1
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
2
|
Hikisz P, Namiecińska E, Paneth P, Budzisz E. Mechanistic Studies of Arene-Ruthenium(II) Complexes with Carbothioamidopyrazoles as Alternative Cancer Drugs. Molecules 2023; 28:3969. [PMID: 37175377 PMCID: PMC10180065 DOI: 10.3390/molecules28093969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Arene-ruthenium(II) complexes with carbothioamidopyrazoles at the C-2 and C-5 positions have been recognized as chemotherapeutic agent alternatives to cisplatin and its oxaliplatin analogs. The aim of this study was to continue research on the biological aspect of arene-ruthenium(II) complexes and their anticancer activity. The present paper includes an additional 12 new tumor cells, analyzed by MTT, and employs a series of extended bioassays to better understand their potential mechanism of antitumor activity. The following tests were conducted: membrane permeability studies, intramolecular reactive oxygen and nitrogen species (ROS/RNS) assays, mitochondrial potential changes, DNA analysis by comet assay using the electrophoresis method, measurement of cleaved PARP protein levels, and determination of apoptotic and necrotic cell fractions by fluorescence microscopy. Additionally, the article presents lipophilicity studies based on RP-TLC and molecular docking studies. We hope that the presented data will prove useful in practical treatment, especially for patients with cancer.
Collapse
Affiliation(s)
- Paweł Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Ewelina Namiecińska
- Department of the Chemistry of Cosmetic Raw Materials, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Department of Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Elzbieta Budzisz
- Department of the Chemistry of Cosmetic Raw Materials, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
3
|
Mou Q, Zhao R, Sun B. Recent Advances in Transition-Metal-Catalyzed C-H Functionalization of Ferrocene Amides. Chem Asian J 2022; 17:e202200818. [PMID: 36047433 DOI: 10.1002/asia.202200818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Indexed: 11/11/2022]
Abstract
During the past decades, in synthetic organic chemistry, directing-group-assisted C-H functionalization is found to be a key tool for the expedient and site-selective construction of C-C and hybrid bonds. Among C-H functionalization of ferrocene derivatives, the directed group strategy is undoubtedly the most commonly used method. Compared to the other directing groups, ferrocene amides can be synthesized easily and are now recognized as one of the most efficient devices for the selective functionalization of certain positions because its metal centre permits fine, tuneable and reversible coordination. The family of amide directing groups mainly comprises monodentate and bidentate directing groups, which are categorized on the basis of coordination sites. In this review, various C-H bond functionalization reactions of ferrocene using amide directing groups are broadly discussed.
Collapse
Affiliation(s)
- Qi Mou
- Qingdao University of Science and Technology, College of Chemical Engineering, CHINA
| | - Ruyuan Zhao
- Qingdao University of Science and Technology, College of Chemical Engineering, CHINA
| | - Bo Sun
- Qingdao University of Science and Technology, college of chemical engineering, zhengzhoulu No. 53, 266000, Qingdao, CHINA
| |
Collapse
|
4
|
Peña L, Jiménez C, Arancibia R, Angeli A, Supuran CT. Heterobimetallic complexes containing organometallic acylhydrazone ligands as potential inhibitors of human carbonic anhydrases. J Inorg Biochem 2022; 232:111814. [DOI: 10.1016/j.jinorgbio.2022.111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
|
5
|
|
6
|
Swaminathan S, Haribabu J, Balakrishnan N, Vasanthakumar P, Karvembu R. Piano stool Ru(II)-arene complexes having three monodentate legs: A comprehensive review on their development as anticancer therapeutics over the past decade. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214403] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Li YL, Zhu XM, Chen NF, Chen ST, Yang Y, Liang H, Chen ZF. Anticancer activity of ruthenium(II) plumbagin complexes with polypyridyl as ancillary ligands via inhibiting energy metabolism and GADD45A-mediated cell cycle arrest. Eur J Med Chem 2022; 236:114312. [PMID: 35421660 DOI: 10.1016/j.ejmech.2022.114312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 03/19/2022] [Indexed: 12/31/2022]
Abstract
