1
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
2
|
Emmanuel MA, Bender SG, Bilodeau C, Carceller JM, DeHovitz JS, Fu H, Liu Y, Nicholls BT, Ouyang Y, Page CG, Qiao T, Raps FC, Sorigué DR, Sun SZ, Turek-Herman J, Ye Y, Rivas-Souchet A, Cao J, Hyster TK. Photobiocatalytic Strategies for Organic Synthesis. Chem Rev 2023; 123:5459-5520. [PMID: 37115521 PMCID: PMC10905417 DOI: 10.1021/acs.chemrev.2c00767] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biocatalysis has revolutionized chemical synthesis, providing sustainable methods for preparing various organic molecules. In enzyme-mediated organic synthesis, most reactions involve molecules operating from their ground states. Over the past 25 years, there has been an increased interest in enzymatic processes that utilize electronically excited states accessed through photoexcitation. These photobiocatalytic processes involve a diverse array of reaction mechanisms that are complementary to one another. This comprehensive review will describe the state-of-the-art strategies in photobiocatalysis for organic synthesis until December 2022. Apart from reviewing the relevant literature, a central goal of this review is to delineate the mechanistic differences between the general strategies employed in the field. We will organize this review based on the relationship between the photochemical step and the enzymatic transformations. The review will include mechanistic studies, substrate scopes, and protein optimization strategies. By clearly defining mechanistically-distinct strategies in photobiocatalytic chemistry, we hope to illuminate future synthetic opportunities in the area.
Collapse
Affiliation(s)
- Megan A Emmanuel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sophie G Bender
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Catherine Bilodeau
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jose M Carceller
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Institute of Chemical Technology (ITQ), Universitat Politècnica de València, València 46022,Spain
| | - Jacob S DeHovitz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yi Liu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Bryce T Nicholls
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yao Ouyang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Claire G Page
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tianzhang Qiao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Felix C Raps
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Damien R Sorigué
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Shang-Zheng Sun
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joshua Turek-Herman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yuxuan Ye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ariadna Rivas-Souchet
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jingzhe Cao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Todd K Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Vincent T, Gaillet B, Garnier A. Optimisation of Cytochrome P450 BM3 Assisted by Consensus-Guided Evolution. Appl Biochem Biotechnol 2021; 193:2893-2914. [PMID: 33860879 DOI: 10.1007/s12010-021-03573-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Cytochrome P450 enzymes have attracted much interest over the years given their ability to insert oxygen into saturated carbon-hydrogen bonds, a difficult feat to accomplish by traditional chemistry. Much of the activity in this field has centered on the bacterial enzyme CYP102A1, or BM3, from Bacillus megaterium, as it has shown itself capable of hydroxylating/acting upon a wide range of substrates, thereby producing industrially relevant pharmaceuticals, fine chemicals, and hormones. In addition, unlike most cytochromes, BM3 is both soluble and fused to its natural redox partner, thus facilitating its use. The industrial use of BM3 is however stifled by its instability and its requirement for the expensive NADPH cofactor. In this work, we added several mutations to the BM3 mutant R966D/W1046S that enhanced the turnover number achievable with the inexpensive cofactors NADH and NBAH. These new mutations, A769S, S847G, S850R, E852P, and V978L, are localized on the reductase domain of BM3 thus leaving the oxidase domain intact. For NBAH-driven reactions by new mutant NTD5, this led to a 5.24-fold increase in total product output when compared to the BM3 mutant R966D/W1046S. For reactions driven by NADH by new mutant NTD6, this enhanced total product output by as much as 2.3-fold when compared to the BM3 mutant R966D/W1046S. We also demonstrated that reactions driven by NADH with the NTD6 mutant not only surpassed total product output achievable by wild-type BM3 with NADPH but also retained the ability to use this latter cofactor with greater total product output as well.
