1
|
Rodríguez-Arce E, Gavrilov E, Alvite X, Nayeem N, León IE, Neary MC, Otero L, Gambino D, Olea Azar C, Contel M. 5-Nitrofuryl-Containing Thiosemicarbazone Gold(I) Compounds: Synthesis, Stability Studies, and Anticancer Activity. Chempluschem 2023; 88:e202300115. [PMID: 37191319 PMCID: PMC10651801 DOI: 10.1002/cplu.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Indexed: 05/17/2023]
Abstract
This work describes the synthesis of four gold(I) [AuClL] compounds containing chloro and biologically active protonated thiosemicarbazones based on 5-nitrofuryl (L=HSTC). The stability of the compounds in dichloromethane, DMSO, and DMSO/culture media solutions was investigated by spectroscopy, cyclic voltammetry, and conductimetry, indicating the formation overtime of cationic monometallic [Au(HTSC)(DMSO)]± or [Au(HTSC)2 ]± , and/or dimeric species. Neutral [{Au(TSC)}2 ] species were obtained from one of the compounds in dichlomethane/n-hexane solution and characterized by X-ray crystallography revealing a Au-Au bond, and deprotonated thiosemicarbazone (TSC). The cytotoxicity of the gold compounds and thiosemicarbazone ligands was evaluated against selected cancer cell lines and compared to that of Auranofin. Studies of the most stable, cytotoxic, and selective compound on a renal cancer cell line (Caki-1) demonstrated its relevant antimigratory and anti-angiogenic properties, and preferential accumulation in the cell nuclei. Its mode of action seems to involve interaction with DNA, and subsequent cell death via apoptosis.
Collapse
Affiliation(s)
- Esteban Rodríguez-Arce
- Departamento de Química Inorgánica y Analítica, Universidad de Chile, Casilla 233, Santiago, Chile
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Eric Gavrilov
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
| | - Ximena Alvite
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Nazia Nayeem
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Biochemistry, and Chemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Ignacio E León
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- CEQUINOR (CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, 1900, Argentina
| | - Michelle C Neary
- Chemistry Department, Hunter College, The City University of New York, New York, NY, 10065, USA
| | - Lucía Otero
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Claudio Olea Azar
- Departamento de Química Inorgánica y Analítica, Universidad de Chile, Casilla 233, Santiago, Chile
| | - María Contel
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Biochemistry, and Chemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| |
Collapse
|
2
|
Martín-Montes Á, Jimenez-Falcao S, Gómez-Ruiz S, Marín C, Mendez-Arriaga JM. First-Row Transition 7-Oxo-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidine Metal Complexes: Antiparasitic Activity and Release Studies. Pharmaceuticals (Basel) 2023; 16:1380. [PMID: 37895851 PMCID: PMC10610057 DOI: 10.3390/ph16101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Leishmaniasis and Chagas disease are still considered neglected illnesses due to the lack of investment in research, despite the fact that almost one million new cases are reported every year. Four 7-oxo-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidine (HftpO) first-row transition complexes (Cu, Co, Ni, Zn) have been studied for the first time in vitro against five different species of Leishmania spp. (L. infantum, L. braziliensis, L. donovani, L. peruviana and L. mexicana) as well as Trypanosoma cruzi, showing higher efficacy than the reference commercial drugs. UV and luminescence properties were also evaluated. As a proof of concept, anchoring of a model high-effective-metal complex as an antiparasitic agent on silica nanoparticles was carried out for the first time, and drug-release behaviour was evaluated, assessing this new approach for drug vehiculation.
Collapse
Affiliation(s)
- Álvaro Martín-Montes
- Departamento De Parasitología, Universidad De Granada, Avenida Fuentenueva, 18071 Granada, Spain;
| | - Sandra Jimenez-Falcao
- Organic Nanotechnology Lab, Departamento De Materiales Y Producción Aeroespacial E.T.S.I Aeronáutica Y Del Espacio, Universidad Politécnica De Madrid, 28040 Madrid, Spain;
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento De Biología y Geología, Física Y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain;
| | - Clotilde Marín
- Departamento De Parasitología, Universidad De Granada, Avenida Fuentenueva, 18071 Granada, Spain;
| | - José M. Mendez-Arriaga
- COMET-NANO Group, Departamento De Biología y Geología, Física Y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain;
| |
Collapse
|
3
|
Gallardo M, Arancibia R, Jiménez C, Wilkinson S, Toro PM, Roussel P, Henry N. Ferrocene-based nitroheterocyclic sulfonylhydrazones: design, synthesis, characterization and trypanocidal properties. J Biol Inorg Chem 2023; 28:549-558. [PMID: 37462740 DOI: 10.1007/s00775-023-02010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/22/2023] [Indexed: 08/11/2023]
Abstract
A series of new ferrocenyl nitroheterocyclic sulfonylhydrazones (1a-4a and 1b-2b) were prepared by the reaction between formyl (R = H) or acetyl (R = CH3) nitroheterocyclic precursors [4/5-NO2(C5H2XCOR), where X = O, S)] and ferrocenyl tosyl hydrazine [(η5-C5H5)Fe(η5-C5H4SO2-NH-NH2)]. All compounds were characterized by conventional spectroscopic techniques. In the solid state, the molecular structures of compounds 1a, 2b, and 3a were determined by single-crystal X-ray diffraction. The compounds showed an E-configuration around the C=N moiety. Evaluation of trypanocidal activity, measured in vitro against the Trypanosoma cruzi and Trypanosoma brucei strains, indicated that all organometallic tosyl hydrazones displayed activity against both parasite species with a higher level of potency toward T. brucei than T. cruzi. Moreover, the biological evaluation showed that the 5-nitroheterocyclic derivatives were more efficient trypanocidal agents than their 4-nitroheterocyclic counterparts.