To study the antitumor activity and action mechanism of Ru(II) polypyridyl plumbagin (PLN) complexes, four complexes [Ru(PLN)(DMSO)2]Cl (Ru1), [Ru(bpy)2(PLN)](PF6) (bpy is bipyridine) (Ru2), [Ru(phen)2(PLN)](PF6) (phen is 1,10-phenanthroline) (Ru3), and [Ru(DIP)2(PLN)](PF6) (DIP is 4,7-diphenyl-1,10-phenanthroline) (Ru4) were obtained and fully characterized. Lipophilicity, cellular uptake and cytotoxicity of these Ru(II) complexes are in the order of: Ru1<Ru2<Ru3<Ru4. The ancillary polypyridyl ligands affected the bioactivity and action mechanisms of these Ru(II) complexes. Ru3 and Ru4 inhibited energy metabolism by severely impairing mitochondrial respiration and glycolysis processes. Moreover, Ru3 and Ru4 induced DNA damage and the increased expression of GADD45A, which led to cell cycle arrest in G0/G1 phase in MGC-803 cells, while the inactivation of GADD45A attenuated these effects; however, Ru3 or Ru4-induced GADD45A did not affect cell apoptosis. Further studies revealed that Ru3 and Ru4 induced ROS-dependent and caspase-dependent apoptotic cell death by mitochondrial dysfunction, and Ru4 displayed higher potency than Ru3. The in vivo results in MGC-803 xenograft nude mice model also confirmed that Ru4 obviously inhibited tumor growth. Ru4 is a promising candidate to be developed as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Yu-Lan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Xiao-Min Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Nan-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shao-Ting Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yang Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
8
|
NOVEL FERROCENYLBISPHOSPHONATE HYBRID COMPOUNDS: SYNTHESIS, CHARACTERIZATION AND POTENT ACTIVITY AGAINST CANCER CELL LINES. Bioorg Med Chem 2022; 58:116652. [DOI: 10.1016/j.bmc.2022.116652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/29/2021] [Accepted: 01/28/2022] [Indexed: 11/19/2022]
|
9
|
Sharma B, Kumar V. Has Ferrocene Really Delivered Its Role in Accentuating the Bioactivity of Organic Scaffolds? J Med Chem 2021; 64:16865-16921. [PMID: 34792350 DOI: 10.1021/acs.jmedchem.1c00390] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ferrocene is an important structural core in bioorganometallic chemistry because of its inherent stability, excellent redox properties, and low toxicity. Ferroquine and ferrocifen are two of the most notable contributions of ferrocene to medicinal chemistry with remarkable antimalarial and anticancer properties. The improved medicinal properties of these drug candidates highlight the impact that ferrocene can have on the molecular and biological properties of the bioactive compounds. In this Perspective, we investigate the scope and limitations of ferrocene incorporation into organic compounds/natural products on their mode of action and biological activities. We have also discussed the detailed role of ferrocene modifications in influencing the anticancer, antimalarial, and antimicrobial properties of various bioactive moieties to design safer and promising ferrocene-based drugs.
Collapse
Affiliation(s)
- Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
10
|
Guk DA, Krasnovskaya OO, Beloglazkina EK. Coordination compounds of biogenic metals as cytotoxic agents in cancer therapy. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review summarizes the data on the structures and methods for the synthesis of compounds with anticancer activity based on biogenic metals, which can replace platinum drugs prevailing in cytotoxic therapy. The main focus is given to the comparison of the mechanisms of the cytotoxic action of these complexes, their efficacy and prospects of their use in clinical practice. This is the first systematic review of cytotoxic zinc, iron, cobalt and copper compounds. The structure – activity relationships and the mechanisms of antitumour action are formulated for each type of metal complexes.
The bibliography includes 181 references.
Collapse
|
11
|
Synthesis and Antiparasitic Activity of New Conjugates—Organic Drugs Tethered to Trithiolato-Bridged Dinuclear Ruthenium(II)–Arene Complexes. INORGANICS 2021. [DOI: 10.3390/inorganics9080059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tethering known drugs to a metalorganic moiety is an efficient approach for modulating the anticancer, antibacterial, and antiparasitic activity of organometallic complexes. This study focused on the synthesis and evaluation of new dinuclear ruthenium(II)–arene compounds linked to several antimicrobial compounds such as dapsone, sulfamethoxazole, sulfadiazine, sulfadoxine, triclosan, metronidazole, ciprofloxacin, as well as menadione (a 1,4-naphtoquinone derivative). In a primary screen, 30 compounds (17 hybrid molecules, diruthenium intermediates, and antimicrobials) were assessed for in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) at 0.1 and 1 µM. In parallel, the cytotoxicity in noninfected host cells (human foreskin fibroblasts, HFF) was determined by an alamarBlue assay. When assessed at 1 µM, five compounds strongly impaired parasite proliferation by >90%, and HFF viability was retained at 50% or more, and they were further subjected to T. gondii β-gal dose-response studies. Two compounds, notably 11 and 13, amide and ester conjugates with sulfadoxine and metronidazole, exhibited low IC50 (half-maximal inhibitory concentration) values 0.063 and 0.152 µM, and low or intermediate impairment of HFF viability at 2.5 µM (83 and 64%). The nature of the anchored drug as well as that of the linking unit impacted the biological activity.