Collapse
Affiliation(s)
- Thierry Vincent
- Department of Chemical Engineering, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Bruno Gaillet
- Department of Chemical Engineering, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Alain Garnier
- Department of Chemical Engineering, Université Laval, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
4
|
Eidenschenk C, Cheruzel L. Ru(II)-diimine complexes and cytochrome P450 working hand-in-hand. J Inorg Biochem 2020; 213:111254. [PMID: 32979791 PMCID: PMC7686262 DOI: 10.1016/j.jinorgbio.2020.111254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/19/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
With a growing interest in utilizing visible light to drive biocatalytic processes, several light-harvesting units and approaches have been employed to harness the synthetic potential of heme monooxygenases and carry out selective oxyfunctionalization of a wide range of substrates. While the fields of cytochrome P450 and Ru(II) photochemistry have separately been prolific, it is not until the turn of the 21st century that they converged. Non-covalent and subsequently covalently attached Ru(II) complexes were used to promote rapid intramolecular electron transfer in bacterial P450 enzymes. Photocatalytic activity with Ru(II)-modified P450 enzymes was achieved under reductive conditions with a judicious choice of a sacrificial electron donor. The initial concept of Ru(II)-modified P450 enzymes was further improved using protein engineering, photosensitizer functionalization and was successfully applied to other P450 enzymes. In this review, we wish to present the recent contributions from our group and others in utilizing Ru(II) complexes coupled with P450 enzymes in the broad context of photobiocatalysis, protein assemblies and chemoenzymatic reactions. The merging of chemical catalysts with the synthetic potential of P450 enzymes has led to the development of several chemoenzymatic approaches. Moreover, strained Ru(II) compounds have been shown to selectively inhibit P450 enzymes by releasing aromatic heterocycle containing molecules upon visible light excitation taking advantage of the rapid ligand loss feature in those complexes.
Collapse
Affiliation(s)
- Celine Eidenschenk
- Department Biochemical and Cellular Pharmacology, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA.
| |
Collapse
|
5
|
Edwards EH, Bren KL. Light-driven catalysis with engineered enzymes and biomimetic systems. Biotechnol Appl Biochem 2020; 67:463-483. [PMID: 32588914 PMCID: PMC9598052 DOI: 10.1002/bab.1976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/21/2020] [Indexed: 01/01/2023]
Abstract
Efforts to drive catalytic reactions with light, inspired by natural processes like photosynthesis, have a long history and have seen significant recent growth. Successfully engineering systems using biomolecular and bioinspired catalysts to carry out light-driven chemical reactions capitalizes on advantages offered from the fields of biocatalysis and photocatalysis. In particular, driving reactions under mild conditions and in water, in which enzymes are operative, using sunlight as a renewable energy source yield environmentally friendly systems. Furthermore, using enzymes and bioinspired systems can take advantage of the high efficiency and specificity of biocatalysts. There are many challenges to overcome to fully capitalize on the potential of light-driven biocatalysis. In this mini-review, we discuss examples of enzymes and engineered biomolecular catalysts that are activated via electron transfer from a photosensitizer in a photocatalytic system. We place an emphasis on selected forefront chemical reactions of high interest, including CH oxidation, proton reduction, water oxidation, CO2 reduction, and N2 reduction.
Collapse
Affiliation(s)
- Emily H. Edwards
- Department of Chemistry, University of Rochester, Rochester, NY 1462-0216
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, NY 1462-0216
| |
Collapse
|
6
|
Kato M, Melkie M, Li J, Foley B, Nguyen HT, Leti L, Cheruzel L. Coupling efficiency in light-driven hybrid P450BM3 and CYP119 enzymes. Arch Biochem Biophys 2019; 672:108077. [PMID: 31425675 DOI: 10.1016/j.abb.2019.108077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 01/08/2023]
Abstract
The light-driven hybrid P450 enzyme approach utilizing the photochemical properties of a covalently attached Ru(II)-diimine photosensitizer was extended to the archaeal Sulfolobus acidocaldarius CYP119 enzyme leading to high photocatalytic activity in the hydroxylation of the chromogenic substrate, 11-nitrophenoxyundecanoic acid. The determined kcat was greater than those reported with various natural redox partners. In addition, the sacrificial electron donor, diethyldithiocarbamate, used in the photocatalytic reaction is shown to play a dual role. It acts as an efficient quencher of the Ru(II) excited state leading to a highly reducing species necessary to inject electrons into the heme. It is also known for its antioxidant properties and is shown herein to be a useful probe to determine coupling efficiency in the light-driven hybrid enzymes.
