1
|
Da Silva HC, De Almeida WB. On the use OF 1H-NMR chemical shifts and thermodynamic data for the prediction of the predominant conformation of organic molecules in solution: the example of the flavonoid rutin. RSC Adv 2024; 14:19619-19635. [PMID: 38895532 PMCID: PMC11184657 DOI: 10.1039/d4ra03430a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Conformational analyses of organic compounds in solution still represent a challenge to be overcome. The traditional methodology uses the relative energies of the conformations to decide which one is most likely to exist in the experimental sample. The goal of this work was to deepen the approach of conformational analysis of flavonoid rutin (a well-known antioxidant agent) in DMSO solution. The methodology we used in this paper involves expanding the sample configuration space to a total of 44 possible geometries, using Molecular Dynamics (MD) simulations, which accesses structures that would hardly be considered with our chemical perception, followed by DFT geometry optimizations using the ωB97X-D/6-31G(d,p) - PCM level of theory. Spectroscopic and thermodynamic analyses were done, by calculating the relative energies and nuclear magnetic resonance (1H-NMR) chemical shifts, comparing the theoretical and experimental 1H-NMR spectra (DMSO-d 6) and evaluating Mean Absolute Error (MAE). The essence of this procedure lies in searching for patterns, like those found in traditional DNA tests common in healthcare. Here, the theoretical spectrum plays the role of the analyzed human sample, while the experimental spectrum acts as the reference standard. In solution, it is natural for the solute to dynamically alter its geometry, going through various conformations (simulated here by MD). However, our DFT/PCM results show that a structure named 32 with torsion angles ϕ 1 and ϕ 2 manually rotated by approx. 20° showed the best theoretical-experimental agreement of 1H-NMR spectra (in DMSO-d 6). Relative energies benchmarking involving 16 DFT functionals revealed that the ωB97X-D is very adequate for estimating energies of organic compounds with dispersion of charge (MAE < 1.0 kcal mol-1, using ab initio post-Hartree-Fock MP2 method as reference). To describe the stability of the conformations, calculations of Natural Bonding Orbitals (NBO) were made, aiming to reveal possible intramolecular hydrogen bonds that stabilize the structures. Since van der Waals (vdW) interactions are difficult to be identified by NBO donations, the Reduced Density Gradient (RDG) were calculated, which provides 2D plots and 3D surfaces that describe Non-Covalent Interactions (NCI). These data allowed us to analyze the effect of dispersion interactions on the relative stability of the rutin conformations. Our results strongly indicate that a combination of DFT (ωB97X-D)-PCM relative energies and NMR spectroscopic criterion is a more efficient strategy in conformational analysis of organic compounds in solution.
Collapse
Affiliation(s)
- Haroldo C Da Silva
- Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF) Outeiro de São João Batista s/n, Campus do Valonguinho, Centro 24020-141 Niterói RJ Brazil
- Departamento de Físico-Química, Instituto de Química, Pavilhão Haroldo Lisboa da Cunha, Universidade do Estado do Rio de Janeiro (UERJ) Rua São Francisco Xavier, 524, Maracanã 20550-013 Rio de Janeiro RJ Brazil
| | - Wagner B De Almeida
- Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF) Outeiro de São João Batista s/n, Campus do Valonguinho, Centro 24020-141 Niterói RJ Brazil
| |
Collapse
|
2
|
El-Megharbel SM, Qahl SH, Albogami B, Hamza RZ. Chemical and spectroscopic characterization of (Artemisinin/Querctin/ Zinc) novel mixed ligand complex with assessment of its potent high antiviral activity against SARS-CoV-2 and antioxidant capacity against toxicity induced by acrylamide in male rats. PeerJ 2024; 12:e15638. [PMID: 38188145 PMCID: PMC10768679 DOI: 10.7717/peerj.15638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024] Open
Abstract
A novel Artemisinin/Quercetin/Zinc (Art/Q/Zn) mixed ligand complex was synthesized, tested for its antiviral activity against coronavirus (SARS-CoV-2), and investigated for its effect against toxicity and oxidative stress induced by acrylamide (Acy), which develops upon cooking starchy foods at high temperatures. The synthesized complex was chemically characterized by performing elemental analysis, conductance measurements, FT-IR, UV, magnetic measurements, and XRD. The morphological surface of the complex Art/Q/Zn was investigated using scanning and transmission electron microscopy (SEM and TEM) and energy dispersive X-ray analysis (XRD). The in vitro antiviral activity of the complex Art/Q/Zn against SARS-CoV-2 and its in vivo activity against Acy-induced toxicity in hepatic and pulmonary tissues were analyzed. An experimental model was used to evaluate the beneficial effects of the novel Art/Q/Zn novel complex on lung and liver toxicities of Acy. Forty male rats were randomly divided into four groups: control, Acy (500 mg/Kg), Art/Q/Zn (30 mg/kg), and a combination of Acy and Art/Q/Zn. The complex was orally administered for 30 days. Hepatic function and inflammation marker (CRP), tumor necrosis factor, interleukin-6 (IL-6), antioxidant enzyme (CAT, SOD, and GPx), marker of oxidative stress (MDA), and blood pressure levels were investigated. Histological