Collapse
|
12
|
Geisler H, Westermayr J, Cseh K, Wenisch D, Fuchs V, Harringer S, Plutzar S, Gajic N, Hejl M, Jakupec MA, Marquetand P, Kandioller W. Tridentate 3-Substituted Naphthoquinone Ruthenium Arene Complexes: Synthesis, Characterization, Aqueous Behavior, and Theoretical and Biological Studies. Inorg Chem 2021; 60:9805-9819. [PMID: 34115482 PMCID: PMC8261824 DOI: 10.1021/acs.inorgchem.1c01083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A series of nine RuII arene complexes bearing tridentate naphthoquinone-based N,O,O-ligands was synthesized and characterized. Aqueous stability and their hydrolysis mechanism were investigated via UV/vis photometry, HPLC-MS, and density functional theory calculations. Substituents with a positive inductive effect improved their stability at physiological pH (7.4) intensely, whereas substituents such as halogens accelerated hydrolysis and formation of dimeric pyrazolate and hydroxido bridged dimers. The observed cytotoxic profile is unusual, as complexes exhibited much higher cytotoxicity in SW480 colon cancer cells than in the broadly chemo- (incl. platinum-) sensitive CH1/PA-1 teratocarcinoma cells. This activity pattern as well as reduced or slightly enhanced ROS generation and the lack of DNA interactions indicate a mode of action different from established or previously investigated classes of metallodrugs.
Collapse
Affiliation(s)
- Heiko Geisler
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Julia Westermayr
- Department
of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV47AL, United Kingdom
| | - Klaudia Cseh
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Dominik Wenisch
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Valentin Fuchs
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Sophia Harringer
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Sarah Plutzar
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Natalie Gajic
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michaela Hejl
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michael A. Jakupec
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria,Research
Cluster “Translational Cancer Therapy Research”, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Philipp Marquetand
- Faculty
of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Waehringer Str. 17, A-1090 Vienna, Austria,Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Str. 17, 1090 Wien, Austria
| | - Wolfgang Kandioller
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria,Research
Cluster “Translational Cancer Therapy Research”, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria,. Phone: +43 1 4277
52609
| |
Collapse
|
13
|
Steel TR, Walsh F, Wieczorek-Błauż A, Hanif M, Hartinger CG. Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213890] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
De Grandis RA, Oliveira KM, Guedes APM, dos Santos PWS, Aissa AF, Batista AA, Pavan FR. A Novel Ruthenium(II) Complex With Lapachol Induces G2/M Phase Arrest Through Aurora-B Kinase Down-Regulation and ROS-Mediated Apoptosis in Human Prostate Adenocarcinoma Cells. Front Oncol 2021; 11:682968. [PMID: 34249731 PMCID: PMC8264259 DOI: 10.3389/fonc.2021.682968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
Lapachol is a well-studied natural product that has been receiving great interest due to its anticancer properties that target oxidative stress. In the present work, two novel lapachol-containing ruthenium(II) complexes [Ru(Lap)(dppm)(bipy)]PF6 (1) and [Ru(Lap)(dppm)(phen)]PF6 (2) [Lap = lapachol, dppm = 1,1'-bis(diphosphino)methane, bipy = 2,2'-bipyridine, phen = 1,10-phenantroline] were synthesized, fully characterized, and investigated for their cellular and molecular responses on cancer cell lines. We found that both complexes exhibited a potent cytotoxic effect in a panel of cancer cell lines in monolayer cultures, as well as in a 3D model of multicellular spheroids formed from DU-145 human prostate adenocarcinoma cells. Furthermore, the complex (2) suppressed the colony formation, induced G2/M-phase arrest, and downregulated Aurora-B. The mechanism studies suggest that complex (2) stimulate the overproduction of reactive oxygen species (ROS) and triggers caspase-dependent apoptosis as a result of changes in expression of several genes related to cell proliferation and caspase-3 and -9 activation. Interestingly, we found that N-acetyl-L-cysteine, a ROS scavenger, suppressed the generation of intracellular ROS induced by complex (2), and decreased its cytotoxicity, indicating that ROS-mediated DNA damage leads the DU-145 cells into apoptosis. Overall, we highlighted that coordination of lapachol to phosphinic ruthenium(II) compounds considerably improves the antiproliferative activities of resulting complexes granting attractive selectivity to human prostate adenocarcinoma cells. The DNA damage response to ROS seems to be involved in the induction of caspase-mediated cell death that plays an important role in the complexes' cytotoxicity. Upon further investigations, this novel class of lapachol-containing ruthenium(II) complexes might indicate promising chemotherapeutic agents for prostate cancer therapy.
