1
|
Zhou J, Lin WH, Yu YL, Dong CD, Zhang H, Hu Z, Kao CM. Transitioning weathered oil fields towards new energy: A review on utilizing hydrogenotrophic methanogens for petroleum hydrocarbons remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135279. [PMID: 39047569 DOI: 10.1016/j.jhazmat.2024.135279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/06/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The weathering process can cause the volatilization of light components in crude oil, leading to the accumulation of total petroleum hydrocarbons (TPH) in weathered oil field soils. These TPH compounds are relatively resistant to biodegradation, posing a significant environmental hazard by contributing to soil degradation. TPH represents a complex mixture of petroleum-based hydrocarbons classified as persistent organic pollutants in soil and groundwater. The release of TPH pollutants into the environment poses serious threats to ecosystems and human health. Currently, various methods are available for TPH-contaminated soil remediation, with bioremediation technology recognized as an environmentally friendly and cost-effective approach. While converting TPH to CO2 is a common remediation method, the complex structures and diverse types of petroleum hydrocarbons (PHs) involved can result in excessive CO2 generation, potentially exacerbating the greenhouse effect. Alternatively, transforming TPH into energy forms like methane through bioremediation, followed by collection and reuse, can reduce greenhouse gas emissions and energy consumption. This process relies on the synergistic interaction between Methanogens archaea and syntrophic bacteria, forming a consortium known as the oil-degrading bacterial consortium. Methanogens produce methane through anaerobic digestion (AD), with hydrogenotrophic methanogens (HTMs) utilizing H2 as an electron donor, playing a crucial role in biomethane production. Candidatus Methanoliparia (Ca. Methanoliparia) was found in the petroleum archaeal community of weathered Oil field in northeast China. Ca. Methanoliparia has demonstrated its independent ability to decompose and produce new energy (biomethane) without symbiosis, contribute to transitioning weathered oil fields towards new energy. Therefore, this review focuses on the principles, mechanisms, and developmental pathways of HTMs during new energy production in the degradation of PHs. It also discusses strategies to enhance TPH degradation and recovery methods.
Collapse
Affiliation(s)
- Jiaping Zhou
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Wei-Han Lin
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Ying-Liang Yu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Haibing Zhang
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Zhongtao Hu
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Australia
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Zhang M, Fan D, Pan L, Su C, Li Z, Liu C, He Q. Characterization and removal mechanism of a novel enrofloxacin-degrading microorganism, Microbacterium proteolyticum GJEE142 capable of simultaneous removal of enrofloxacin, nitrogen and phosphorus. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131452. [PMID: 37104955 DOI: 10.1016/j.jhazmat.2023.131452] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/19/2023]
Abstract
In the study, a novel ENR-degrading microorganism, Microbacterium proteolyticum GJEE142 was isolated from aquaculture wastewater for the first time. The ENR removal of strain GJEE142 was reliant upon the provision of limited additional carbon source, and was adaptative to low temperature (13 ℃) and high salinity (50‰). The ENR removal process, to which intracellular enzymes made more contributions, was implemented in three proposed pathways. During the removal process, oxidative stress response of strain GJEE142 was activated and the bacterial toxicity of ENR was decreased. Strain GJEE142 could also achieve the synchronous removal of ammonium, nitrite, nitrate and phosphorus with the nitrogen removal pathways of nitrate → nitrite → ammonium → glutamine → glutamate → glutamate metabolism and nitrate → nitrite → gaseous nitrogen. The phosphorus removal was implemented under complete aerobic conditions with the assistance of polyphosphate kinase and exopolyphosphatase. Genomic analysis provided corresponding genetic insights for deciphering removal mechanisms of ENR, nitrogen and phosphorus. ENR, nitrogen and phosphorus in both actual aquaculture wastewater and domestic wastewater could be desirably removed. Desirable adaptation, excellent performance and wide distribution will make strain GJEE142 the hopeful strain in wastewater treatment.
