse
|
6
|
Ali Drweesh E, Vilková M, Elnagar MM, Potočňák I. Low-dimensional compounds containing bioactive ligands. Part XVIII: Design, synthesis and crystal structural investigations of ionic heteroleptic Pd(II) complexes based on halo and nitro 8-hydroxyquinoline derivatives. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Drweesh EA, Kuchárová V, Volarevic V, Miloradovic D, Ilic A, Radojević ID, Raković IR, Smolková R, Vilková M, Sabolová D, Elnagar MM, Potočňák I. Low-dimensional compounds containing bioactive ligands. Part XVII: Synthesis, structural, spectral and biological properties of hybrid organic-inorganic complexes based on [PdCl 4] 2- with derivatives of 8-hydroxyquinolinium. J Inorg Biochem 2021; 228:111697. [PMID: 34999425 DOI: 10.1016/j.jinorgbio.2021.111697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022]
Abstract
In this study, four hybrid organic-inorganic compounds (8-H2Q)2[PdCl4] (1), (H2ClQ)2[PdCl4] (2), (H2NQ)2[PdCl4] (3) and (H2MeQ)2[PdCl4]·2H2O (4) (where 8-H2Q = 8-hydroxyquinolinium, H2ClQ = 5-chloro-8-hydroxyquinolinium, H2NQ = 5-nitro-8-hydroxyquinolinium and H2MeQ = 2-methyl-8-hydroxyquinolinium) were synthesized through organic cation modulation. Single-crystal X-ray structure analysis of compounds 1 and 3 indicates that their structures are planar and consist of [PdCl4]2- anions and 8-H2Q or H2NQ cations, respectively. Both ionic components are held together through ionic interactions and hydrogen bonds forming infinite chains linked through π-π interactions to form 2D structures. Furthermore, NMR spectroscopy, UV-Vis spectroscopy, elemental analysis, and FT-IR spectroscopy were used to explore the synthesized compounds. The DNA interaction, antimicrobial activity, antiproliferative activity, and radical scavenging effect of the compounds were evaluated. The hybrid compounds and their free ligands can interact with the calf thymus DNA via an intercalation mode involving the insertion of the aromatic chromophore between the base pairs of DNA; compound 1 has the highest binding affinity. Moreover, they have high antimicrobial efficacy against the tested 14 strains of microorganisms with minimum inhibitory concentration values ranging from <1.95 to 250 μg/mL. The antiproliferative activity of the compounds was investigated against three different cancer cell lines, and their selectivity was verified on mesenchymal stem cells. Compounds 1 and 2 displayed selective and high cytotoxicity against human lung and breast cancer cells and showed moderate cytotoxicity against colon cancer cells. Accordingly, they might be auspicious candidates for future pharmacological investigations in lung and breast cancer research.
Collapse
Affiliation(s)
- Elsayed Ali Drweesh
- Department of Inorganic Chemistry, National Research Centre, 33 Elbohoth St. (former Eltahrir st.), P.O. 12622, Dokki, Giza, Egypt
| | - Veronika Kuchárová
- Institute of Experimental Physics SAS, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Vladislav Volarevic
- Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica, 34000 Kragujevac, Serbia
| | - Dragana Miloradovic
- Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica, 34000 Kragujevac, Serbia
| | - Aleksandar Ilic
- Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica, 34000 Kragujevac, Serbia
| | - Ivana D Radojević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Ivana R Raković
- Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica, 34000 Kragujevac, Serbia
| | - Romana Smolková
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, Ulica 17. novembra 1, 081 16 Prešov, Slovakia
| | - Mária Vilková
- Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia
| | - Danica Sabolová
- Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia
| | - Mohamed M Elnagar
- Department of Inorganic Chemistry, National Research Centre, 33 Elbohoth St. (former Eltahrir st.), P.O. 12622, Dokki, Giza, Egypt
| | - Ivan Potočňák
- Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia.