Collapse
Affiliation(s)
- Mallory Kato
- San José State University, Department of Chemistry, One Washington Square, San José, CA, 95192-0101, USA
| | - Marya Melkie
- San José State University, Department of Chemistry, One Washington Square, San José, CA, 95192-0101, USA
| | - Jeffrey Li
- San José State University, Department of Chemistry, One Washington Square, San José, CA, 95192-0101, USA
| | - Bridget Foley
- San José State University, Department of Chemistry, One Washington Square, San José, CA, 95192-0101, USA
| | - Hoang Truc Nguyen
- San José State University, Department of Chemistry, One Washington Square, San José, CA, 95192-0101, USA
| | - Liridona Leti
- San José State University, Department of Chemistry, One Washington Square, San José, CA, 95192-0101, USA
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA, 95192-0101, USA.
| |
Collapse
|
7
|
Bahrami A, Garnier A, Larachi F, Iliuta MC. Covalent immobilization of cytochrome P450 BM3 (R966D/W1046S) on glutaraldehyde activated SPIONs. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Atieh Bahrami
- Department of Chemical Engineering; Laval University; QC, G1V 0A6 Canada
| | - Alain Garnier
- Department of Chemical Engineering; Laval University; QC, G1V 0A6 Canada
| | - Faïçal Larachi
- Department of Chemical Engineering; Laval University; QC, G1V 0A6 Canada
| | - Maria C. Iliuta
- Department of Chemical Engineering; Laval University; QC, G1V 0A6 Canada
| |
Collapse
|
8
|
Sosa V, Melkie M, Sulca C, Li J, Tang L, Li J, Faris J, Foley B, Banh T, Kato M, Cheruzel LE. Selective Light-Driven Chemoenzymatic Trifluoromethylation/Hydroxylation of Substituted Arenes. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04160] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Victor Sosa
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Marya Melkie
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Carolina Sulca
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Jennifer Li
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Lawrence Tang
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Jeffrey Li
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Justin Faris
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Bridget Foley
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Tam Banh
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Mallory Kato
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Lionel E. Cheruzel
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| |
Collapse
|
9
|
Bahrami A, Vincent T, Garnier A, Larachi F, Boukouvalas J, Iliuta MC. Noncovalent Immobilization of Optimized Bacterial Cytochrome P450 BM3 on Functionalized Magnetic Nanoparticles. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atieh Bahrami
- Department
of Chemical Engineering, Laval University, Québec, Canada, G1V 0A6
| | - Thierry Vincent
- Department
of Chemical Engineering, Laval University, Québec, Canada, G1V 0A6
| | - Alain Garnier
- Department
of Chemical Engineering, Laval University, Québec, Canada, G1V 0A6
| | - Faiçal Larachi
- Department
of Chemical Engineering, Laval University, Québec, Canada, G1V 0A6
| | - John Boukouvalas
- Department
of Chemistry, Laval University, Québec, Canada, G1V 0A6
| | - Maria C. Iliuta
- Department
of Chemical Engineering, Laval University, Québec, Canada, G1V 0A6
| |
Collapse
|
10
|
Panneerselvam S, Shehzad A, Mueller-Dieckmann J, Wilmanns M, Bocola M, Davari MD, Schwaneberg U. Crystallographic insights into a cobalt (III) sepulchrate based alternative cofactor system of P450 BM3 monooxygenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:134-140. [PMID: 28739446 DOI: 10.1016/j.bbapap.2017.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022]
Abstract
P450 BM3 is a multi-domain heme-containing soluble bacterial monooxygenase. P450 BM3 and variants are known to oxidize structurally diverse substrates. Crystal structures of individual domains of P450 BM3 are available. However, the spatial organization of the full-length protein is unknown. In this study, crystal structures of the P450 BM3 M7 heme domain variant with and without cobalt (III) sepulchrate are reported. Cobalt (III) sepulchrate acts as an electron shuttle in an alternative cofactor system employing zinc dust as the electron source. The crystal structure shows a binding site for the mediator cobalt (III) sepulchrate at the entrance of the substrate access channel. The mediator occupies an unusual position which is far from the active site and distinct from the binding of the natural redox partner (FAD/NADPH binding domain).