Collapse
Affiliation(s)
- Miguel Gallardo
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Arancibia
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| | - Claudio Jiménez
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Shane Wilkinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Patricia M Toro
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca, Chile
| | - Pascal Roussel
- Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, Univ. Artois,, Lille, France
| | - Natacha Henry
- Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, Univ. Artois,, Lille, France
| |
Collapse
|
4
|
Desiatkina O, Mösching M, Anghel N, Boubaker G, Amdouni Y, Hemphill A, Furrer J, Păunescu E. New Nucleic Base-Tethered Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Compounds: Synthesis and Antiparasitic Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238173. [PMID: 36500266 PMCID: PMC9738179 DOI: 10.3390/molecules27238173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Aiming toward compounds with improved anti-Toxoplasma activity by exploiting the parasite auxotrophies, a library of nucleobase-tethered trithiolato-bridged dinuclear ruthenium(II)-arene conjugates was synthesized and evaluated. Structural features such as the type of nucleobase and linking unit were progressively modified. For comparison, diruthenium hybrids with other type of molecules were also synthesized and assessed. A total of 37 compounds (diruthenium conjugates and intermediates) were evaluated in a primary screening for in vitro activity against transgenic Toxoplasma gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) at 0.1 and 1 µM. In parallel, the cytotoxicity in non-infected host cells (human foreskin fibroblasts, HFF) was determined by alamarBlue assay. Twenty compounds strongly impairing parasite proliferation with little effect on HFF viability were subjected to T. gondii β-gal half maximal inhibitory concentration determination (IC50) and their toxicity for HFF was assessed at 2.5 µM. Two promising compounds were identified: 14, ester conjugate with 9-(2-oxyethyl)adenine, and 36, a click conjugate bearing a 2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)methyl substituent, with IC50 values of 0.059 and 0.111 µM respectively, significantly lower compared to pyrimethamine standard (IC50 = 0.326 µM). Both 14 and 36 exhibited low toxicity against HFF when applied at 2.5 µM and are candidates for potential treatment options in a suitable in vivo model.
Collapse
Affiliation(s)
- Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Martin Mösching
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Laboratoire de Parasitologie, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Université de la Manouba, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet 2020, Tunisia
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Anghel N, Müller J, Serricchio M, Jelk J, Bütikofer P, Boubaker G, Imhof D, Ramseier J, Desiatkina O, Păunescu E, Braga-Lagache S, Heller M, Furrer J, Hemphill A. Cellular and Molecular Targets of Nucleotide-Tagged Trithiolato-Bridged Arene Ruthenium Complexes in the Protozoan Parasites Toxoplasma gondii and Trypanosoma brucei. Int J Mol Sci 2021; 22:ijms221910787. [PMID: 34639127 PMCID: PMC8509533 DOI: 10.3390/ijms221910787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/23/2022] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite that infects and proliferates within many different types of host cells and infects virtually all warm-blooded animals and humans. Trypanosoma brucei is an extracellular kinetoplastid that causes human African trypanosomiasis and Nagana disease in cattle, primarily in rural sub-Saharan Africa. Current treatments against both parasites have limitations, e.g., suboptimal efficacy and adverse side effects. Here, we investigate the potential cellular and molecular targets of a trithiolato-bridged arene ruthenium complex conjugated to 9-(2-hydroxyethyl)-adenine (1), which inhibits both parasites with IC50s below 10−7 M. Proteins that bind to 1 were identified using differential affinity chromatography (DAC) followed by shotgun-mass spectrometry. A trithiolato-bridged ruthenium complex decorated with hypoxanthine (2) and 2-hydroxyethyl-adenine (3) were included as controls. Transmission electron microscopy (TEM) revealed distinct ultrastructural modifications in the mitochondrion induced by (1) but not by (2) and (3) in both species. DAC revealed 128 proteins in T. gondii and 46 proteins in T. brucei specifically binding to 1 but not 2 or 3. In T. gondii, the most abundant was a protein with unknown function annotated as YOU2. This protein is a homolog to the human mitochondrial inner membrane translocase subunit Tim10. In T. brucei, the most abundant proteins binding specifically to 1 were mitochondrial ATP-synthase subunits. Exposure of T. brucei bloodstream forms to 1 resulted in rapid breakdown of the ATP-synthase complex. Moreover, both datasets contained proteins involved in key steps of metabolism and nucleic acid binding proteins.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
- Correspondence: (J.M.); (A.H.)
| | - Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (M.S.); (J.J.); (P.B.)
| | - Jennifer Jelk
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (M.S.); (J.J.); (P.B.)
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (M.S.); (J.J.); (P.B.)