| |
Collapse
|
8
|
Lüköová A, Baran P, Volarevic V, Ilic A, Vilková M, Litecká M, Harmošová M, Potočňák I. Low-dimensional compounds containing bioactive ligands. Part XVI: Halogenated derivatives of 8-quinolinol N-oxides and their copper(II) complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Alam MN, Moni MA, Yu JQ, Beale P, Turner P, Proschogo N, Rahman MA, Hossain MP, Huq F. Promising Anticancer Activity of [Bis(1,8-quinolato)palladium (II)] Alone and in Combination. Int J Mol Sci 2021; 22:ijms22168471. [PMID: 34445176 PMCID: PMC8395214 DOI: 10.3390/ijms22168471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/02/2022] Open
Abstract
Due to similar coordination chemistry of palladium and platinum, a large number of palladium compounds as well have been investigated for their anticancer activity. In the present study, we describe synthesis, characterization, and anticancer activity of palladium complex [Bis(1,8-quinolato)palladium (II)], coded as NH3 against seven different cancer cell lines. NH3 is found to have higher antitumor activity than cisplatin against both parent ovarian A2780 cell line and cisplatin-resistant cell lines. Also, NH3 has the lower IC50 value in HT-29 colorectal cancer cell line. The higher antitumor activity of NH3 is due to the presence of bulky 8-Hydroxyquinoline ligand, thus reducing its reactivity. Proteomic study has identified significantly expressed proteins which have been validated through bioinformatics. NH3 has been found to be less toxic than cisplatin at 2.5 mg/kg and 5 mg/kg dosages on mice models. Binary combinations of NH3 with curcumin and epigallocatechin gallate (EGCG) have demonstrated dose and sequence-dependent synergism in ovarian and colorectal cancer models. All of the preclinical studies indicate promising therapeutic potential of NH3 [Bis(1,8-quinolato)palladium (II)] as an anticancer drug.
Collapse
Affiliation(s)
- Md Nur Alam
- Department of Pharmacy, Faculty of Biological Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh;
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - Jun Q. Yu
- Discipline of Pathology, School of Medicine, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Philip Beale
- Sydney Cancer Centre, Concord Hospital, Sydney, NSW 2139, Australia;
| | - Peter Turner
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; (P.T.); (N.P.)
| | - Nick Proschogo
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; (P.T.); (N.P.)
| | - Mohammad Azizur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh;
| | - M. Pear Hossain
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj 8100, Bangladesh;
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Fazlul Huq
- School of Medical Sciences, The University of Sydney, Kenthurst , NSW 2156, Australia
- Correspondence:
| |
Collapse
|
10
|
Low-dimensional compounds containing bioactive ligands. Part XIII: Square planar anti-cancer Pd(II) complexes with halogenderivatives of 8-quinolinol and dimethylamine. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Kuchárová V, Kuchár J, Zaric M, Canovic P, Arsenijevic N, Volarevic V, Misirkic M, Trajkovic V, Radojević ID, Čomić LR, Matik M, Potočňák I. Low-dimensional compounds containing bioactive ligands. Part XI: Synthesis, structures, spectra, in vitro anti-tumor and antimicrobial activities of 3d metal complexes with 8-hydroxyquinoline-5-sulfonic acid. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
|
13
|
Low-dimensional compounds containing bioactive ligands. Part XII: Synthesis, structures, spectra, in vitro antimicrobial and cytotoxic activities of zinc(II) complexes with halogen derivatives of quinolin-8-ol. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Potočňák I, Ali Drweesh S, Farkasová V, Lüköová A, Sabolová D, Radojević ID, Arsenijevic A, Djordjevic D, Volarevic V. Low-dimensional compounds containing bioactive ligands. Part IX: Synthesis, structures, spectra, in vitro antimicrobial and anti-tumor activities and DNA binding of Pd(II) complexes with 7-bromo-quinolin-8-ol. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Lazarević T, Rilak A, Bugarčić ŽD. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. Eur J Med Chem 2017; 142:8-31. [PMID: 28442170 DOI: 10.1016/j.ejmech.2017.04.007] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 11/18/2022]
Abstract
Metallodrugs offer potential for unique mechanism of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy. Examples of metal compounds and chelating agents currently in clinical use, clinical trials or preclinical development are highlighted.