Collapse
Affiliation(s)
- Mengyu Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Depeng Fan
- Bio-Form Biotechnology (Guangdong) Co., LTD, Foshan, Guangdong 528200, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Chen Su
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zilu Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Chang Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qili He
- Bio-Form Biotechnology (Guangdong) Co., LTD, Foshan, Guangdong 528200, China
| |
Collapse
|
3
|
Winiarska A, Ramírez-Amador F, Hege D, Gemmecker Y, Prinz S, Hochberg G, Heider J, Szaleniec M, Schuller JM. A bacterial tungsten-containing aldehyde oxidoreductase forms an enzymatic decorated protein nanowire. SCIENCE ADVANCES 2023; 9:eadg6689. [PMID: 37267359 PMCID: PMC10413684 DOI: 10.1126/sciadv.adg6689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Aldehyde oxidoreductases (AORs) are tungsten enzymes catalyzing the oxidation of many different aldehydes to the corresponding carboxylic acids. In contrast to other known AORs, the enzyme from the denitrifying betaproteobacterium Aromatoleum aromaticum (AORAa) consists of three different subunits (AorABC) and uses nicotinamide adenine dinucleotide (NAD) as an electron acceptor. Here, we reveal that the enzyme forms filaments of repeating AorAB protomers that are capped by a single NAD-binding AorC subunit, based on solving its structure via cryo-electron microscopy. The polyferredoxin-like subunit AorA oligomerizes to an electron-conducting nanowire that is decorated with enzymatically active and W-cofactor (W-co) containing AorB subunits. Our structure further reveals the binding mode of the native substrate benzoate in the AorB active site. This, together with quantum mechanics:molecular mechanics (QM:MM)-based modeling for the coordination of the W-co, enables formulation of a hypothetical catalytic mechanism that paves the way to further engineering for applications in synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Agnieszka Winiarska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Fidel Ramírez-Amador
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg, Germany
| | - Dominik Hege
- Faculty of Biology, Philipps-University of Marburg, Marburg, Germany
| | - Yvonne Gemmecker
- Faculty of Biology, Philipps-University of Marburg, Marburg, Germany
| | - Simone Prinz
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Georg Hochberg
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Johann Heider
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg, Germany
- Faculty of Biology, Philipps-University of Marburg, Marburg, Germany
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Jan Michael Schuller
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
4
|
Nandy A, Adamji H, Kastner DW, Vennelakanti V, Nazemi A, Liu M, Kulik HJ. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Tang T, Liu M, Chen Y, Du Y, Feng J, Feng H. Influence of sulfamethoxazole on anaerobic digestion: Methanogenesis, degradation mechanism and toxicity evolution. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128540. [PMID: 35220120 DOI: 10.1016/j.jhazmat.2022.128540] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Sulfamethoxazole (SMX), one of the most widely used sulfonamides antibiotics, is frequently detected in the livestock wastewater. Currently, the focus needs to shift from performance effects to understanding of mechanisms and intermediate toxicity analysis. Our study found that SMX (0.5, 1, and 2 mg/L) stimulated methane production by promoting the process of acetogenesis and homo-acetogenesis. Since 1 mg/L SMX could inhibit the transformation of butyric acid, thus, the stimulation of methane was weak under this condition. Under anaerobic conditions, acetate kinase (AK) and cytochrome P450 enzymes (CYP450) continued to participate in SMX degradation. The increase in SMX concentration affected the release of metabolic enzymes, causing changes in SMX degradation pathways. Based on the main biotransformation products, five biotransformation pathways were proposed, the major transformation reactions including hydroxylation, hydrogenation, acetylation, deamination, oxidation, the elimination of oxygen atoms on sulfonyl, isoxazole ring and NS bond cleavage. Toxicity prediction analysis showed that the toxicities of most SMX transformation products were lower than that of SMX.