Collapse
Affiliation(s)
- Rone A. De Grandis
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
- School of Medicine, University of Araraquara, Araraquara, Brazil
| | - Katia M. Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Alexandre F. Aissa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Alzir A. Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Fernando R. Pavan
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
15
|
Noori S, Nourbakhsh M, Farzaneh S, Zarghi A. A Ferrocene Derivative Reduces Cisplatin Resistance in Breast Cancer Cells through Suppression of MDR-1 Expression and Modulation of JAK2/STAT3 Signaling Pathway. Anticancer Agents Med Chem 2021; 20:2285-2292. [PMID: 32767949 DOI: 10.2174/1871520620666200807103903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Breast cancer is the most common kind of cancer among women in the world. Despite major cancer therapy successes in recent years, cancer cells usually develop mechanisms to survive chemotherapy- induced cell death. Therefore, new strategies are needed to reverse cancer chemoresistance. OBJECTIVE The aim of this study was to investigate the effect of a recently-synthesized ferrocene derivative named 1-ferrocenyl-3-(4-methylsulfonylphenyl)propen-1-one (FMSP) on cisplatin resistance in MCF-7 cells, focusing on its inhibitory effects on Multi-Drug Resistance-1 (MDR-1) and inflammatory-related STAT3 pathway. METHODS Cisplatin-resistant MCF-7 cells were developed and the effect of cisplatin and FMSP on cell viability was examined by MTT assay. RT-PCR and Western blotting analyses were performed to assess the gene and protein expression of MDR-1 as well as phosphorylation of JAK2 and STAT3. RESULTS Overexpression of MDR1 as well as a marked increase in the level of phosphorylated STAT3 was observed in cisplatin-resistant MCF-7 (MCF-7R) cells. FMSP successfully reduced the MCF-7R cell viability and reversed both MDR1 expression and STAT3 phosphorylation status through which sensitivity of MCF-7R cells to cisplatin treatment was regained. CONCLUSION Our results indicated that FMSP may be considered as a promising therapeutic agent for the prevention and management of chemoresistance in breast cancer cells.
Collapse
Affiliation(s)
- Shokoofe Noori
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran,Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Farzaneh
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Guk DA, Krasnovskaya OO, Moiseeva AA, Tafeenko VA, Ul'yanovskii NV, Kosyakov DS, Pergushov VI, Ya. Melnikov M, Zyk NV, Skvortsov DA, Lopatukhina EV, Vaneev AN, Gorelkin PV, Erofeev AS, Majouga AG, Beloglazkina EK. New Fe–Cu bimetallic coordination compounds based on ω-ferrocene carboxylic acids and 2-thioimidazol-4-ones: structural, mechanistic and biological studies. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00714a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Synthesis, characterization and in vitro cytotoxic investigation of a series of new ferrocene-containing derivatives based on ω-ferrocene carboxylic acids and 2-alkylthioimidazolin-4-ones and their copper complexes have been reported.
Collapse
Affiliation(s)
- Dmitry A. Guk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Olga O. Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Anna A. Moiseeva
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Victor A. Tafeenko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Nikolay V. Ul'yanovskii
- Core Facility Center “Arktika”, Lomonosov Northern (Arctic) Federal University, nab. SevernoyDviny 17, 163002 Arkhangelsk, Russia
| | - Dmitriy S. Kosyakov
- Core Facility Center “Arktika”, Lomonosov Northern (Arctic) Federal University, nab. SevernoyDviny 17, 163002 Arkhangelsk, Russia
| | - Vladimir I. Pergushov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Mikhail Ya. Melnikov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Nikolay V. Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Dmitry A. Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143026, Russia
| | - Elena V. Lopatukhina
- National University of Science and Technology MISIS, Leninskiy prospect 4, Moscow 101000, Russia
| | - Alexander N. Vaneev
- National University of Science and Technology MISIS, Leninskiy prospect 4, Moscow 101000, Russia
| | - Petr V. Gorelkin
- National University of Science and Technology MISIS, Leninskiy prospect 4, Moscow 101000, Russia
| | - Alexander S. Erofeev
- National University of Science and Technology MISIS, Leninskiy prospect 4, Moscow 101000, Russia
| | - Alexander G. Majouga
- National University of Science and Technology MISIS, Leninskiy prospect 4, Moscow 101000, Russia
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Ploshchad'9, Moscow 125047, Russia
| | - Elena K. Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| |
Collapse
|
17
|
Chellan P, Sadler PJ. Enhancing the Activity of Drugs by Conjugation to Organometallic Fragments. Chemistry 2020; 26:8676-8688. [PMID: 32452579 PMCID: PMC7496994 DOI: 10.1002/chem.201904699] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/12/2020] [Indexed: 12/22/2022]
Abstract