Collapse
Affiliation(s)
- Tatjana Lazarević
- University of Kragujevac, Faculty of Medicine, S. Marković 69, 34000, Kragujevac, Serbia
| | - Ana Rilak
- University of Kragujevac, Faculty of Science, R. Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia.
| | - Živadin D Bugarčić
- University of Kragujevac, Faculty of Science, R. Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia.
| |
Collapse
|
16
|
New silver complexes with bioactive glycine and nicotinamide molecules – Characterization, DNA binding, antimicrobial and anticancer evaluation. J Inorg Biochem 2017; 168:1-12. [DOI: 10.1016/j.jinorgbio.2016.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 11/22/2022]
|
17
|
Low-dimensional compounds containing bioactive ligands. Part VIII: DNA interaction, antimicrobial and antitumor activities of ionic 5,7-dihalo-8-quinolinolato palladium(II) complexes with K+ and Cs+ cations. J Inorg Biochem 2017; 167:80-88. [DOI: 10.1016/j.jinorgbio.2016.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/10/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022]
|
18
|
Sabolová D, Vilková M, Imrich J, Potočňák I. New spiroacridine derivatives with DNA-binding and topoisomerase I inhibition activity. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
8-Hydroxyquinolines in medicinal chemistry: A structural perspective. Eur J Med Chem 2016; 120:252-74. [DOI: 10.1016/j.ejmech.2016.05.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/12/2023]
|
20
|
Amatori S, Ambrosi G, Errico Provenzano A, Fanelli M, Formica M, Fusi V, Giorgi L, Macedi E, Micheloni M, Paoli P, Rossi P. Pd II and Pt II complexes with a thio-aza macrocycle ligand containing an intercalating fragment: Structural and antitumor activity studies. J Inorg Biochem 2016; 162:154-161. [PMID: 27389827 DOI: 10.1016/j.jinorgbio.2016.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/11/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
Two new PtII and PdII complexes of formula [LMCl2] (M=Pt, Pd) were synthesized and characterized both in solution and solid state. They were obtained using the thio-aza macrocycle 9,18-dimethyl-12,17dithia-9,18,27,28-tetraaaza-29-oxatetracyclo[24.2.1.02,7.020,25]enneicosa-2,4,6,20,22,24,26,281-octaene (L) containing the 2,5-diphenyl [1, 3, 4]oxadiazole as intercalating fragment. MII is coordinated in cis-position by the two S atoms of L. The two crystal structures of [LPtCl2] and [LPdCl2] complexes showed that the MII ion is located outside the macrocyclic cavity. The square planar coordination sphere is fulfilled by two chloride anions in a cisplatin-like arrangement with the chloride leaving groups exposed to the environment. The biological activity of both [LPtCl2] and [LPdCl2], monitored towards a leukemic cellular model (U937), is coherent with their ability to interfere, at different levels, with the DNA structure.
Collapse
Affiliation(s)
- Stefano Amatori
- University of Urbino, Molecular Pathology Lab. "PaoLa", Department of Biomolecular Sciences, Arco d'Augusto 2, I-61032 Fano, (PU), Italy
| | - Gianluca Ambrosi
- University of Urbino, Department of Pure and Applied Sciences, Via della Stazione 4, I-61029 Urbino, Italy
| | - Alfredo Errico Provenzano
- University of Urbino, Molecular Pathology Lab. "PaoLa", Department of Biomolecular Sciences, Arco d'Augusto 2, I-61032 Fano, (PU), Italy
| | - Mirco Fanelli
- University of Urbino, Molecular Pathology Lab. "PaoLa", Department of Biomolecular Sciences, Arco d'Augusto 2, I-61032 Fano, (PU), Italy.