Collapse
Affiliation(s)
- Taotao Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Jieling Feng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Haoran Feng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
6
|
Habib U. Insight in the methylene C-H bond cleavage of ethylbenzene during ethylbenzene hydroxylation using EBDH as a catalyst, a DFT studies. CAN J CHEM 2022. [DOI: 10.1139/cjc-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydroxylation of ethylbenzene to (S)-1-phenylethanol with the help of Ethylbenzene dehydrogenase (EBDH) is a stereospecific catalytic reaction. This hydroxylation process involves the C-H bond cleavage of methylene part of ethylbenzene and transfer of its hydrogen to the oxygen atom attached with the metal at the active site of EBDH as a first step which leads to the formation of an intermediate. The second step involves the transfer of OH from the active site metal back to the carbon of intermediate resulting in the formation of (S)-1-phenylethanol. This C-H bond cleavage could be homolytic or heterolytic and directly affect the reaction mechanism of ethylbenzene hydroxylation. In this article, Density Functional Theory (DFT) studies were performed on the ethylbenzene bound EBDH active site model complexes to investigate the impact of C-H bond cleavage of methylene part of ethylbenzene on the reaction mechanism of ethylbenzene hydroxylation. For this, different protonation states and participation of amino acid residues near the Mo center of EBDH were considered. Models with protonation of His192, Lys450, Asp223, and model without protonation were investigated for comparison. Computed relative energies indicate that the overall lowest energy barrier pathway results when ionic (heterolytic) and radical (homolytic) pathways are combined.
Collapse
Affiliation(s)
- Uzma Habib
- National University of Sciences and Technology, 66959, SINES, Islamabad, Pakistan
| |
Collapse
|
7
|
Le CC, Bae M, Kiamehr S, Balskus EP. Emerging Chemical Diversity and Potential Applications of Enzymes in the DMSO Reductase Superfamily. Annu Rev Biochem 2022; 91:475-504. [PMID: 35320685 DOI: 10.1146/annurev-biochem-032620-110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molybdenum- and tungsten-dependent proteins catalyze essential processes in living organisms and biogeochemical cycles. Among these enzymes, members of the dimethyl sulfoxide (DMSO) reductase superfamily are considered the most diverse, facilitating a wide range of chemical transformations that can be categorized as oxygen atom installation, removal, and transfer. Importantly, DMSO reductase enzymes provide high efficiency and excellent selectivity while operating under mild conditions without conventional oxidants such as oxygen or peroxides. Despite the potential utility of these enzymes as biocatalysts, such applications have not been fully explored. In addition, the vast majority of DMSO reductase enzymes still remain uncharacterized. In this review, we describe the reactivities, proposed mechanisms, and potential synthetic applications of selected enzymes in the DMSO reductase superfamily. We also highlight emerging opportunities to discover new chemical activity and current challenges in studying and engineering proteins in the DMSO reductase superfamily. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Chi Chip Le
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Minwoo Bae
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Sina Kiamehr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
8
|
Hagel C, Blaum B, Friedrich T, Heider J. Characterisation of the redox centers of ethylbenzene dehydrogenase. J Biol Inorg Chem 2021; 27:143-154. [PMID: 34843002 PMCID: PMC8840923 DOI: 10.1007/s00775-021-01917-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023]
Abstract
Ethylbenzene dehydrogenase (EbDH), the initial enzyme of anaerobic ethylbenzene degradation from the beta-proteobacterium Aromatoleum aromaticum, is a soluble periplasmic molybdenum enzyme consisting of three subunits. It contains a Mo-bis-molybdopterin guanine dinucleotide (Mo-bis-MGD) cofactor and an 4Fe-4S cluster (FS0) in the α-subunit, three 4Fe-4S clusters (FS1 to FS3) and a 3Fe-4S cluster (FS4) in the β-subunit and a heme b cofactor in the γ-subunit. Ethylbenzene is hydroxylated by a water molecule in an oxygen-independent manner at the Mo-bis-MGD cofactor, which is reduced from the MoVI to the MoIV state in two subsequent one-electron steps. The electrons are then transferred via the Fe-S clusters to the heme b cofactor. In this report, we determine the midpoint redox potentials of the Mo-bis-MGD cofactor and FS1-FS4 by EPR spectroscopy, and that of the heme b cofactor by electrochemically induced redox difference spectroscopy. We obtained relatively high values of > 250 mV both for the MoVI-MoV redox couple and the heme b cofactor, whereas FS2 is only reduced at a very low redox potential, causing magnetic coupling with the neighboring FS1 and FS3. We compare the results with the data on related enzymes and interpret their significance for the function of EbDH.