Collapse
Affiliation(s)
| | - Aamir Shehzad
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | | | - Matthias Wilmanns
- European Molecular Biology Laboratory-Hamburg, c/o DESY, Hamburg, Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, 52056 Aachen, Germany.
| |
Collapse
|
11
|
Schüürmann J, Quehl P, Lindhorst F, Lang K, Jose J. Autodisplay of glucose-6-phosphate dehydrogenase for redox cofactor regeneration at the cell surface. Biotechnol Bioeng 2017; 114:1658-1669. [PMID: 28401536 DOI: 10.1002/bit.26308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/02/2017] [Accepted: 04/02/2017] [Indexed: 11/06/2022]
Abstract
Inherent cofactor regeneration is a pivotal feature of whole cell biocatalysis. For specific biotechnological applications, surface display of enzymes is emerging as a tool to circumvent mass transfer limitations or enzyme stability problems. Even complex reactions can be accomplished applying displayed enzymes. Yet, industrial utilization of the technique is still impeded by lacking cofactor regeneration at the cell surface. Here, we report on the surface display of a glucose-6-phoshate dehydrogenase (G6PDH) via Autodisplay to address this limitation and regenerate NADPH directly at the cell surface. The obtained whole cell biocatalyst demonstrated similar kinetic parameters compared to the purified enzyme, more precisely KM values of 0.2 mM for NADP+ and calculated total turnover numbers of 107 . However, the KM for the substrate G6P increased by a factor of 7 to yield 1.5 mM. The whole cell biocatalyst was cheaper to produce, easy to separate from the reaction mixture and reusable in consecutive reaction cycles. Furthermore, lyophilization allowed storage at room temperature. The whole cell biocatalyst displaying G6PDH was applicable for NADPH regeneration in combination with soluble as well as surface displayed enzymes and model reactions in combination with bacterial CYP102A1 and human CYP1A2 were realized. Biotechnol. Bioeng. 2017;114: 1658-1669. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jan Schüürmann
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Paul Quehl
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Fabian Lindhorst
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Kristina Lang
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| |
Collapse
|
12
|
Shalan H, Kato M, Cheruzel L. Keeping the spotlight on cytochrome P450. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:80-87. [PMID: 28599858 DOI: 10.1016/j.bbapap.2017.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/26/2017] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
Abstract
This review describes the recent advances utilizing photosensitizers and visible light to harness the synthetic potential of P450 enzymes. The structures of the photosensitizers investigated to date are first presented along with their photophysical and redox properties. Functional photosensitizers range from organic and inorganic complexes to nanomaterials as well as the biological photosystem I complex. The focus is then on the three distinct approaches that have emerged for the activation of P450 enzymes. The first approach utilizes the in situ generation of reactive oxygen species entering the P450 mechanism via the peroxide shunt pathway. The other two approaches are sustained by electron injections into catalytically competent heme domains either facilitated by redox partners or through direct heme domain reduction. Achievements as well as pitfalls of each approach are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Hadil Shalan
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Mallory Kato
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States.
| |
Collapse
|
13
|
Shalan H, Colbert A, Nguyen TT, Kato M, Cheruzel L. Correlating the para-Substituent Effects on Ru(II)-Polypyridine Photophysical Properties and on the Corresponding Hybrid P450 BM3 Enzymes Photocatalytic Activity. Inorg Chem 2017; 56:6558-6564. [PMID: 28537742 DOI: 10.1021/acs.inorgchem.7b00685] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ru(II)-diimine complexes covalently attached near the heme active site of P450 BM3 enzymes have been used to rapidly inject electrons and drive selective C-H functionalization upon visible light irradiation. Herein, we have generated a series of hybrid P450 BM3 enzymes containing a photosensitizer of general formula [Ru(4,4'-X2bpy)2(PhenA)]2+ where X = Cl, H, tBu, Me OPhe, OMe, or NMe2, bpy = 2,2'-bipyridine, and PhenA = 5-acetamido-1,10-phenanthroline. We then probed the effect of electron-withdrawing and -donating groups at the para position of the 4,4'-X2bpy ligands on the corresponding hybrid enzymes photocatalytic activity. A 3-fold improvement in initial reaction rate was noted when varying the substituent from Cl to tBu, however, the reaction rates decrease thereafter with the more electron donating groups. In order to rationalize those effects, we investigated the variation of the substituent on the photophysical properties of the corresponding [Ru(4,4'-X2bpy)2(bpy)]2+ model complexes. Several linear correlations were established between the E(III/II) potential, the MLCT emission, and absorption energies as well as the logarithm of the luminescence quenching rate vs the summative Brown-Okamoto parameter (Σσp+). Moreover, a downward curved Hammett plot is observed with the hybrid enzyme initial reaction rate revealing mechanistic details about the overall light-driven enzymatic process.