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Jessica Ramseier
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (O.D.); (E.P.); (J.F.)
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (O.D.); (E.P.); (J.F.)
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland; (S.B.-L.); (M.H.)
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland; (S.B.-L.); (M.H.)
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (O.D.); (E.P.); (J.F.)
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
- Correspondence: (J.M.); (A.H.)
| |
Collapse
|
6
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Scarim CB, de Farias RL, Chiba DE, Chin CM. Insight into Recent Drug Discoveries against Trypanosomatids and Plasmodium spp Parasites: New Metal-based Compounds. Curr Med Chem 2021; 29:2334-2381. [PMID: 34533436 DOI: 10.2174/0929867328666210917114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
Scaffolds of metal-based compounds can act as pharmacophore groups in several ligands to treat various diseases, including tropical infectious diseases (TID). In this review article, we investigate the contribution of these moieties to medicinal inorganic chemistry in the last seven years against TID, including American trypanosomiasis (Chagas disease), human African trypanosomiasis (HAT, sleeping sickness), leishmania, and malaria. The most potent metal-based complexes are displayed and highlighted in figures, tables and graphics; according to their pharmacological activities (IC50 > 10µM) against Trypanosomatids and Plasmodium spp parasites. We highlight the current progresses and viewpoints of these metal-based complexes, with a specific focus on drug discovery.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Renan Lira de Farias
- Sao Paulo State University (UNESP), Institute of Chemistry, 14800-060, Araraquara-SP, Brazil
| | - Diego Eidy Chiba
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Chung Man Chin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
8
|
Munteanu AC, Uivarosi V. Ruthenium Complexes in the Fight against Pathogenic Microorganisms. An Extensive Review. Pharmaceutics 2021; 13:874. [PMID: 34199283 PMCID: PMC8232020 DOI: 10.3390/pharmaceutics13060874] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The widespread use of antibiotics has resulted in the emergence of drug-resistant populations of microorganisms. Clearly, one can see the need to develop new, more effective, antimicrobial agents that go beyond the explored 'chemical space'. In this regard, their unique modes of action (e.g., reactive oxygen species (ROS) generation, redox activation, ligand exchange, depletion of substrates involved in vital cellular processes) render metal complexes as promising drug candidates. Several Ru (II/III) complexes have been included in, or are currently undergoing, clinical trials as anticancer agents. Based on the in-depth knowledge of their chemical properties and biological behavior, the interest in developing new ruthenium compounds as antibiotic, antifungal, antiparasitic, or antiviral drugs has risen. This review will discuss the advantages and disadvantages of Ru (II/III) frameworks as antimicrobial agents. Some aspects regarding the relationship between their chemical structure and mechanism of action, cellular localization, and/or metabolism of the ruthenium complexes in bacterial and eukaryotic cells are discussed as well. Regarding the antiviral activity, in light of current events related to the Covid-19 pandemic, the Ru (II/III) compounds used against SARS-CoV-2 (e.g., BOLD-100) are also reviewed herein.
Collapse
Affiliation(s)
- Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
9
|
Lenis-Rojas OA, Robalo MP, Tomaz AI, Fernandes AR, Roma-Rodrigues C, Teixeira RG, Marques F, Folgueira M, Yáñez J, Gonzalez AA, Salamini-Montemurri M, Pech-Puch D, Vázquez-García D, Torres ML, Fernández A, Fernández JJ. Half-Sandwich Ru( p-cymene) Compounds with Diphosphanes: In Vitro and In Vivo Evaluation As Potential Anticancer Metallodrugs. Inorg Chem 2021; 60:2914-2930. [PMID: 33570919 DOI: 10.1021/acs.inorgchem.0c02768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ruthenium(II) complexes are currently considered attractive alternatives to the widely used platinum-based drugs. We present herein the synthesis and characterization of half-sandwich ruthenium compounds formulated as [Ru(p-cymene)(L)Cl][CF3SO3] (L = 1,1-bis(methylenediphenylphosphano)ethylene, 1; L = 1,1-bis(diphenylphosphano)ethylene, 2), which were characterized by elemental analysis, mass spectrometry, 1H and 31P{1H} NMR, UV-vis and IR spectroscopy, conductivity measurements and cyclic voltammetry. The molecular structures for both complexes were determined by single-crystal X-ray diffraction. Their cytotoxic activity was evaluated using the MTT assay against human tumor cells, namely ovarian (A2780) and breast (MCF7 and MDA-MB-231). Both complexes were active against breast adenocarcinoma cells, with complex 1 exhibiting a quite remarkable cytotoxicity in the submicromolar range. Interestingly, at concentrations equivalent to the IC50 values in the MCF7 cancer cells, complexes 1 and 2 presented lower cytotoxicity in normal human primary fibroblasts. The antiproliferative effects of 1 and 2 in MCF7 cells might be associated with the induction of reactive oxygen species (ROS), leading to a combined cell death mechanism via apoptosis and autophagy. Despite the fact that in vitro a partial intercalation between complexes and DNA was observed, no MCF7 cell cycle delay or arrest was observed, indicating that DNA might not be a direct target. Complexes 1 and 2 both exhibited a moderate to strong interaction with human serum albumin, suggesting that protein targets may be involved in their mode of action. Their acute toxicity was evaluated in the zebrafish model. Complex 1 (the most toxic of the two) exhibited a lethal toxicity LC50 value about 1 order of magnitude higher than any IC50 concentrations found for the cancer cell models used, highlighting its therapeutic relevance as a drug candidate in cancer chemotherapy.