Collapse
Affiliation(s)
- Corina Hagel
- Labor für Mikrobielle Biochemie and Synmikro Zentrum für Synthetische Mikrobiologie, Philipps Universität Marburg, 35043, Marburg, Germany
| | - Bärbel Blaum
- Institut für Biochemie, Albert-Ludwigs Universität, Albertstr. 21, 79104, Freiburg im Breisgau, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs Universität, Albertstr. 21, 79104, Freiburg im Breisgau, Germany.
| | - Johann Heider
- Labor für Mikrobielle Biochemie and Synmikro Zentrum für Synthetische Mikrobiologie, Philipps Universität Marburg, 35043, Marburg, Germany.
| |
Collapse
|
9
|
Yan Y, Deng Y, Li W, Du W, Gu Y, Li J, Xu X. Phytoremediation of antibiotic-contaminated wastewater: Insight into the comparison of ciprofloxacin absorption, migration, and transformation process at different growth stages of E. crassipes. CHEMOSPHERE 2021; 283:131192. [PMID: 34144294 DOI: 10.1016/j.chemosphere.2021.131192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/16/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The selection of aquatic plants at different growth stages and their absorption, migration, and transformation mechanisms has yet to be clarified. In this study, Eichhornia crassipes at the seedling and mature stages were selected to uptake antibiotics under hydroponic conditions. The results showed that the enrichment of ciprofloxacin (CIP) in roots at the seedling and mature stages were 7.72~2114.39 μg g-1 and 0.07~3711.33 μg g-1, respectively. The enrichment of CIP in aerial parts at the seedling and mature stages were 16.38~24.24 μg g-1 and 9.55~20.13 μg g-1, respectively. The translocation from roots to aerial parts at the seedling stage was high, as evidenced by the relatively higher transfer factor (TF). In addition, eight and ten major metabolic products were observed in the tissues of seeding and mature stage of E. crassipes, respectively. The metabolic pathway of CIP was short at the maturity stage, and CIP had a strong upward migration ability at the seedling stage, facilitating long-time photodegradation. However, E. crassipes exhibited a poor CIP tolerance at the mature stage and decayed relatively early. Therefore, the seedling stage of E. crassipes was proposed to be applied for phytoremediation, and these findings might improve the ability to phytoremediation of antibiotic-contaminated water.
Collapse
Affiliation(s)
- Yan Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yang Deng
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Wenjing Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Wei Du
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yangyang Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jiayi Li
- College of Zhong Bei, Nanjing Normal University, Zhenjiang, 210046, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Fang H, Oberoi AS, He Z, Khanal SK, Lu H. Ciprofloxacin-degrading Paraclostridium sp. isolated from sulfate-reducing bacteria-enriched sludge: Optimization and mechanism. WATER RESEARCH 2021; 191:116808. [PMID: 33454651 DOI: 10.1016/j.watres.2021.116808] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Ciprofloxacin (CIP), one of the most widely used fluoroquinolone antibiotics, is frequently detected in the effluents of wastewater treatment plants and aquatic environments. In this study, a CIP-degrading bacterial strain was isolated from the sulfate reducing bacteria (SRB)-enriched sludge, identified as Paraclostridium sp. (i.e., strain S2). The effects of critical operational parameters on CIP removal by the strain S2 were systematically studied and these parameters were optimized via response surface methodology to maximize CIP removal. Furthermore, the pathway and kinetics of CIP removal were investigated by varying the initial CIP concentrations (from 0.1 to 20 mg/L). The CIP removal was characterized by rapid sorption followed by biotransformation with a specific biotransformation rate of 1975.7 ± 109.1 µg/g-cell dry weight/h at an initial CIP concentration of 20 mg/L. Based on the main transformation products, several biotransformation pathways have been proposed including piperazine ring cleavage, OH/F substitution, decarboxylation, and hydroxylation as the major transformation reactions catalyzed by cytochrome P450 and dehydrogenases. Acute toxicity assessment apparently shows that CIP biotransformation by strain S2 resulted in the formation of less toxic intermediates. To the best of our knowledge, this is the very first study in which a key functional microbe, Paraclostridium sp., highly effective in CIP biotransformation, was isolated from SRB-enriched sludge. The findings of this study could facilitate in developing appropriate bioaugmentation strategy, and in designing and operating an SRB-based engineered process for treating CIP-laden wastewater.
