1
|
Guan Q, Gao Z, Chen Y, Guo C, Chen Y, Sun H. Structural modification strategies of triazoles in anticancer drug development. Eur J Med Chem 2024; 275:116578. [PMID: 38889607 DOI: 10.1016/j.ejmech.2024.116578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The triazole functional group plays a pivotal role in the composition of biomolecules with potent anticancer activities, including numerous clinically approved drugs. The strategic utilization of the triazole fragment in the rational modification of lead compounds has demonstrated its ability to improve anticancer activities, enhance selectivity, optimize pharmacokinetic properties, and overcome resistance. There has been significant interest in triazole-containing hybrids in recent years due to their remarkable anticancer potential. However, previous reviews on triazoles in cancer treatment have failed to provide tailored design strategies specific to these compounds. Herein, we present an overview of design strategies encompassing a structure-modification approach for incorporating triazoles into hybrid molecules. This review offers valuable references and briefly introduces the synthesis of triazole derivatives, thereby paving the way for further research and advancements in the field of effective and targeted anticancer therapies.
Collapse
Affiliation(s)
- Qianwen Guan
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ziming Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yuting Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Can Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
2
|
Amalanathan M, Michael Mary MS, Beatrice ML, Delphine SM, Robert HM, Twinkle AR, Ratkovic Z, Samson Y. Synthesis, structural, spectroscopic and docking studies on (E)-1-Ferrocenyl-3-phenylpropen-1-one by the density functional theory. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.2016743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- M. Amalanathan
- Department of Physics & Research Centre, Nanjil Catholic College of Arts and Science, Kaliyakkavilai, India
| | - M. Sony Michael Mary
- Manonmaniam Sundaranar University, Tirunelveli, India
- Department of Physics & Research Centre, Nesamony Memorial Christian College, Marthandam, India
| | - M. Latha Beatrice
- Manonmaniam Sundaranar University, Tirunelveli, India
- Department of Physics & Research Centre, Holy Cross College, Nagercoil, India
| | - S. Mary Delphine
- Department of Physics & Research Centre, Holy Cross College, Nagercoil, India
| | - H. Marshan Robert
- Department of Physics & Research Centre, Women’s Christian College, Nagercoil, India
| | - A. R. Twinkle
- Department of Physics, Mar Ivanios College, Thiruvananthapuram, India
| | - Zoran Ratkovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Y. Samson
- Department of Physics, Annai Velankanni College, Tholayavattan, India
| |
Collapse
|
3
|
Skarżyńska A, Kowalczyk M, Majchrzak M, Piętka M, Augustyniak AW, Siczek M, Włodarczyk K, Simiczyjew A, Nowak D. The two faces of platinum hydrospirophosphorane complexes—Not only relevant catalysts but cytotoxic compounds as well. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Mariusz Majchrzak
- Faculty of Chemistry Adam Mickiewicz University in Poznań Poznań Poland
| | - Marta Piętka
- Faculty of Chemistry Adam Mickiewicz University in Poznań Poznań Poland
| | | | - Miłosz Siczek
- Faculty of Chemistry University of Wrocław Wrocław Poland
| | | | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology University of Wrocław Wrocław Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology University of Wrocław Wrocław Poland
| |
Collapse
|
4
|
Kapoor G, Bhutani R, Pathak DP, Chauhan G, Kant R, Grover P, Nagarajan K, Siddiqui SA. Current Advancement in the Oxadiazole-Based Scaffolds as Anticancer Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1886123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Garima Kapoor
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | - Rubina Bhutani
- School of Medical and Allied Sciences, GD Goenka University, Gurgaon, Haryana, India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Garima Chauhan
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Ravi Kant
- Lloyd Institute of Management and Technology, Greater Noida, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | | |
Collapse
|
5
|
Pereira CDS, Enes KB, de Almeida AM, de Mendonça CC, da Silva VL, Gallupo Diniz C, Couri MRC, Silva H. Syntheses and biological activity of platinum(II) and palladium(II) complexes with phenyl-oxadiazole-ethylenediamine ligands. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1871608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Karine Braga Enes
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | - Vânia Lúcia da Silva
- Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Cláudio Gallupo Diniz
- Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mara Rubia Costa Couri
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Heveline Silva
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Mononuclear Perfluoroalkyl-Heterocyclic Complexes of Pd(II): Synthesis, Structural Characterization and Antimicrobial Activity. Molecules 2020; 25:molecules25194487. [PMID: 33007913 PMCID: PMC7582383 DOI: 10.3390/molecules25194487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
Two mononuclear Pd(II) complexes [PdCl2(pfptp)] (1) and [PdCl2(pfhtp)] (2), with ligands 2-(3-perfluoropropyl-1-methyl-1,2,4-triazole-5yl)-pyridine (pfptp) and 2-(3-perfluoroheptyl-1-methyl-1,2,4-triazole-5yl)-pyridine (pfhtp), were synthesized and structurally characterized. The two complexes showed a bidentate coordination of the ligand occurring through N atom of pyridine ring and N4 atom of 1,2,4-triazole. Both complexes showed antimicrobial activity when tested against both Gram-negative and Gram-positive bacterial strains.