Resistance to chemotherapy is a current clinical problem, especially in the treatment of microbial infections and cancer. One strategy to overcome this is to make new derivatives of existing drugs by conjugation to organometallic fragments, either by an appropriate linker, or by direct coordination of the drug to a metal. We illustrate this with examples of conjugated organometallic metallocene sandwich and half-sandwich complexes, RuII and OsII arene, and RhIII and IrIII cyclopentadienyl half-sandwich complexes. Ferrocene conjugates are particularly promising. The ferrocene-chloroquine conjugate ferroquine is in clinical trials for malaria treatment, and a ferrocene-tamoxifen derivative (a ferrocifen) seems likely to enter anticancer trails soon. Several other examples illustrate that organometallic conjugation can restore the activity of drugs to which resistance has developed.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry and Polymer ScienceStellenbosch University7600Matieland, Western CapeSouth Africa
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
18
|
Rothemund M, Bär A, Klatt F, Weidler S, Köhler L, Unverzagt C, Kuhn CD, Schobert R. N-Metallocenoylsphingosines as targeted ceramidase inhibitors: Syntheses and antitumoral effects. Bioorg Chem 2020; 97:103703. [PMID: 32143017 DOI: 10.1016/j.bioorg.2020.103703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Three N-metallocenoylsphingosines with variance in the central metal (Fe, Co, Ru), the charge (neutral or cationic), and the arene ligands (Cp2, Cp*Ph) were synthesized from serine and metallocene carboxylic acids as substrate-analogous inhibitors of human acid ceramidase (AC). Their inhibitory potential was examined using the recombinant full length ASAH1 enzyme, expressed and secreted from High Five insect cells, and the fluorescent substrate Rbm14-12. All complexes inhibited AC, most strongly so ruthenium(II) complex 13a. Some antitumoral effects of the complexes, such as the interference with the microtubular and F-actin cytoskeleton of cancer cells, were correlated to their AC-inhibition, whereas others, e.g. their cytotoxicity and their induction of caspase-3/-7 activity in cancer cells, were not. All complexes accumulated preferentially in the lysosomes of cancer cells like their target AC, arrested the cells in G1 phase of the cell cycle, and displayed cytotoxicity with mostly single-digit micromolar IC50 values while inducing cancer cell apoptosis.
Collapse
Affiliation(s)
- Matthias Rothemund
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Alexander Bär
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Felix Klatt
- Gene Regulation by Non-Coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany
| | - Sascha Weidler
- Bioorganic Chemistry, University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany
| | - Leonhard Köhler
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Carlo Unverzagt
- Bioorganic Chemistry, University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany
| | - Claus-D Kuhn
- Gene Regulation by Non-Coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany
| | - Rainer Schobert
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany.
| |
Collapse
|
19
|
Wang R, Chen H, Yan W, Zheng M, Zhang T, Zhang Y. Ferrocene-containing hybrids as potential anticancer agents: Current developments, mechanisms of action and structure-activity relationships. Eur J Med Chem 2020; 190:112109. [PMID: 32032851 DOI: 10.1016/j.ejmech.2020.112109] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Cancer is one of the most fatal threatens to human health throughout the world. The major challenges in the control and eradication of cancers are the continuous emergency of drug-resistant cancer and the low specificity of anticancer agents, creating an urgent need to develop novel anticancer agents. Organometallic compounds especially ferrocene derivatives possess remarkable structural and mechanistic diversity, inherent stability towards air, heat and light, low toxicity, low cost, reversible redox, ligand exchange, and catalytic properties, making them promising drug candidates for cancer therapy. Ferrocifen, a ferrocene-phenol hybrid, has demonstrated promising anticancer properties on drug-resistant cancers. Currently, Ferrocifen is in pre-clinical trial against cancers. Obviously, ferrocene moiety is a useful template for the development of novel anticancer agents. This review will provide an overview of ferrocene-containing hybrids with potential application in the treatment of cancers covering articles published between 2010 and 2020. The mechanisms of action, the critical aspects of design and structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Ruo Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Huahong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Weitao Yan
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingwen Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Tesen Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yaohuan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
20
|
Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019; 119:1058-1137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we are moving from a single- toward a multitargeted approach. This approach lies at the very heart of medicinal inorganic chemistry. In this review, we have endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many chemotherapeutic regimens. We have focused our attention on metallodrugs incorporating platinum and ruthenium ions given that complexes containing these metal ions are already in clinical use or have advanced to clinical trials as anticancer agents. The "multitargeted" complexes described herein not only target DNA but also contain either vectors to enable them to target cancer cells selectively and/or moieties that target enzymes, peptides, and intracellular proteins. Multitargeted complexes which have been designed to target the mitochondria or complexes inspired by natural product activity are also described. A summary of advances in this field over the past decade or so will be provided.