Collapse
Affiliation(s)
- Heting Fang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, China
| | - Akashdeep Singh Oberoi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, China
| | - Zhiqing He
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
11
|
Wei WJ, Qian HX, Wang WJ, Liao RZ. Computational Understanding of the Selectivities in Metalloenzymes. Front Chem 2018; 6:638. [PMID: 30622942 PMCID: PMC6308299 DOI: 10.3389/fchem.2018.00638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/07/2018] [Indexed: 01/26/2023] Open
Abstract
Metalloenzymes catalyze many different types of biological reactions with high efficiency and remarkable selectivity. The quantum chemical cluster approach and the combined quantum mechanics/molecular mechanics methods have proven very successful in the elucidation of the reaction mechanism and rationalization of selectivities in enzymes. In this review, recent progress in the computational understanding of various selectivities including chemoselectivity, regioselectivity, and stereoselectivity, in metalloenzymes, is discussed.
Collapse
Affiliation(s)
| | | | | | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Szaleniec M, Wojtkiewicz AM, Bernhardt R, Borowski T, Donova M. Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms. Appl Microbiol Biotechnol 2018; 102:8153-8171. [PMID: 30032434 PMCID: PMC6153880 DOI: 10.1007/s00253-018-9239-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
Abstract
The steroid superfamily includes a wide range of compounds that are essential for living organisms of the animal and plant kingdoms. Structural modifications of steroids highly affect their biological activity. In this review, we focus on hydroxylation of steroids by bacterial hydroxylases, which take part in steroid catabolic pathways and play an important role in steroid degradation. We compare three distinct classes of metalloenzymes responsible for aerobic or anaerobic hydroxylation of steroids, namely: cytochrome P450, Rieske-type monooxygenase 3-ketosteroid 9α-hydroxylase, and molybdenum-containing steroid C25 dehydrogenases. We analyze the available literature data on reactivity, regioselectivity, and potential application of these enzymes in organic synthesis of hydroxysteroids. Moreover, we describe mechanistic hypotheses proposed for all three classes of enzymes along with experimental and theoretical evidences, which have provided grounds for their formulation. In case of the 3-ketosteroid 9α-hydroxylase, such a mechanistic hypothesis is formulated for the first time in the literature based on studies conducted for other Rieske monooxygenases. Finally, we provide comparative analysis of similarities and differences in the reaction mechanisms utilized by bacterial steroid hydroxylases.
Collapse
Affiliation(s)
- Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland.
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Rita Bernhardt
- Lehrstuhl für Biochemie, Universität des Saarlandes, Campus B2 2, 66123, Saarbrücken, Germany
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Marina Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Oblast, 142290, Russia
| |
Collapse
|
13
|
Masbou J, Meite F, Guyot B, Imfeld G. Enantiomer-specific stable carbon isotope analysis (ESIA) to evaluate degradation of the chiral fungicide Metalaxyl in soils. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:99-107. [PMID: 29649698 DOI: 10.1016/j.jhazmat.2018.03.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 05/21/2023]
Abstract
Chiral pesticides are often degraded enantioselectively in soils, leading to disparity among enantiomers that may display different toxicity levels. Monitoring pesticide degradation extents and processes remains out of reach in the field using conventional bulk and enantiomer concentration analyses. Enantioselective stable carbon isotope analysis (ESIA) combines compound specific isotope analysis (CSIA) and enantioselective analysis, and bears potential to distinguish enantiomer degradation from non-destructive dissipation. We developed ESIA of the fungicide Metalaxyl, providing the 13C/12C ratios for S-Metalaxyl and R-Metalaxyl separately, and applied it to follow degradation in soil incubation experiments. Significant enantioselective degradation (kS-MTY = 0.007-0.011 day-1 < kR-MTY = 0.03-0.07 day-1) was associated with isotope fractionation (Δδ13CS-MTY ranging from 2 to 6‰). While R-Metalaxyl degradation was rapid (T1/2≈10 days), concomitant enrichment in heavy isotopes of the persistent S-Metalaxyl occurred after 200 days of incubation (εS-Metalaxyl ranging from -1.3 to -2.7‰). In contrast, initial racemic ratios and isotopic compositions were conserved in abiotic experiments, which indicates the predominance of microbial degradation in soils. Degradation products analysis and apparent kinetic isotope effect (AKIE) suggested hydroxylation as a major enantioselective degradation pathway in our soils. Altogether, our study underscores the potential of ESIA to evaluate the degradation extent and mechanisms of chiral micropollutants in soils.