Collapse
|
7
|
Pibiri I, Melfi R, Tutone M, Di Leonardo A, Pace A, Lentini L. Targeting Nonsense: Optimization of 1,2,4-Oxadiazole TRIDs to Rescue CFTR Expression and Functionality in Cystic Fibrosis Cell Model Systems. Int J Mol Sci 2020; 21:ijms21176420. [PMID: 32899265 PMCID: PMC7504161 DOI: 10.3390/ijms21176420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) patients develop a severe form of the disease when the cystic fibrosis transmembrane conductance regulator (CFTR) gene is affected by nonsense mutations. Nonsense mutations are responsible for the presence of a premature termination codon (PTC) in the mRNA, creating a lack of functional protein. In this context, translational readthrough-inducing drugs (TRIDs) represent a promising approach to correct the basic defect caused by PTCs. By using computational optimization and biological screening, we identified three new small molecules showing high readthrough activity. The activity of these compounds has been verified by evaluating CFTR expression and functionality after treatment with the selected molecules in cells expressing nonsense–CFTR–mRNA. Additionally, the channel functionality was measured by the halide sensitive yellow fluorescent protein (YFP) quenching assay. All three of the new TRIDs displayed high readthrough activity and low toxicity and can be considered for further evaluation as a therapeutic approach toward the second major cause of CF.
Collapse
Affiliation(s)
- Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
- Correspondence: (I.P.); (L.L.); Tel.: +39-091-238-97545 (I.P.); +39-091-238-97341 (L.L.)
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
| | - Aldo Di Leonardo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
- Centro di OncoBiologia Sperimentale (COBS), via San Lorenzo Colli, 90145 Palermo, Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
- Correspondence: (I.P.); (L.L.); Tel.: +39-091-238-97545 (I.P.); +39-091-238-97341 (L.L.)