Collapse
Affiliation(s)
- Reece G Kenny
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
21
|
New (arene)ruthenium(II) complexes of 4‑aryl‑4H‑naphthopyrans with anticancer and anti-vascular activities. J Inorg Biochem 2018; 184:69-78. [DOI: 10.1016/j.jinorgbio.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/06/2018] [Accepted: 03/22/2018] [Indexed: 01/06/2023]
|
22
|
Haghdoost MM, Guard J, Golbaghi G, Castonguay A. Anticancer Activity and Catalytic Potential of Ruthenium(II)-Arene Complexes with N,O-Donor Ligands. Inorg Chem 2018; 57:7558-7567. [PMID: 29888595 DOI: 10.1021/acs.inorgchem.8b00346] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The special ability of organometallic complexes to catalyze various transformations might offer new effective mechanisms for the treatment of cancer. Studies that report both the biological properties and the ability of metallic complexes to promote therapeutically relevant catalytic reactions are limited. Herein, we report the anticancer activity and catalytic potential of some ruthenium(II)-arene complexes bearing bidentate Schiff base ligands (2a and 2b) and their reduced analogues (5a and 5b, respectively). In comparison to their Schiff base counterparts 2a and 2b, we demonstrate that amine complexes 5a and 5b display (i) a higher in vitro antiproliferative activity on different human cancer cell lines, (ii) a lower rate of hydrolysis, and (iii) an improved initial catalytic rate for the reduction of NAD+ to NADH. In contrast to their imine analogues 2a and 2b, we also show that amine complexes 5a and 5b induce the generation of intracellular reactive oxygen species (ROS) in MCF-7 breast cancer cells. Our results highlight the impact that a simple ligand modification such as the reduction of an imine moiety can have on both the catalytic and biological activities of metal complexes. Moreover, the ruthenium complexes reported here display some antiproliferative activity against T47D breast cancer cells, known for their cis-platin resistance.
Collapse
Affiliation(s)
- Mohammad Mehdi Haghdoost
- INRS-Institut Armand-Frappier , Université du Québec , 531 boul. des Prairies , Laval , Quebec H7V 1B7 , Canada
| | - Juliette Guard
- INRS-Institut Armand-Frappier , Université du Québec , 531 boul. des Prairies , Laval , Quebec H7V 1B7 , Canada
| | - Golara Golbaghi
- INRS-Institut Armand-Frappier , Université du Québec , 531 boul. des Prairies , Laval , Quebec H7V 1B7 , Canada
| | - Annie Castonguay
- INRS-Institut Armand-Frappier , Université du Québec , 531 boul. des Prairies , Laval , Quebec H7V 1B7 , Canada
| |
Collapse
|
23
|
Zhou BG, Zhang LN. The crystal structure of 1-(5-ferrocenyl-3-(trifluoromethyl)-1 H-pyrazol-1-yl)pentan-1-on, C 19H 19F 3FeN 2O. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2017-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C19H19F3FeN2O, monoclinic, P21/c (no. 14), a = 10.9948(6) Å, b = 21.9829(10) Å, c = 7.8962(4) Å, β = 108.643(2)° V = 1808.35(16) Å3, Z = 4, R
gt(F) = 0.0380, wR
ref(F
2) = 0.0934, T = 273(2) K.
Collapse
Affiliation(s)
- Ben-Guo Zhou
- Institute of Tobacoo Research, Anhui Academy of Agricultural Sciences , Hefei 230001 , People’s Repulic of China
| | - Li-Na Zhang
- Anhui Provincinal Corporation of China National Tobacoo Corporation , Hefei 230071 , People’s Repulic of China
| |
Collapse
|
24
|
Heras BL, Amesty Á, Estévez-Braun A, Hortelano S. Metal Complexes of Natural Product Like-compounds with Antitumor Activity. Anticancer Agents Med Chem 2018; 19:48-65. [PMID: 29692264 DOI: 10.2174/1871520618666180420165821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 01/17/2023]
Abstract
Cancer continues to be one of the major causes of death worldwide. Despite many advances in the understanding of this complex disease, new approaches are needed to improve the efficacy of current therapeutic treatments against aggressive tumors. Natural products are one of the most consistently successful sources of drug leads. In recent decades, research activity into the clinical potential of this class of compounds in cancer has increased. Furthermore, a highly promising field is the use of metals and their complexes in the design and development of metal-based drugs for the treatment of cancer. Metal complexes offer unique opportunities due to their ability to alter pharmacology, improving the efficacy and/or reducing the negative side effects of drug molecules. In addition, transition metals as copper, iron, and manganese, among others, can interact with active sites of enzymes, playing important roles in multiple biological processes. Thus, these complexes not only possess higher activities but also reach their targets more efficiently. This review article highlights recent advances on the emerging and expanding field of metal-based drugs. The emphasis is on new therapeutic strategies consisting of metal complexes with natural product like-compounds as a starting point for the rational design of new antitumor agents.