Collapse
Affiliation(s)
- Jérémy Masbou
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/EOST, CNRS, 1 rue Blessig, 67084 Strasbourg Cedex, France
| | - Fatima Meite
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/EOST, CNRS, 1 rue Blessig, 67084 Strasbourg Cedex, France
| | - Benoît Guyot
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/EOST, CNRS, 1 rue Blessig, 67084 Strasbourg Cedex, France
| | - Gwenaël Imfeld
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/EOST, CNRS, 1 rue Blessig, 67084 Strasbourg Cedex, France.
| |
Collapse
|
14
|
Jimenez-Halla JOC, Nazemi A, Cundari TR. DFT study of substituent effects in the hydroxylation of methane and toluene mediated by an ethylbenzene dehydrogenase active site model. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Kalimuthu P, Wojtkiewicz AM, Szaleniec M, Bernhardt PV. Electrocatalytic Hydroxylation of Sterols by Steroid C25 Dehydrogenase from Sterolibacterium denitrificans. Chemistry 2018; 24:7710-7717. [PMID: 29573289 DOI: 10.1002/chem.201800616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Indexed: 12/20/2022]
Abstract
The electrochemically driven catalysis of the complex molybdoenzyme steroid C25 dehydrogenase (S25DH) from the β-Proteobacterium Sterolibacterium denitrificans is reported. S25DH catalyses the oxygen-independent regioselective hydroxylation of the tertiary C25 atom of sterols and also their derivatives. Cholest-4-en-3-one is a native substrate for S25DH, which produces 25-hydroxycholest-4-en-3-one as a product of catalytic turnover. Cholecalciferol (vitD3 ) is also a substrate. S25DH was immobilised on a modified gold working electrode with the co-adsorbent chitosan. The complexes ferricyanide ([Fe(CN)6 ]3- ) and ferrocenium methanol (FM+ ) are effective artificial electron acceptors from S25DH and act as mediators of electron transfer between the electrode and the enzyme. 2-Hydroxypropyl-β-cyclodextrin (HPCD) was employed as a sterol solubiliser, in addition to 2-methoxyethanol. The catalytic activity varied, depending upon the concentration of solubiliser in the reaction mixture. Parallel studies with [Fe(CN)6 ]3- as a chemical (as opposed to electrochemical) oxidant coupled to HPLC analysis show that S25DH is capable of oxidising both vitD3 and its less stable isomer, pre-vitD3 , and that the former substrate is stabilised by HPCD.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30 239, Krakow, Poland
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30 239, Krakow, Poland
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
16
|
|
17
|
Nazemi A, Cundari TR. Control of C-H Bond Activation by Mo-Oxo Complexes: pK a or Bond Dissociation Free Energy (BDFE)? Inorg Chem 2017; 56:12319-12327. [PMID: 28945088 DOI: 10.1021/acs.inorgchem.7b01738] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A density functional theory (DFT) study (BMK/6-31+G(d)) was initiated to investigate the activation of benzylic carbon-hydrogen bonds by a molybdenum-oxo complex with a potentially redox noninnocent supporting ligand-a simple mimic of the active species of the enzyme ethylbenzene dehydrogenase (EBDH)-through deprotonation (C-H bond heterolysis) or hydrogen atom abstraction (C-H bond homolysis) routes. Activation free-energy barriers for neutral and anionic Mo-oxo complexes were high, but lower for anionic complexes than neutral complexes. Interesting trends as a function of substituents were observed that indicated significant Hδ+ character in the transition states (TS), which was further supported by the preference for [2 + 2] addition over HAA for most complexes. Hence, it was hypothesized that C-H activation by these EBDH mimics is controlled more by the pKa than by the bond dissociation free energy of the C-H bond being activated. Therefore, the results suggest promising pathways for designing more efficient and selective catalysts for hydrocarbon oxidation based on EBDH active-site mimics.