| | - Mauro Formica
- University of Urbino, Department of Pure and Applied Sciences, Via della Stazione 4, I-61029 Urbino, Italy
| | - Vieri Fusi
- University of Urbino, Department of Pure and Applied Sciences, Via della Stazione 4, I-61029 Urbino, Italy.
| | - Luca Giorgi
- University of Urbino, Department of Pure and Applied Sciences, Via della Stazione 4, I-61029 Urbino, Italy
| | - Eleonora Macedi
- University of Firenze, Department of Industrial Engineering, Via S. Marta 3, I-50139 Firenze, Italy
| | - Mauro Micheloni
- University of Urbino, Department of Pure and Applied Sciences, Via della Stazione 4, I-61029 Urbino, Italy
| | - Paola Paoli
- University of Firenze, Department of Industrial Engineering, Via S. Marta 3, I-50139 Firenze, Italy
| | - Patrizia Rossi
- University of Firenze, Department of Industrial Engineering, Via S. Marta 3, I-50139 Firenze, Italy
| |
Collapse
|
21
|
Alam MN, Huq F. Comprehensive review on tumour active palladium compounds and structure–activity relationships. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P. New trends in platinum and palladium complexes as antineoplastic agents. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Darabi F, Hadadzadeh H, Simpson J, Shahpiri A. A water-soluble Pd(ii) complex with a terpyridine ligand: experimental and molecular modeling studies of the interaction with DNA and BSA; and in vitro cytotoxicity investigations against five human cancer cell lines. NEW J CHEM 2016. [DOI: 10.1039/c6nj01880g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Pd(4-OHPh-tpy)Cl]Cl was prepared. The complex interacts with DNA via a combination of covalent, intercalation, and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Farivash Darabi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Hassan Hadadzadeh
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Jim Simpson
- Department of Chemistry
- University of Otago
- Dunedin 9054
- New Zealand
| | - Azar Shahpiri
- Department of Agricultural Biotechnology
- College of Agriculture
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| |
Collapse
|
24
|
Almáši M, Vargová Z, Sabolová D, Kudláčová J, Hudecová D, Kuchár J, Očenášová L, Györyová K. Ag(I) and Zn(II) isonicotinate complexes: design, characterization, antimicrobial effect, and CT-DNA binding studies. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1101074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M. Almáši
- Faculty of Science, Department of Inorganic Chemistry, P.J. Šafárik University, Košice, Slovak Republic
| | - Z. Vargová
- Faculty of Science, Department of Inorganic Chemistry, P.J. Šafárik University, Košice, Slovak Republic
| | - D. Sabolová
- Faculty of Science, Deparment of Biochemistry, P.J. Šafárik University, Košice, Slovak Republic
| | - J. Kudláčová
- Faculty of Science, Deparment of Biochemistry, P.J. Šafárik University, Košice, Slovak Republic
| | - D. Hudecová
- Department of Biochemistry and Microbiology, Slovak University of Technology, Bratislava, Slovak Republic
| | - J. Kuchár
- Faculty of Science, Department of Inorganic Chemistry, P.J. Šafárik University, Košice, Slovak Republic
| | - L. Očenášová
- Faculty of Science, Department of Organic Chemistry, P.J. Šafárik University, Košice, Slovak Republic
| | - K. Györyová
- Faculty of Science, Department of Inorganic Chemistry, P.J. Šafárik University, Košice, Slovak Republic
| |
Collapse
|
25
|
Potočňák I, Vranec P, Farkasová V, Sabolová D, Vataščinová M, Kudláčová J, Radojević ID, Čomić LR, Markovic BS, Volarevic V, Arsenijevic N, Trifunović SR. Low-dimensional compounds containing bioactive ligands. Part VI: Synthesis, structures, in vitro DNA binding, antimicrobial and anticancer properties of first row transition metal complexes with 5-chloro-quinolin-8-ol. J Inorg Biochem 2015; 154:67-77. [PMID: 26600190 DOI: 10.1016/j.jinorgbio.2015.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 01/19/2023]
Abstract