Collapse
Affiliation(s)
- Hadil Shalan
- Department of Chemistry, San Jose State University , San Jose, California 95192-0101, United States
| | - Alexander Colbert
- Department of Chemistry, San Jose State University , San Jose, California 95192-0101, United States
| | - Thanh Truc Nguyen
- Department of Chemistry, San Jose State University , San Jose, California 95192-0101, United States
| | - Mallory Kato
- Department of Chemistry, San Jose State University , San Jose, California 95192-0101, United States
| | - Lionel Cheruzel
- Department of Chemistry, San Jose State University , San Jose, California 95192-0101, United States
| |
Collapse
|
14
|
Spradlin J, Lee D, Mahadevan S, Mahomed M, Tang L, Lam Q, Colbert A, Shafaat OS, Goodin D, Kloos M, Kato M, Cheruzel LE. Insights into an efficient light-driven hybrid P450 BM3 enzyme from crystallographic, spectroscopic and biochemical studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1732-1738. [PMID: 27639964 DOI: 10.1016/j.bbapap.2016.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND In order to perform selective CH functionalization upon visible light irradiation, Ru(II)-diimine functionalized P450 heme enzymes have been developed. The sL407C-1 enzyme containing the Ru(bpy)2PhenA (bpy=2,2'-bipyridine and PhenA=5-acetamido-1,10-phenanthroline) photosensitizer (1) covalently attached to the non-native single cysteine L407C of the P450BM3 heme domain mutant, displays high photocatalytic activity in the selective CH bond hydroxylation of several substrates. METHODS A combination of X-ray crystallography, site-directed mutagenesis, transient absorption measurements and enzymatic assays was used to gain insights into its photocatalytic activity and electron transfer pathway. RESULTS The crystal structure of the sL407C-1 enzyme was solved in the open and closed conformations revealing a through-space electron transfer pathway involving highly conserved, F393 and Q403, residues. Several mutations of these residues (F393A, F393W or Q403W) were introduced to probe their roles in the overall reaction. Transient absorption measurements confirm rapid electron transfer as heme reduction is observed in all four hybrid enzymes. Compared to the parent sL407C-1, photocatalytic activity was negligible in the dF393A-1 enzyme while 60% increase in activity with total turnover numbers of 420 and 90% product conversion was observed with the dQ403W-1 mutant. CONCLUSIONS In the sL407C-1 enzyme, the photosensitizer is ideally located to rapidly deliver electrons, using the naturally occurring electron transfer pathway, to the heme center in order to activate molecular dioxygen and sustain photocatalytic activity. GENERAL SIGNIFICANCE The results shed light on the design of efficient light-driven biocatalysts and the approach can be generalized to other members of the P450 superfamily.
Collapse
Affiliation(s)
- Jessica Spradlin
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Diana Lee
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Sruthi Mahadevan
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Mavish Mahomed
- Department of Chemistry, One Shields Ave., University of California Davis, Davis, CA, United States
| | - Lawrence Tang
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Quan Lam
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Alexander Colbert
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Oliver S Shafaat
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - David Goodin
- Department of Chemistry, One Shields Ave., University of California Davis, Davis, CA, United States
| | - Marco Kloos
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Mallory Kato
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Lionel E Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States.
| |
Collapse
|