Collapse
Affiliation(s)
- Beatriz L Heras
- Departamento de Farmacologia. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ángel Amesty
- Departamento de Quimica Organica, Instituto Universitario de Bio-Organica Antonio Gonzalez, Universidad de La Laguna. Avda. Astrofisico Fco. Sanchez 2. 38206. La Laguna, Tenerife, Spain
| | - Ana Estévez-Braun
- Departamento de Quimica Organica, Instituto Universitario de Bio-Organica Antonio Gonzalez, Universidad de La Laguna. Avda. Astrofisico Fco. Sanchez 2. 38206. La Laguna, Tenerife, Spain
| | - Sonsoles Hortelano
- Unidad de Terapias Farmacologicas. Area de Genetica Humana. Instituto de Investigacion de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Thota S, Rodrigues DA, Crans DC, Barreiro EJ. Ru(II) Compounds: Next-Generation Anticancer Metallotherapeutics? J Med Chem 2018; 61:5805-5821. [PMID: 29446940 DOI: 10.1021/acs.jmedchem.7b01689] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal based therapeutics are a precious class of drugs in oncology research that include examples of theranostic drugs, which are active in both diagnostic, specifically imaging, and therapeutics applications. Ruthenium compounds have shown selective bioactivity and the ability to overcome the resistance that platinum-based therapeutics face, making them effective oncotherapeutic competitors in rational drug invention approaches. The development of antineoplastic ruthenium therapeutics is of particular interest because ruthenium containing complexes NAMI-A, KP1019, and KP1339 entered clinical trials and DW1/2 is in preclinical levels. The very robust, conformationally rigid organometallic Ru(II) compound DW1/2 is a protein kinase inhibitor and presents new Ru(II) compound designs as anticancer agents. Over the recent years, numerous strategies have been used to encapsulate Ru(II) derived compounds in a nanomaterial system, improving their targeting and delivery into neoplastic cells. A new photodynamic therapy based Ru(II) therapeutic, TLD-1433, has also entered clinical trials. Ru(II)-based compounds can also be photosensitizers for photodynamic therapy, which has proven to be an effective new, alternative, and noninvasive oncotherapy modality.
Collapse
Affiliation(s)
- Sreekanth Thota
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz, Ministério da Saúde, Av. Brazil 4036, Prédio da Expansão, 8° Andar, Sala 814, Manguinhos , 21040-361 Rio de Janeiro , RJ , Brazil.,Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences , Federal University of Rio de Janeiro (UFRJ) , P.O. Box 68023, 21941-902 Rio de Janeiro , RJ , Brazil
| | - Daniel A Rodrigues
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences , Federal University of Rio de Janeiro (UFRJ) , P.O. Box 68023, 21941-902 Rio de Janeiro , RJ , Brazil
| | - Debbie C Crans
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Eliezer J Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences , Federal University of Rio de Janeiro (UFRJ) , P.O. Box 68023, 21941-902 Rio de Janeiro , RJ , Brazil
| |
Collapse
|
26
|
Deka B, Bhattacharyya A, Mukherjee S, Sarkar T, Soni K, Banerjee S, Saikia KK, Deka S, Hussain A. Ferrocene conjugated copper(II) complexes of terpyridine and traditional Chinese medicine (TCM) anticancer ligands showing selective toxicity towards cancer cells. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Banashree Deka
- Department of Chemistry; Handique Girls’ College; Guwahati 781001 Assam India
| | - Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore 560012 Karnataka India
| | - Sanjoy Mukherjee
- School of Chemical Engineering; Purdue University; West Lafayette Indiana 47907 USA
| | - Tukki Sarkar
- Department of Chemistry; Handique Girls’ College; Guwahati 781001 Assam India
| | - Kiran Soni
- Department of Chemistry; University of Delhi; North Campus Delhi 110007 India
| | - Samya Banerjee
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
| | - Kandarpa K. Saikia
- Department of Bioengineering and Technology, GUIST; Gauhati University; Guwahati 781014 Assam India
| | - Sasanka Deka
- Department of Chemistry; University of Delhi; North Campus Delhi 110007 India
| | - Akhtar Hussain
- Department of Chemistry; Handique Girls’ College; Guwahati 781001 Assam India
| |
Collapse
|
27
|
Guo Y, Wang SQ, Ding ZQ, Zhou J, Ruan BF. Synthesis, characterization and antitumor activity of novel ferrocene bisamide derivatives containing pyrimidine-moiety. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
28
|
Winter I, Lockhauserbäumer J, Lallinger-Kube G, Schobert R, Ersfeld K, Biersack B. Anti-trypanosomal activity of cationic N -heterocyclic carbene gold(I) complexes. Mol Biochem Parasitol 2017; 214:112-120. [DOI: 10.1016/j.molbiopara.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022]
|
29
|
Ahmad A, Mahal K, Padhye S, Sarkar FH, Schobert R, Biersack B. New ferrocene modified lawsone Mannich bases with anti-proliferative activity against tumor cells. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2016.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
A survey of the mechanisms of action of anticancer transition metal complexes. Future Med Chem 2016; 8:2263-2286. [DOI: 10.4155/fmc-2016-0153] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metal complexes have been the subject of numerous investigations in oncology but, despite the plethora of newly synthesized compounds, their precise mechanisms of action remain generally unknown or, for the best, incompletely determined. The continuous development of efficient and sensitive techniques in analytical chemistry and molecular biology gives scientists new tools to gather information on how metal complexes can be effective toward cancer. This review focuses on recent findings about the anticancer mechanism of action of metal complexes and how the ligands can be used to tune their pharmacological and physicochemical properties.