Collapse
Affiliation(s)
- Azadeh Nazemi
- Department of Chemistry, Center of Advanced Scientific Computing and Modeling (CASCaM), University of North Texas , 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Thomas R Cundari
- Department of Chemistry, Center of Advanced Scientific Computing and Modeling (CASCaM), University of North Texas , 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| |
Collapse
|
18
|
Rugor A, Wójcik-Augustyn A, Niedzialkowska E, Mordalski S, Staroń J, Bojarski A, Szaleniec M. Reaction mechanism of sterol hydroxylation by steroid C25 dehydrogenase - Homology model, reactivity and isoenzymatic diversity. J Inorg Biochem 2017; 173:28-43. [PMID: 28482186 DOI: 10.1016/j.jinorgbio.2017.04.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/29/2022]
Abstract
Steroid C25 dehydrogenase (S25DH) is a molybdenum-containing oxidoreductase isolated from the anaerobic Sterolibacterium denitrificans Chol-1S. S25DH is classified as 'EBDH-like' enzyme (EBDH, ethylbenzene dehydrogenase) and catalyzes the introduction of an OH group to the C25 atom of a sterol aliphatic side-chain. Due to its regioselectivity, S25DH is proposed as a catalyst in production of pharmaceuticals: calcifediol or 25-hydroxycholesterol. The aim of presented research was to obtain structural model of catalytic subunit α and investigate the reaction mechanism of the O2-independent tertiary carbon atom activation. Based on homology modeling and theoretical calculations, a S25DH α subunit model was for the first time characterized and compared to other S25DH-like isoforms. The molecular dynamics simulations of the enzyme-substrate complexes revealed two stable binding modes of a substrate, which are stabilized predominantly by van der Waals forces in the hydrophobic substrate channel. However, H-bond interactions involving polar residues with C3=O/C3-OH in the steroid ring appear to be responsible for positioning the substrate. These results may explain the experimental kinetic results which showed that 3-ketosterols are hydroxylated 5-10-fold faster than 3-hydroxysterols. The reaction mechanism was studied using QM:MM and QM-only cluster models. The postulated mechanism involves homolytic CH cleavage by the MoO ligand, giving rise to a radical intermediate with product obtained in an OH rebound process. The hypothesis was supported by kinetic isotopic effect (KIE) experiments involving 25,26,26,26-[2H]-cholesterol (4.5) and the theoretically predicted intrinsic KIE (7.0-7.2). Finally, we have demonstrated that the recombinant S25DH-like isoform catalyzes the same reaction as S25DH.
Collapse
Affiliation(s)
- Agnieszka Rugor
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Anna Wójcik-Augustyn
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, JU, Krakow, Poland
| | - Ewa Niedzialkowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Stefan Mordalski
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Jakub Staroń
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland; Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andrzej Bojarski
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
19
|
Tah B, Dutta D, Pal P, Talapatra GB, Mishra S. QM/MM simulation of the amide-I band in the Raman spectrum of insulin. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1170220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Heider J, Szaleniec M, Sünwoldt K, Boll M. Ethylbenzene Dehydrogenase and Related Molybdenum Enzymes Involved in Oxygen-Independent Alkyl Chain Hydroxylation. J Mol Microbiol Biotechnol 2016; 26:45-62. [PMID: 26960184 DOI: 10.1159/000441357] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ethylbenzene dehydrogenase initiates the anaerobic bacterial degradation of ethylbenzene and propylbenzene. Although the enzyme is currently only known from a few closely related denitrifying bacterial strains affiliated to the Rhodocyclaceae, it clearly marks a universally occurring mechanism used for attacking recalcitrant substrates in the absence of oxygen. Ethylbenzene dehydrogenase belongs to subfamily 2 of the DMSO reductase-type molybdenum enzymes together with paralogous enzymes involved in the oxygen-independent hydroxylation of p-cymene, the isoprenoid side chains of sterols and even possibly n-alkanes; the subfamily also extends to dimethylsulfide dehydrogenases, selenite, chlorate and perchlorate reductases and, most significantly, dissimilatory nitrate reductases. The biochemical, spectroscopic and structural properties of the oxygen-independent hydroxylases among these enzymes are summarized and compared. All of them consist of three subunits, contain a molybdenum-bis-molybdopterin guanine dinucleotide cofactor, five Fe-S clusters and a heme b cofactor of unusual ligation, and are localized in the periplasmic space as soluble enzymes. In the case of ethylbenzene dehydrogenase, it has been determined that the heme b cofactor has a rather high redox potential, which may also be inferred for the paralogous hydroxylases. The known structure of ethylbenzene dehydrogenase allowed the calculation of detailed models of the reaction mechanism based on the density function theory as well as QM-MM (quantum mechanics - molecular mechanics) methods, which yield predictions of mechanistic properties such as kinetic isotope effects that appeared consistent with experimental data.