| |
Collapse
|
8
|
Rubino S, Pibiri I, Minacori C, Alduina R, Di Stefano V, Orecchio S, Buscemi S, Girasolo MA, Tesoriere L, Attanzio A. Synthesis, structural characterization, anti-proliferative and antimicrobial activity of binuclear and mononuclear Pt(II) complexes with perfluoroalkyl-heterocyclic ligands. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.07.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Pankrat’eva VE, Sharonova TV, Tarasenko MV, Baikov SV, Kofanov ER. One-Pot Synthesis of 3,5-Disubstituted 1,2,4-Oxadiazoles Using Catalytic System NaOH‒DMSO. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018080213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Loading and release of the complex [Pt(DTBTA)(DMSO)Cl]Cl·CHCl3 with the 2,2′-dithiobis(benzothiazole) ligand into mesoporous silica and studies of antiproliferative activity on MCF-7 cells. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Álvarez-Sala A, Ávila-Gálvez MÁ, Cilla A, Barberá R, Garcia-Llatas G, Espín JC, González-Sarrías A. Physiological concentrations of phytosterols enhance the apoptotic effects of 5-fluorouracil in colon cancer cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
12
|
Rahman FU, Bhatti MZ, Ali A, Duong HQ, Zhang Y, Yang B, Koppireddi S, Lin Y, Wang H, Li ZT, Zhang DW. Homo- and heteroleptic Pt(II) complexes of ONN donor hydrazone and 4-picoline: A synthetic, structural and detailed mechanistic anticancer investigation. Eur J Med Chem 2018; 143:1039-1052. [DOI: 10.1016/j.ejmech.2017.11.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 11/17/2022]
|
13
|
Potočňák I, Ali Drweesh S, Farkasová V, Lüköová A, Sabolová D, Radojević ID, Arsenijevic A, Djordjevic D, Volarevic V. Low-dimensional compounds containing bioactive ligands. Part IX: Synthesis, structures, spectra, in vitro antimicrobial and anti-tumor activities and DNA binding of Pd(II) complexes with 7-bromo-quinolin-8-ol. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Bai L, Gao C, Liu Q, Yu C, Zhang Z, Cai L, Yang B, Qian Y, Yang J, Liao X. Research progress in modern structure of platinum complexes. Eur J Med Chem 2017; 140:349-382. [PMID: 28985575 DOI: 10.1016/j.ejmech.2017.09.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Since the antitumor activity of cisplatin was discovered in 1967 by Rosenberg, platinum-based anticancer drugs have played an important role in chemotherapy in clinic. Nevertheless, platinum anticancer drugs also have caused severe side effects and cross drug resistance which limited their applications. Therefore, a significant amount of efforts have been devoted to developing new platinum-based anticancer agents with equal or higher antitumor activity but lower toxicity. Until now, a large number of platinum-based complexes have been prepared and extensively investigated in vitro and in vivo. Among them, some platinum-based complexes revealing excellent anticancer activity showed the potential to be developed as novel type of anticancer agents. In this account, we present such platinum-based anticancer complexes which owning various types of ligands, such as, amine carrier ligands, leaving groups, reactive molecule, steric hindrance groups, non-covalently binding platinum (II) complexes, Platinum(IV) complexes and polynuclear platinum complexes. Overall, platinum-based anticancer complexes reported recently years upon modern structure are emphasized.
Collapse
Affiliation(s)
- Linkui Bai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qinghua Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Congtao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhuxin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Linxiang Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunxu Qian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
15
|
Arsenijevic M, Milovanovic M, Jovanovic S, Arsenijevic N, Markovic BS, Gazdic M, Volarevic V. In vitro and in vivo anti-tumor effects of selected platinum(IV) and dinuclear platinum(II) complexes against lung cancer cells. J Biol Inorg Chem 2017; 22:807-817. [PMID: 28421385 DOI: 10.1007/s00775-017-1459-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/09/2017] [Indexed: 12/18/2022]
Abstract