Collapse
Affiliation(s)
- Oscar A Lenis-Rojas
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - M Paula Robalo
- Área Departamental de Engenharia Química, ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal.,Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Isabel Tomaz
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ricardo G Teixeira
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologías Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela LRS, Portugal
| | - Mónica Folgueira
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain.,Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, U.K
| | - Julián Yáñez
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Anabel Alba Gonzalez
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Martín Salamini-Montemurri
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Dawrin Pech-Puch
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain.,Departamento de Biología Marina, Universidad Autónoma de Yucatán, Km. 15.5, carretera Mérida-Xmatkuil, A.P. 4-116 Itzimná, C.P. 97100, Mérida, Yucatán, Mexico
| | - Digna Vázquez-García
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Margarita López Torres
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Alberto Fernández
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Jesús J Fernández
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| |
Collapse
|
10
|
Half-sandwich arene ruthenium, rhodium and iridium thiosemicarbazone complexes: synthesis, characterization and biological evaluation. J CHEM SCI 2020. [DOI: 10.1007/s12039-019-1731-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Méndez-Arriaga JM, Rodríguez-Diéguez A, Sánchez-Moreno M. In vitro leishmanicidal activity of copper (II) 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine complex and analogous transition metal series. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Fernandes AC. Synthesis, Biological Activity and Medicinal Applications of Ruthenium Complexes Containing Carbohydrate Ligands. Curr Med Chem 2019; 26:6412-6437. [DOI: 10.2174/0929867326666190124124350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/15/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022]
Abstract
The search for new metal-efficient drugs has attracted considerable attention of the
scientific community. Among them, ruthenium complexes have emerged as an excellent alternative
of platinum complexes. This review presents a thorough and timely coverage of the synthesis,
biological activity and medicinal applications of ruthenium complexes bearing carbohydrate ligands,
allowing a large community of readers, in particularly the community that works in organic,
inorganic, bioorganometallic and medicinal chemistry, ready access to the most relevant examples.
Collapse
Affiliation(s)
- Ana Cristina Fernandes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049- 001 Lisboa, Portugal
| |
Collapse
|
13
|
Jelk J, Balmer V, Stibal D, Giannini F, Süss-Fink G, Bütikofer P, Furrer J, Hemphill A. Anti-parasitic dinuclear thiolato-bridged arene ruthenium complexes alter the mitochondrial ultrastructure and membrane potential in Trypanosoma brucei bloodstream forms. Exp Parasitol 2019; 205:107753. [DOI: 10.1016/j.exppara.2019.107753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 01/28/2023]
|
14
|
Rivas F, Medeiros A, Comini M, Suescun L, Rodríguez Arce E, Martins M, Pinheiro T, Marques F, Gambino D. Pt-Fe ferrocenyl compounds with hydroxyquinoline ligands show selective cytotoxicity on highly proliferative cells. J Inorg Biochem 2019; 199:110779. [DOI: 10.1016/j.jinorgbio.2019.110779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 01/23/2023]
|
15
|
de Carvalho LP, de Melo EJT. Autophagic elimination of Trypanosoma cruzi in the presence of metals. J Microbiol 2019; 57:918-926. [PMID: 31463789 DOI: 10.1007/s12275-019-9018-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/14/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Trypanosoma cruzi is an obligate intracellular parasite transmitted to vertebrate hosts by blood-sucking insects. Molecules present in parasites and mammalian cells allow the recognition and parasite internalization. Metallic ions play an essential role in the establishment and maintenance of host-parasite interaction. However, little is known about how parasites handle with essential and nonessential metal quotas. This study aimed to investigate the influence of metal ions on the biological processes of T. cruzi infected cells. Infected cells were incubated with ZnCl2, CdCl2, and HgCl2 for 12 h and labeled with different specific dyes to investigate the cellular events related to intracellular parasite death and elimination. Infected host cells and parasite's mitochondria underwent functional and structural disorders, in addition to parasite's DNA condensation and pH decrease on host cells, which led to parasite death. Further investigations suggested that lysosomes were involved in pH decrease and the double membrane of the endoplasmic reticulum formed vacuoles surrounding damaged parasites, which indicate the occurrence of autophagy for parasite elimination. In conclusion, low concentrations of nonessential and essential metals cause a series of damage to Trypanosoma cruzi organelles, leading to its loss of viability, death, and elimination, with no removal of the host cells.