Collapse
|
31
|
Schmitt F, Draut H, Biersack B, Schobert R. Halogenated naphthochalcones and structurally related naphthopyrazolines with antitumor activity. Bioorg Med Chem Lett 2016; 26:5168-5171. [PMID: 27727127 DOI: 10.1016/j.bmcl.2016.09.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/27/2022]
Abstract
Three 3-(3-halo-4,5-dimethoxyphenyl)-1-(2-naphthyl)prop-2-en-1-ones 1 and three structurally related 2-pyrazolines 2 were prepared and assessed in vitro for anticancer activity. The chalcones 1 were antiproliferative with low double-digit micromolar IC50 values against six tumor cell lines whereas the pyrazolines 2 showed low single-digit micromolar IC50 values against this panel. The pyrazolines inhibited ATP-binding cassette efflux transporters of types P-gp and BCRP while the chalcones inhibited selectively BCRP. All test compounds induced an accumulation of HT-29 colon carcinoma cells in the G2/M phase of the cell cycle and they interfered with the microtubule and F-actin dynamics, but only the chalcones induced apoptosis in 518A2 melanoma cells after 24h.
Collapse
Affiliation(s)
- Florian Schmitt
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Heidrun Draut
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany.
| |
Collapse
|
32
|
Muenzner JK, Ahmad A, Rothemund M, Schrüfer S, Padhye S, Sarkar FH, Schobert R, Biersack B. Ferrocene-substituted 3,3′-diindolylmethanes with improved anticancer activity. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Julienne K. Muenzner
- Organic Chemistry Laboratory; University of Bayreuth; Universitaetsstrasse 30 95440 Bayreuth Germany
| | - Aamir Ahmad
- Karmanos Cancer Institute; Wayne State University School of Medicine; Detroit MI 48201 USA
| | - Matthias Rothemund
- Organic Chemistry Laboratory; University of Bayreuth; Universitaetsstrasse 30 95440 Bayreuth Germany
| | - Sebastian Schrüfer
- Organic Chemistry Laboratory; University of Bayreuth; Universitaetsstrasse 30 95440 Bayreuth Germany
| | - Subhash Padhye
- Abeda Inamdar Senior College; University of Pune; 2390 K. B. Hidayatullah Road , Azam Campus Pune 411 001 India
| | - Fazlul H. Sarkar
- Karmanos Cancer Institute; Wayne State University School of Medicine; Detroit MI 48201 USA
| | - Rainer Schobert
- Organic Chemistry Laboratory; University of Bayreuth; Universitaetsstrasse 30 95440 Bayreuth Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory; University of Bayreuth; Universitaetsstrasse 30 95440 Bayreuth Germany
| |
Collapse
|
33
|
Sumsakul W, Karbwang J, Na-Bangchang K. Application of SPECT/CT imaging system and radiochemical analysis for investigation of blood kinetics and tissue distribution of radiolabeled plumbagin in healthy and Plasmodium berghei-infected mice. Exp Parasitol 2016; 161:54-61. [DOI: 10.1016/j.exppara.2015.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/13/2015] [Accepted: 12/06/2015] [Indexed: 12/20/2022]
|
34
|
Muenzner JK, Rehm T, Biersack B, Casini A, de Graaf IAM, Worawutputtapong P, Noor A, Kempe R, Brabec V, Kasparkova J, Schobert R. Adjusting the DNA Interaction and Anticancer Activity of Pt(II) N-Heterocyclic Carbene Complexes by Steric Shielding of the Trans Leaving Group. J Med Chem 2015; 58:6283-92. [DOI: 10.1021/acs.jmedchem.5b00896] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | - Angela Casini
- Department
of Pharmacokinetics, Toxicology and Targeting, Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Inge A. M. de Graaf
- Department
of Pharmacokinetics, Toxicology and Targeting, Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pawida Worawutputtapong
- Department
of Pharmacokinetics, Toxicology and Targeting, Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | - Viktor Brabec
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic
| | - Jana Kasparkova
- Department
of Biophysics, Faculty of Science, Palacky University, 17. listopadu
12, CZ-77146 Olomouc, Czech Republic
| | | |
Collapse
|