and ultrastructure alterations and caspase-3 variations (immunological marker) were also investigated. FT-IR spectra revealed that Zn (II) is able to chelate through C=O and C-OH (Ring II) which are the carbonyl oxygen atoms of the quercetin ligand and carbonyl oxygen atom C=O of the Art ligand, forming Art/Q/Zn complex with the chemical formula [Zn(Q)(Art)(Cl)(H2O)2]⋅3H2O. The novel complex exhibited a potent anti-SARS-CoV-2 activity even at a low concentration (IC50 = 10.14 µg/ml) and was not cytotoxic to the cellular host (CC50 = 208.5 µg/ml). Art/Q/Zn may inhibit the viral replication and binding to the angiotensin-converting enzyme-2 (ACE2) receptor and the main protease inhibitor (MPro), thereby inhibiting the activity of SARS-CoV-2 and this proved by the molecular dynamics simulation. It alleviated Acy hepatic and pulmonary toxicity by improving all biochemical markers. Therefore, it can be concluded that the novel formula Art/Q/Zn complex is an effective antioxidant agent against the oxidative stress series, and it has high inhibitory effect against SARS-CoV-2.
Collapse
Affiliation(s)
- Samy M. El-Megharbel
- Department of Chemistry, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Bander Albogami
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Reham Z. Hamza
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
3
|
Hassan SS, Bedir EA, Hamza AEM, Ahmed AM, Ibrahim NM, Abd El‐Ghany MS, Khattab NN, Emeira BM, Salama MM, Mohamed EF, Fayed DB. The dual therapeutic effect of metformin nuclei‐based drugs modified with one of Tulbaghia violacea extract compounds. Appl Organomet Chem 2022; 36. [DOI: 10.1002/aoc.6804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/13/2022] [Indexed: 09/01/2023]
Abstract
Novel Schiff base was synthesized from the condensation reaction of metformin with [4‐(Diethylamino) benzaldehyde (NBM). Different metal complexes were prepared using Pd (II), Pt (II), Cu (II), and V (IV) metal ions. All complexes showed the nonelectrolytic behavior. So, the expected molecular formulas for complexes were [Pd (NBM)Cl2], [Pt (NBM)Cl2], [Cu (NBM)2Cl2] and [VO (NBM)2]. The cytotoxicity of (NBM) Schiff base and its metal complexes on human cancer cell line, MCF‐7, was investigated. V (IV) and Cu (II) complexes showed potential blood glucose lowering effect higher than the commercial metformin drug. VO (II) complex has superior antioxidant activity more than the other synthesized compounds and the standard ascorbic acid. Molecular docking investigation proved the presence of interesting interactions between all synthesized compounds with the active site amino acids of EGFR tyrosine kinase (anticancer activity). The molecular docking of metal complexes has observed effective inhibition for the specific mTOR protein that is expected to aid the growth of the COVID‐19 virus.
Collapse
Affiliation(s)
- Safaa S. Hassan
- Department of Chemistry, Faculty of Science Cairo University Giza Egypt
| | - Elaria A. Bedir
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | | | - Ahmed M. Ahmed
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | - Nouran M. Ibrahim
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | | | - Nada N. Khattab
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | - Bassant M. Emeira
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | - Mabrook M. Salama
- Department of Chemistry, Faculty of Science University of Benghazi Benghazi Libya
| | - Eman F. Mohamed
- Department of Chemistry, Faculty of Science (Girls) Al‐Azhar University Nasr City Egypt
| | - Dalia B. Fayed
- Therapeutic Chemistry Department National Research Centre Cairo Egypt
| |
Collapse
|
4
|
Loizou M, Papaphilippou P, Vlasiou M, Spilia M, Peschos D, Simos YV, Keramidas AD, Drouza C. Binuclear VIV/V, MoVI and ZnII - hydroquinonate complexes: Synthesis, stability, oxidative activity and anticancer properties. J Inorg Biochem 2022; 235:111911. [DOI: 10.1016/j.jinorgbio.2022.111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
5
|
Overview of Research on Vanadium-Quercetin Complexes with a Historical Outline. Antioxidants (Basel) 2022; 11:antiox11040790. [PMID: 35453475 PMCID: PMC9029821 DOI: 10.3390/antiox11040790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/27/2023] Open
Abstract
The present review was conducted to gather the available literature on some issues related to vanadium-quercetin (V-QUE) complexes. It was aimed at collecting data from in vitro and in vivo studies on the biological activity, behavior, antioxidant properties, and radical scavenging power of V-QUE complexes. The analysis of relevant findings allowed summarizing the evidence for the antidiabetic and anticarcinogenic potential of V-QUE complexes and suggested that they could serve as pharmacological agents for diabetes and cancer. These data together with other well-documented biological properties of V and QUE (common for both), which are briefly summarized in this review as well, may lay the groundwork for new therapeutic treatments and further research on a novel class of pharmaceutical molecules with better therapeutic performance. Simultaneously, the results compiled in this report point to the need for further studies on complexation of V with flavonoids to gain further insight into their behavior, identify species responsible for their physiological activity, and fully understand their mechanism of action.