Collapse
Affiliation(s)
- Laís Pessanha de Carvalho
- Laboratory of Tissue and Cell Biology, State University of North Fluminense - Darcy Ribeiro, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Edésio José Tenório de Melo
- Laboratory of Tissue and Cell Biology, State University of North Fluminense - Darcy Ribeiro, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Silva BN, Sales Junior PA, Romanha AJ, Murta SM, Lima CH, Albuquerque MG, D'Elia E, Rodrigues JG, Ferreira VF, Silva FC, Pinto AC, Silva BV. Synthesis of New Thiosemicarbazones and Semicarbazones Containing the 1,2,3-1H-triazole-isatin Scaffold: Trypanocidal, Cytotoxicity, Electrochemical Assays, and Molecular Docking. Med Chem 2019; 15:240-256. [DOI: 10.2174/1573406414666180912120502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 07/09/2018] [Accepted: 08/22/2018] [Indexed: 01/17/2023]
Abstract
Background:
Chagas disease, also known as American trypanosomiasis, is classified as
one of the 17 most important neglected diseases by the World Health Organization. The only drugs
with proven efficacy against Chagas disease are benznidazole and nifurtimox, however both show
adverse effects, poor clinical efficacy, and development of resistance. For these reasons, the search
for new effective chemical entities is a challenge to research groups and the pharmaceutical industry.
Objective:
Synthesis and evaluation of antitrypanosomal activities of a series of thiosemicarbazones
and semicarbazones containing 1,2,3-1H triazole isatin scaffold.
Method:
5&'-(4-alkyl/aryl)-1H-1,2,3-triazole-isatins were prepared by Huisgen 1,3-dipolar
cycloaddition and the thiosemicarbazones and semicarbazones were obtained by the 1:1 reactions
of the carbonylated derivatives with thiosemicarbazide and semicarbazide hydrochloride,
respectively, in methanol, using conventional reflux or microwave heating. The compounds were
assayed for in vitro trypanocidal activity against Trypanosoma cruzi, the aetiological agent of
Chagas disease. Beyond the thio/semicarbazone derivatives, isatin and triazole synthetic
intermediates were also evaluated for comparison.
Results:
A series of compounds were prepared in good yields. Among the 37 compounds evaluated,
18 were found to be active, in particular thiosemicarbazones containing a non-polar saturated
alkyl chain (IC50 = 24.1, 38.6, and 83.2 &µM; SI = 11.6, 11.8, and 14.0, respectively). To further
elucidate the mechanism of action of these new compounds, the redox behaviour of some active
and inactive derivatives was studied by cyclic voltammetry. Molecular docking studies were also
performed in two validated protein targets of Trypanosoma cruzi, i.e., cruzipain (CRZ) and phosphodiesterase
C (TcrPDEC).
Conclusion:
A class of thio/semicarbazones structurally simple and easily accessible was synthesized.
Compounds containing thiosemicarbazone moieties showed the best results in the series, being
more active than the corresponding semicarbazones. Our results indicated that the activity of
these compounds does not originate from an oxidation-reduction pathway but probably from the
interactions with trypanosomal enzymes.
Collapse
Affiliation(s)
- Bianca N.M. Silva
- Instituto de Quimica (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Cidade Universitaria, Ilha do Fundao, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Policarpo A. Sales Junior
- Centro de Pesquisas Rene Rachou (CPqRR), Fundacao Oswaldo Cruz (FIOCRUZ), Av. Augusto de Lima, 1715, Barro Preto, 30190-002, Belo Horizonte, MG, Brazil
| | - Alvaro J. Romanha
- Centro de Pesquisas Rene Rachou (CPqRR), Fundacao Oswaldo Cruz (FIOCRUZ), Av. Augusto de Lima, 1715, Barro Preto, 30190-002, Belo Horizonte, MG, Brazil
| | - Silvane M.F. Murta
- Centro de Pesquisas Rene Rachou (CPqRR), Fundacao Oswaldo Cruz (FIOCRUZ), Av. Augusto de Lima, 1715, Barro Preto, 30190-002, Belo Horizonte, MG, Brazil
| | - Camilo H.S. Lima
- Faculdade de Farmacia (FF), Universidade Federal Fluminense (UFF), R. Mario Viana, 523, Santa Rosa, 24241- 000, Niteroi, RJ, Brazil
| | - Magaly G. Albuquerque
- Instituto de Quimica (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Cidade Universitaria, Ilha do Fundao, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Eliane D'Elia
- Instituto de Quimica (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Cidade Universitaria, Ilha do Fundao, 21949-900, Rio de Janeiro, RJ, Brazil
| | - José G.A. Rodrigues
- Instituto de Quimica (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Cidade Universitaria, Ilha do Fundao, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Vitor F. Ferreira
- Instituto de Quimica (IQ), Universidade Federal Fluminense (UFF), 24020-141 Niteroi, RJ, Brazil
| | - Fernando C. Silva
- Instituto de Quimica (IQ), Universidade Federal Fluminense (UFF), 24020-141 Niteroi, RJ, Brazil
| | - Angelo C. Pinto
- Instituto de Quimica (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Cidade Universitaria, Ilha do Fundao, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Bárbara V. Silva
- Instituto de Quimica (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Cidade Universitaria, Ilha do Fundao, 21949-900, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Ong YC, Roy S, Andrews PC, Gasser G. Metal Compounds against Neglected Tropical Diseases. Chem Rev 2018; 119:730-796. [DOI: 10.1021/acs.chemrev.8b00338] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yih Ching Ong
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Saonli Roy
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philip C. Andrews
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
18
|
Milutinović MM, Čanović PP, Stevanović D, Masnikosa R, Vraneš M, Tot A, Zarić MM, Simović Marković B, Misirkić Marjanović M, Vučićević L, Savić M, Jakovljević V, Trajković V, Volarević V, Kanjevac T, Rilak Simović A. Newly Synthesized Heteronuclear Ruthenium(II)/Ferrocene Complexes Suppress the Growth of Mammary Carcinoma in 4T1-Treated BALB/c Mice by Promoting Activation of Antitumor Immunity. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Milan M. Milutinović
- University of Kragujevac, Faculty of Science, R. Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
- University of Paderborn, Department of Organic Chemistry, Warburgerstraße 100, 33098 Paderborn, Germany
| | - Petar P. Čanović