In the present study, cytotoxic effects of cisplatin, the most usually used chemotherapeutic agent, were compared with new designed platinum(IV) ([PtCl4(en)] (en = ethylenediamine) and [PtCl4(dach)]) (dach = (±)-trans-1,2-diaminocyclohexane) and platinum(II) complexes ([{trans-Pt(NH3)2Cl}2(μ-pyrazine)](ClO4)2 (Pt1), [{trans-Pt(NH3)2Cl}2(μ-4,4'-bipyridyl)](ClO4)2DMF(Pt2),[{trans-Pt(NH3)2Cl}2(μ-1,2-bis(4pyridyl)ethane)](ClO4)2 (Pt3)), in vitro and in vivo against human and murine lung cancer cells, to determine anti-tumor potential of newly synthesized platinum-based drugs in the therapy of lung cancer. Results obtained by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], Lactate dehydrogenase and Annexin V/Propidium Iodide assays showed that, among all tested complexes, [PtCl4(en)] had the highest cytotoxicity against human and murine lung carcinoma cells in vitro. [PtCl4(en)] showed significantly higher cytotoxicity then cisplatin in all tested concentrations, mainly by inducing apoptosis in lung cancer cells. [PtCl4(en)] was well tolerated in vivo. Clinical signs of [PtCl4(en)]-induced toxicity, such as changes in food, water consumption or body weight, nephrotoxicity or hepatotoxicity was not observed in [PtCl4(en)]-treated mice. [PtCl4(en)] managed to increase presence of CD45+ leukocytes, including F4/80+ macrophages, CD11c+ dendritic cells, CD4+ helper and CD8+ cytotoxic T cells (CTLs) in the lungs, cytotoxic NK, NKT and CTLs in the spleens of tumor bearing mice, resulting with reduction of metastatic lesions in the lungs, indicating its potential to stimulate anti-tumor immune response in vivo. Due to its anti-tumor cytotoxicity, biocompatibility, and potential for stimulation of anti-tumor immune response, [PtCl4(en)] may be a good candidate for further testing in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Milos Arsenijevic
- Department of Thoracic Surgery, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| | - Marija Milovanovic
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Snezana Jovanovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Natalija Arsenijevic
- Department for Preventive and Pediatric Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Simovic Markovic
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladislav Volarevic
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
16
|
Rubino S, Busà R, Attanzio A, Alduina R, Di Stefano V, Girasolo MA, Orecchio S, Tesoriere L. Synthesis, properties, antitumor and antibacterial activity of new Pt(II) and Pd(II) complexes with 2,2'-dithiobis(benzothiazole) ligand. Bioorg Med Chem 2017; 25:2378-2386. [PMID: 28336408 DOI: 10.1016/j.bmc.2017.02.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 01/30/2023]
Abstract
Mono- and binuclear Pt(II) and Pd(II) complexes with 2,2'-dithiobis(benzothiazole) (DTBTA) ligand are reported. [Pt(DTBTA)(DMSO)Cl]Cl∙CHCl3 (1) and [Pd2(µ-Cl)2(DTBTA)2]Cl2 (2) have been synthesized and structurally characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy, MS spectrometry and the content of platinum and palladium was determined using a flame atomic spectrometer. Two different coordination modes of 1 and 2 complexes were found; in both complexes, the coordination of Pt(II) and Pd(II) ions involves the N(3) atoms of the ligand but the binuclear complex 2, is a cis-chloro-bridged palladium complex. Evaluation of their in vitro antitumor activity against two human tumor cell lines human breast cancer (MCF-7) and hepatocellular carcinoma (HepG2); and their antimicrobial activity against Escherichia coli and Kokuria rhizophila was performed. Only complex 1 showed a dose- and time-dependent cytotoxic activity against the two tumor cell lines, associated to apoptosis and accumulation of treated cells in G0/G1 phase of cell cycle, while both 1 and 2 exhibited antimicrobial activity with complex 1 much more potent. The study on intracellular uptake in both MCF-7 and HepG2 cell lines revealed that only platinum of complex 1 is present inside the cells, suggesting a different mode of action of the two compounds. This was also in agreement with the results obtained for the antitumor and antibacterial activity.
Collapse
Affiliation(s)
- Simona Rubino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze pad. 16, Parco d'Orleans, 90128 Palermo, Italy.
| | - Rosalia Busà
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze pad. 16, Parco d'Orleans, 90128 Palermo, Italy
| | - Alessandro Attanzio
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze pad. 16, Parco d'Orleans, 90128 Palermo, Italy
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze pad. 16, Parco d'Orleans, 90128 Palermo, Italy
| | - Vita Di Stefano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze pad. 16, Parco d'Orleans, 90128 Palermo, Italy
| | - Maria Assunta Girasolo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze pad. 16, Parco d'Orleans, 90128 Palermo, Italy
| | - Santino Orecchio
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze pad. 16, Parco d'Orleans, 90128 Palermo, Italy
| | - Luisa Tesoriere
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze pad. 16, Parco d'Orleans, 90128 Palermo, Italy
| |
Collapse
|
17
|
Baykov S, Sharonova T, Shetnev A, Rozhkov S, Kalinin S, Smirnov AV. The first one-pot ambient-temperature synthesis of 1,2,4-oxadiazoles from amidoximes and carboxylic acid esters. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|