Collapse
|
6
|
Mohanty M, Sahu G, Banerjee A, Lima S, Patra SA, Crochet A, Sciortino G, Sanna D, Ugone V, Garribba E, Dinda R. Mo(VI) Potential Metallodrugs: Explaining the Transport and Cytotoxicity by Chemical Transformations. Inorg Chem 2022; 61:4513-4532. [PMID: 35213131 DOI: 10.1021/acs.inorgchem.2c00113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transport and cytotoxicity of molybdenum-based drugs have been explained with the concept of chemical transformation, a very important idea in inorganic medicinal chemistry that is often overlooked in the interpretation of the biological activity of metal-containing systems. Two monomeric, [MoO2(L1)(MeOH)] (1) and [MoO2(L2)(EtOH)] (2), and two mixed-ligand dimeric MoVIO2 species, [{MoO2(L1-2)}2(μ-4,4'-bipy)] (3-4), were synthesized and characterized. The structures of the solid complexes were solved through SC-XRD, while their transformation in water was clarified by UV-vis, ESI-MS, and DFT. In aqueous solution, 1-4 lead to the penta-coordinated [MoO2(L1-2)] active species after the release of the solvent molecule (1 and 2) or removal of the 4,4'-bipy bridge (3 and 4). [MoO2(L1-2)] are stable in solution and react with neither serum bioligand nor cellular reductants. The binding affinity of 1-4 toward HSA and DNA were evaluated through analytical and computational methods and in both cases a non-covalent interaction is expected. Furthermore, the in vitro cytotoxicity of the complexes was also determined and flow cytometry analysis showed the apoptotic death of the cancer cells. Interestingly, μ-4,4'-bipy bridged complexes 3 and 4 were found to be more active than monomeric 1 and 2, due to the mixture of species generated, that is [MoO2(L1-2)] and the cytotoxic 4,4'-bipy released after their dissociation. Since in the cytosol neither the reduction of MoVI to MoV/IV takes place nor the production of reactive oxygen species (ROS) through Fenton-like reactions of 1-4 with H2O2 occurs, the mechanism of cytotoxicity should be attributable to the direct interaction with DNA that happens with a minor-groove binding which results in cell death through an apoptotic mechanism.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Aurélien Crochet
- Department of Chemistry, Fribourg Center for Nanomaterials, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Valeria Ugone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
7
|
Hassan S, Bedir EA, Hamza AERM, Ahmed AM, Ibrahim NM, El-Ghany MSA, Sayed NN, Eimera BM, Salama M, Mohamed EF, Mohamed DB. The Dual Therapeutic Effect of Metformin Nuclei Based Drugs Modified with One of Tulbaghia Violacea Extract Compounds. SSRN ELECTRONIC JOURNAL 2022. [DOI: 10.2139/ssrn.4015275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Jomova K, Hudecova L, Lauro P, Simunková M, Barbierikova Z, Malcek M, Alwasel SH, Alhazza IM, Rhodes CJ, Valko M. The effect of Luteolin on DNA damage mediated by a copper catalyzed Fenton reaction. J Inorg Biochem 2021; 226:111635. [PMID: 34717250 DOI: 10.1016/j.jinorgbio.2021.111635] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Luteolin has been reviewed as a flavonoid possessing potential cardioprotective, anti-inflammatory, anti-cancer activities. Having multiple biological effects, luteolin may act as either an antioxidant or a pro-oxidant. In this work, the protective role of copper(II)-chelation by luteolin on DNA damage via the Cu-Fenton reaction was studied. EPR and UV-vis spectroscopic data demonstrated that the luteolin, lacking 3-OH group, chelates to Cu(II) via the 5-OH and 4-CO groups, respectively. EPR spin trapping experiments using DMPO spin trap confirmed that the coordination of luteolin to Cu(II) significantly suppressed formation of hydroxyl and superoxide radicals (by 80%) in a Cu-Fenton system. Absorption titrations showed that the chelation of Cu(II) by luteolin slightly increased the mild intercalation strength of its interaction with DNA, as compared with free luteolin. Comparison with kaempferol and quercetin revealed, that the strength of the interaction between the free flavonoids/Cu-flavonoid complexes with DNA is only mildly affected by the presence/absence of 3-OH group. Due to the differences in the sensitivities of absorption titrations and viscometry, the latter confirmed weaker DNA intercalating efficiency of Cu-luteolin complex than does free luteolin. A dose dependent protective effect of luteolin against ROS-induced DNA damage was observed using gel electrophoresis. This effect was more pronounced compared to quercetin and kaempferol. In conclusion, the administration of luteolin to patients suffering from oxidative stress-related diseases with disturbed Cu-metabolism such as Alzheimer's diseases (antioxidant effect) and certain cancers (prooxidant effect) may have several health benefits.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Lenka Hudecova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Peter Lauro