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Biochemistry, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Dragana Stevanović
- University of Kragujevac, Faculty of Science, R. Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Romana Masnikosa
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Milan Vraneš
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Aleksandar Tot
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Milan M. Zarić
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Biochemistry, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Bojana Simović Marković
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Maja Misirkić Marjanović
- University of Belgrade, Serbia, School of Medicine, Institute of Microbiology and Immunology, Dr Subotića 1, 11000 Belgrade, Serbia
| | - Ljubica Vučićević
- University of Belgrade, Serbia, School of Medicine, Institute of Microbiology and Immunology, Dr Subotića 1, 11000 Belgrade, Serbia
| | - Maja Savić
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pharmacy, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Vladimir Jakovljević
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Physiology, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Vladimir Trajković
- University of Belgrade, Serbia, School of Medicine, Institute of Microbiology and Immunology, Dr Subotića 1, 11000 Belgrade, Serbia
| | - Vladislav Volarević
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Tatjana Kanjevac
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Dentistry, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Ana Rilak Simović
- University of Kragujevac, Faculty of Science, R. Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| |
Collapse
|
19
|
Scarim CB, Jornada DH, Machado MGM, Ferreira CMR, Dos Santos JL, Chung MC. Thiazole, thio and semicarbazone derivatives against tropical infective diseases: Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. Eur J Med Chem 2018; 162:378-395. [PMID: 30453246 DOI: 10.1016/j.ejmech.2018.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/18/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
Thiazole, thiosemicarbazone and semicarbazone moieties are privileged scaffolds (acting as primary pharmacophores) in many compounds that are useful to treat several diseases, mainly tropical infectious diseases. In this review article, we critically analyzed the contribution of these scaffolds to medicinal chemistry in the last five years, focusing on tropical infectious diseases, such as Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. We also present perspectives for their use in drug design in order to contribute to the development of new drugs.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| | | | | | | | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Man Chin Chung
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
20
|
Lenis-Rojas OA, Robalo MP, Tomaz AI, Carvalho A, Fernandes AR, Marques F, Folgueira M, Yáñez J, Vázquez-García D, López Torres M, Fernández A, Fernández JJ. RuII(p-cymene) Compounds as Effective and Selective Anticancer Candidates with No Toxicity in Vivo. Inorg Chem 2018; 57:13150-13166. [DOI: 10.1021/acs.inorgchem.8b01270] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Oscar A. Lenis-Rojas
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - M. Paula Robalo
- Área Departamental de Engenharia Química, ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Complexo 1, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Isabel Tomaz
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreia Carvalho
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologías Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela LRS, Portugal
| | - Mónica Folgueira
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, U.K
| | - Julián Yáñez
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Digna Vázquez-García
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Margarita López Torres
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Alberto Fernández
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Jesús J. Fernández
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| |
Collapse
|
21
|
Rivas F, Medeiros A, Rodríguez Arce E, Comini M, Ribeiro CM, Pavan FR, Gambino D. New heterobimetallic ferrocenyl derivatives: Evaluation of their potential as prospective agents against trypanosomatid parasites and Mycobacterium tuberculosis. J Inorg Biochem 2018; 187:73-84. [PMID: 30055398 DOI: 10.1016/j.jinorgbio.2018.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/26/2018] [Accepted: 07/21/2018] [Indexed: 12/21/2022]
Abstract
Searching for prospective agents against infectious diseases, four new ferrocenyl derivatives, [M(L)(dppf)4](PF6), with M = Pd(II) or Pt(II), dppf = 1,1'-bis(dipheny1phosphino) ferrocene and HL = tropolone (HTrop) or hinokitiol (HHino), were synthesized and characterized. Complexes and ligands were evaluated against the bloodstream form of T. brucei, L. infantum amastigotes, M. tuberculosis (MTB) sensitive strain and MTB clinical isolates. Complexes showed a significant increase of the anti-T. brucei activity with respect to the free ligands (>28- and >46-fold for Trop and 6- and 22-fold for Hino coordinated to Pt-dppf and Pd-dppf, respectively), yielding IC50 values < 5 μM. The complexes proved to be more potent than the antitrypanosomal drug Nifurtimox. The new ferrocenyl derivatives were more selective towards the parasite than the free ligands. The Pt compounds were less toxic on J774 murine macrophages (mammalian cell model), than the Pd ones, showing selectivity index values (SI = IC50 murine macrophage/IC50T. brucei) up to 23. Generation of the {M-dppf} compounds lead to a slightly positive impact on the anti-leishmanial potency. Although the ferrocenyl derivatives were more active on sensitive MTB than the free ligands (MIC90 = 9.88-14.73 μM), they showed low selectivity towards the pathogen. Related to the mechanism of action, the antiparasitic effect cannot be ascribed to an interference of the compounds with the thiol-redox homeostasis of the pathogen. Fluorescence measurements pointed at DNA as a probable target of the new compounds. [Pt(Trop)(dppf)](PF6) and [Pt(Hino)(dppf)](PF6) could be considered prospective anti-T. brucei agents that deserve further research.