Collapse
Affiliation(s)
- Johann Heider
- Laboratory of Microbial Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps University of Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
21
|
Kalimuthu P, Heider J, Knack D, Bernhardt PV. Electrocatalytic Hydrocarbon Hydroxylation by Ethylbenzene Dehydrogenase from Aromatoleum aromaticum. J Phys Chem B 2015; 119:3456-63. [DOI: 10.1021/jp512562k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry
and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Johann Heider
- Laboratory for
Microbial Biochemistry and Synmikro Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Daniel Knack
- Laboratory for
Microbial Biochemistry and Synmikro Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Paul V. Bernhardt
- School of Chemistry
and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
22
|
Dudzik A, Snoch W, Borowiecki P, Opalinska-Piskorz J, Witko M, Heider J, Szaleniec M. Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum. Appl Microbiol Biotechnol 2014; 99:5055-69. [PMID: 25549618 PMCID: PMC4445480 DOI: 10.1007/s00253-014-6309-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 11/26/2022]
Abstract
Enzyme-catalyzed enantioselective reductions of ketones and keto esters have become popular for the production of homochiral building blocks which are valuable synthons for the preparation of biologically active compounds at industrial scale. Among many kinds of biocatalysts, dehydrogenases/reductases from various microorganisms have been used to prepare optically pure enantiomers from carbonyl compounds. (S)-1-phenylethanol dehydrogenase (PEDH) was found in the denitrifying bacterium Aromatoleum aromaticum (strain EbN1) and belongs to the short-chain dehydrogenase/reductase family. It catalyzes the stereospecific oxidation of (S)-1-phenylethanol to acetophenone during anaerobic ethylbenzene mineralization, but also the reverse reaction, i.e., NADH-dependent enantioselective reduction of acetophenone to (S)-1-phenylethanol. In this work, we present the application of PEDH for asymmetric reduction of 42 prochiral ketones and 11 β-keto esters to enantiopure secondary alcohols. The high enantioselectivity of the reaction is explained by docking experiments and analysis of the interaction and binding energies of the theoretical enzyme-substrate complexes leading to the respective (S)- or (R)-alcohols. The conversions were carried out in a batch reactor using Escherichia coli cells with heterologously produced PEDH as whole-cell catalysts and isopropanol as reaction solvent and cosubstrate for NADH recovery. Ketones were converted to the respective secondary alcohols with excellent enantiomeric excesses and high productivities. Moreover, the progress of product formation was studied for nine para-substituted acetophenone derivatives and described by neural network models, which allow to predict reactor behavior and provides insight on enzyme reactivity. Finally, equilibrium constants for conversion of these substrates were derived from the progress curves of the reactions. The obtained values matched very well with theoretical predictions.
Collapse
Affiliation(s)
- A. Dudzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
| | - W. Snoch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
- Faculty of Chemical Engineering and Technology, Department of Biotechnology and Physical Chemistry, Cracow University of Technology, Warszawska 24 St., 31-155 Krakow, Poland
| | - P. Borowiecki
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - J. Opalinska-Piskorz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
| | - M. Witko
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
| | - J. Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
| | - M. Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
| |
Collapse
|
23
|
Tataruch M, Heider J, Bryjak J, Nowak P, Knack D, Czerniak A, Liesiene J, Szaleniec M. Suitability of the hydrocarbon-hydroxylating molybdenum-enzyme ethylbenzene dehydrogenase for industrial chiral alcohol production. J Biotechnol 2014; 192 Pt B:400-9. [DOI: 10.1016/j.jbiotec.2014.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/23/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|