A series of new 3d metal complexes with 5-chloro-quinolin-8-ol (ClQ), [Mn(ClQ)2] (1), [Fe(ClQ)3] (2), [Co(ClQ)2(H2O)2] (3), [Ni(ClQ)2(H2O)2] (4), [Cu(ClQ)2] (5), [Zn(ClQ)2(H2O)2] (6), [Mn(ClQ)3]·DMF (7) and [Co(ClQ)3]·DMF·(EtOH)0.35 (8) (DMF=N,N-dimethylformamide), has been synthesized and characterized by elemental analysis, IR spectroscopy and TG-DTA thermal analysis. X-ray structure analysis of 7 and 8 revealed that these molecular complexes contain three chelate ClQ molecules coordinated to the central atoms in a deformed octahedral geometry and free space between the complex units is filled by solvated DMF and ethanol molecules. Antimicrobial activity of 1-6 was tested by determining the minimum inhibitory concentration and minimum microbicidal concentration against 12 strains of bacteria and 5 strains of fungi. The intensity of antimicrobial action varies depending on the group of microorganism and can be sorted: 1>ClQ>6>3/4>2>5. Complexes 1-6 exhibit high cytotoxic activity against MDA-MB, HCT-116 and A549 cancer cell lines. Among them, complex 2 is significantly more cytotoxic against MDA-MB cells than cisplatin at all tested concentrations and is not cytotoxic against control mesenchymal stem cells indicating that this complex seems to be a good candidate for future pharmacological evaluation. Interaction of 1-6 with DNA was investigated using UV-VIS spectroscopy, fluorescence spectroscopy and agarose gel electrophoresis. The binding studies indicate that 1-6 can interact with CT-DNA through intercalation; complex 2 has the highest binding affinity. Moreover, complexes 1-6 inhibit the catalytic activity of topoisomerase I.
Collapse
Affiliation(s)
- Ivan Potočňák
- Department of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, SK-04154 Košice, Slovak Republic.
| | - Peter Vranec
- Department of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, SK-04154 Košice, Slovak Republic
| | - Veronika Farkasová
- Department of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, SK-04154 Košice, Slovak Republic
| | - Danica Sabolová
- Department of Biochemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, SK-04154 Košice, Slovak Republic
| | - Michaela Vataščinová
- Department of Biochemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, SK-04154 Košice, Slovak Republic
| | - Júlia Kudláčová
- Department of Biochemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, SK-04154 Košice, Slovak Republic
| | - Ivana D Radojević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Ljiljana R Čomić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Bojana Simovic Markovic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica, 34000 Kragujevac, Serbia
| | - Vladislav Volarevic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica, 34000 Kragujevac, Serbia
| | - Srećko R Trifunović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
26
|
Zhang HR, Liu YC, Meng T, Qin QP, Tang SF, Chen ZF, Zou BQ, Liu YN, Liang H. Cytotoxicity, DNA binding and cell apoptosis induction of a zinc(ii) complex of HBrQ. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00406c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A zinc(ii) complex of HBrQ showed higher in vitro antitumor activity. It induced cell apoptosis in BEL-7404 cells via G2 phase arrest, led to mitochondria dysfunction and activation of caspase cascade. The central zinc(ii) should play a key role to enhance the antitumor effect
Collapse
Affiliation(s)
- Hai-Rong Zhang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
| | - Yan-Cheng Liu
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- PR China
| | - Ting Meng
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- PR China
| | - Qi-Pin Qin
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- PR China
| | - Shang-Feng Tang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- PR China
| | - Zhen-Feng Chen
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- PR China
| | - Bi-Qun Zou
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- PR China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
| | - Hong Liang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
| |
Collapse
|