Collapse
Affiliation(s)
- Feriannys Rivas
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Andrea Medeiros
- Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Esteban Rodríguez Arce
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Marcelo Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay
| | | | | | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
22
|
Organometallic compounds in the discovery of new agents against kinetoplastid-caused diseases. Eur J Med Chem 2018; 155:459-482. [PMID: 29908440 DOI: 10.1016/j.ejmech.2018.05.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/21/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022]
Abstract
The development of safe and affordable antiparasitic agents effective against neglected tropical diseases is a big challenge of the drug discovery. The drugs currently employed have limitations such as poor efficacy, drug resistance or side effects. Thus, the search for new promising drugs is more and more crucial. Metal complexes and, in particular, organometallic compounds may expand the list of the drug candidates due to the peculiar attributes that the presence of the metal core add to the organic fragment (e.g., redox and structural features, ability to interact with DNA or protein targets, etc.). To date, most organometallic compounds tested as anti-neglected tropical diseases are based on similarities or activity of the organic ligands against other diseases or parasites and/or consist in modification of existing drugs combining the features of the metal moiety and the organic ligands. This review focuses on recent studies (2012-2017) on organometallic compounds in treating kinetoplastid-caused diseases such as Human African trypanosomiasis, Chagas disease and leishmaniasis. This field of research, however, still lacks exhaustive studies to identify of parasitic targets and quantitative structure-activity relationships for a rational drug design.
Collapse
|
23
|
Cyrhetrenylaniline and new organometallic phenylimines derived from 4- and 5-nitrothiophene: Synthesis, characterization, X-Ray structures, electrochemistry and in vitro anti- T. brucei activity. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Design of prospective antiparasitic metal-based compounds including selected organometallic cores. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
In vitro leishmanicidal and trypanocidal evaluation and magnetic properties of 7-amino-1,2,4-triazolo[1,5-a]pyrimidine Cu(II) complexes. J Inorg Biochem 2018; 180:26-32. [DOI: 10.1016/j.jinorgbio.2017.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/16/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022]
|
26
|
Kalaiarasi G, Rajkumar SRJ, Dharani S, Fronczek FR, Muthukumar Nadar MSA, Prabhakaran R. Cyclometallated ruthenium(ii) complexes with 3-acetyl-2[H]-chromene-2-one derived CNS chelating ligand systems: synthesis, X-ray characterization and biological evaluation. NEW J CHEM 2018. [DOI: 10.1039/c7nj02877f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The presented work focuses on the synthesis and biological evaluation of 3-acetylcoumarin Schiff bases and their cyclometallated ruthenium(ii) metallates.
Collapse
Affiliation(s)
- G. Kalaiarasi
- Department of Chemistry
- Bharathiar University
- Coimbatore 641 046
- India
| | - S. Rex Jeya Rajkumar
- Department of Biosciences and Technology
- Karunya University
- Coimbatore 641 114
- India
| | - S. Dharani
- Department of Chemistry
- Bharathiar University
- Coimbatore 641 046
- India
| | | | | | - R. Prabhakaran
- Department of Chemistry
- Bharathiar University
- Coimbatore 641 046
- India
| |
Collapse
|
27
|
Teixeira RG, Brás AR, Côrte-Real L, Tatikonda R, Sanches A, Robalo MP, Avecilla F, Moreira T, Garcia MH, Haukka M, Preto A, Valente A. Novel ruthenium methylcyclopentadienyl complex bearing a bipyridine perfluorinated ligand shows strong activity towards colorectal cancer cells. Eur J Med Chem 2018; 143:503-514. [DOI: 10.1016/j.ejmech.2017.11.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/06/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023]
|
28
|
Méndez-Arriaga JM, Esteban-Parra GM, Juárez MJ, Rodríguez-Diéguez A, Sánchez-Moreno M, Isac-García J, Salas JM. Antiparasitic activity against trypanosomatid diseases and novel metal complexes derived from the first time characterized 5-phenyl-1,2,4-triazolo[1,5-a]pyrimidi-7(4H)-one. J Inorg Biochem 2017; 175:217-224. [PMID: 28780409 DOI: 10.1016/j.jinorgbio.2017.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
Abstract
A serie of isostructural complexes with general formula [M(ftpO)2(H2O)4] have been obtained from reaction between the first time characterized triazolopyrimidine derivative 5-phenyl-1,2,4-triazolo[1,5-a]pyrimidi-7(4H)-one (HftpO) (1) and first row transition nitrates (M=Cu (2), Co (3), Ni (4) and Zn (5)). A copper complex with formula [Cu(HftpO)2(NO3)2(H2O)2]·H2O (6) was also isolated. HftpO and their metal complexes have been characterized by spectroscopic and thermal analysis and their crystal structures have been solved by X-ray diffraction methods. The isostructural compounds are mononuclear complexes where the triazolopyrimidine ligand acts as monodentate ligand through N3 nitrogen position. The crystal structure of these novel bis-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one-tetraaquo metal complexes offers an excellent opportunity at these complexes to acts as potential building blocks. Also, the antiparasitic activity of HftpO ligand against different leishmania and trypanosome strains has been studied.
Collapse
Affiliation(s)
- J M Méndez-Arriaga
- Departamento de Química Inorgánica, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - G M Esteban-Parra
- Departamento de Química Inorgánica, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - M J Juárez
- Inst. Reconoc. Molec. y Desarr. Tecnol. (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - A Rodríguez-Diéguez
- Departamento de Química Inorgánica, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - M Sánchez-Moreno
- Departamento de Parasitología, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - J Isac-García
- Grupo de Modelización y Diseño Molecular, Departamento de Química Orgánica, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - J M Salas
- Departamento de Química Inorgánica, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain.
| |
Collapse
|
29
|
Rhenium(I) tricarbonyl compounds of bioactive thiosemicarbazones: Synthesis, characterization and activity against Trypanosoma cruzi. J Inorg Biochem 2017; 170:125-133. [DOI: 10.1016/j.jinorgbio.2017.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/29/2016] [Accepted: 01/20/2017] [Indexed: 11/22/2022]
|
30
|
Scariot DB, Britta EA, Moreira AL, Falzirolli H, Silva CC, Ueda-Nakamura T, Dias-Filho BP, Nakamura CV. Induction of Early Autophagic Process on Leishmania amazonensis by Synergistic Effect of Miltefosine and Innovative Semi-synthetic Thiosemicarbazone. Front Microbiol 2017; 8:255. [PMID: 28270805 PMCID: PMC5318461 DOI: 10.3389/fmicb.2017.00255] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/07/2017] [Indexed: 12/24/2022] Open
Abstract
Drug combination therapy is a current trend to treat complex diseases. Many benefits are expected from this strategy, such as cytotoxicity decrease, retardation of resistant strains development, and activity increment. This study evaluated in vitro combination between an innovative thiosemicarbazone molecule – BZTS with miltefosine, a drug already consolidated in the leishmaniasis treatment, against Leishmania amazonensis. Cytotoxicity effects were also evaluated on macrophages and erythrocytes. Synergistic antileishmania effect and antagonist cytotoxicity were revealed from this combination therapy. Mechanisms of action assays were performed in order to investigate the main cell pathways induced by this treatment. Mitochondrial dysfunction generated a significant increase of reactive oxygen and nitrogen species production, causing severe cell injuries and promoting intense autophagy process and consequent apoptosis cell death. However, this phenomenon was not strong enough to promote dead in mammalian cell, providing the potential selective effect of the tested combination for the protozoa. Thus, the results confirmed that drugs involved in distinct metabolic routes are promising agents for drug combination therapy, promoting a synergistic effect.
Collapse
Affiliation(s)
- Débora B Scariot
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Farmácia, Universidade Estadual de Maringá Maringá, Brazil
| | - Elizandra A Britta
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Farmácia, Universidade Estadual de Maringá Maringá, Brazil
| | - Amanda L Moreira
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Farmácia, Universidade Estadual de Maringá Maringá, Brazil
| | - Hugo Falzirolli
- Departamento de Química, Universidade Estadual de Maringá Maringá, Brazil
| | - Cleuza C Silva
- Departamento de Química, Universidade Estadual de Maringá Maringá, Brazil
| | - Tânia Ueda-Nakamura
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Farmácia, Universidade Estadual de Maringá Maringá, Brazil
| | - Benedito P Dias-Filho
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Farmácia, Universidade Estadual de Maringá Maringá, Brazil
| | - Celso V Nakamura
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Farmácia, Universidade Estadual de Maringá Maringá, Brazil
| |
Collapse
|
31
|
Abstract
Ruthenium is seldom mentioned in microbiology texts, due to the fact that this metal has no known, essential roles in biological systems, nor is it generally considered toxic. Since the fortuitous discovery of cisplatin, first as an antimicrobial agent and then later employed widely as an anticancer agent, complexes of other platinum group metals, such as ruthenium, have attracted interest for their medicinal properties. Here, we review at length how ruthenium complexes have been investigated as potential antimicrobial, antiparasitic and chemotherapeutic agents, in addition to their long and well-established roles as biological stains and inhibitors of calcium channels. Ruthenium complexes are also employed in a surprising number of biotechnological roles. It is in the employment of ruthenium complexes as antimicrobial agents and alternatives or adjuvants to more traditional antibiotics, that we expect to see the most striking developments in the future. Such novel contributions from organometallic chemistry are undoubtedly sorely needed to address the antimicrobial resistance crisis and the slow appearance on the market of new antibiotics.
Collapse
|
32
|
Camarada MB, Echeverria C, Ramirez-Tagle R. Medicinal organometallic compounds with anti-chagasic activity. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00200e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chagas disease (CD) is one of the most important neglected tropical disorders, being a major health concern in Latin America.
Collapse
Affiliation(s)
| | - Cesar Echeverria
- Laboratorio de Bionanotecnología
- Universidad Bernardo O Higgins
- Santiago
- Chile
| | | |
Collapse
|