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Miriama Simunková
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Zuzana Barbierikova
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Michal Malcek
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim M Alhazza
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia; Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
Abstract
The vanadium(V) complexes have been investigated as potential anticancer agents which makes it essential to evaluate their toxicity for safe use in the clinic. The large-scale synthesis and the acute oral toxicity in mice of the oxidovanadium(V) Schiff base catecholate complex, abbreviated as [VO(HSHED)dtb] containing a redox-active ligand with tridentate Schiff base (HSHED = N-(salicylideneaminato)-N’-(2-hydroxyethyl)-1,2-ethylenediamine) and dtb = 3,5-di-(t-butyl)catechol ligands were carried out. The body weight, food consumption, water intake as well biomarkers of liver and kidney toxicity of the [VO(HSHED)dtb] were compared to the precursors, sodium orthovanadate, and free ligand. The 10-fold scale-up synthesis of the oxidovanadium(V) complex resulting in the preparation of material in improved yield leading to 2–3 g (79%) material suitable for investigating the toxicity of vanadium complex. No evidence of toxicity was observed in animals when acutely exposed to a single dose of 300 mg/kg for 14 days. The toxicological results obtained with biochemical and hematological analyses did not show significant changes in kidney and liver parameters when compared with reference values. The low oral acute toxicity of the [VO(HSHED)dtb] is attributed to redox chemistry taking place under biological conditions combined with the hydrolytic stability of the oxidovanadium(V) complex. These results document the design of oxidovanadium(V) complexes that have low toxicity but still are antioxidant and anticancer agents.
Collapse
|
10
|
Da Silva H, De Souza LA, Dos Santos HF, De Almeida WB. Determination of Anticancer Zn(II)-Rutin Complex Structures in Solution through Density Functional Theory Calculations of 1H NMR and UV-VIS Spectra. ACS OMEGA 2020; 5:3030-3042. [PMID: 32095726 PMCID: PMC7034030 DOI: 10.1021/acsomega.9b04174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Coordination compounds formed by flavonoid ligands are recognized as promising candidates as novel drugs with enhanced antioxidant and anticancer activity. Zn(II)-Rutin complexes have been described in the literature and distinct coordination modes proposed based on 1H NMR/MS and IR/UV-VIS experimental spectroscopic data: 1:1/1:2 (Zn(II) binding to A-C rings) and 2:1 (Zn(II) binding to A-C-B rings) stoichiometry. Aiming to clarify these experimental findings and provide some physical insights into the process of complex formation in solution, we carried out density functional theory calculations of NMR and UV-VIS spectra for 25 plausible Zn(II)-Rutin molecular structures including solvent effect using the polarizable continuum model approach. The studied complexes in this work have 1:1, 1:2, 2:1, and 3:1 metal-ligand stoichiometry for all relevant Zn(II)-Rutin configurations. The least deviation between theoretical and experimental spectroscopic data was used as an initial criterion to select the probable candidate structures. Our theoretical spectroscopic results strongly indicate that the experimentally suggested modes of coordination (1:2 and 2:1) are likely to exist in solution, supporting the two distinct experimental findings in DMSO and methanol solution, which may be seen as an interesting result. Our predicted 1:2 and 2:1 metal complexes are in agreement with the experimental stoichiometry; however, they differ from the proposed structure. Besides the prediction of the coordination site and molecular structure in solution, an important contribution of this work is the determination of the OH-C5 deprotonation state of rutin due to metal complexation at the experimental conditions (pH = 6.7 and 7.20). We found that, in the two independent synthesis of metal complexes, distinct forms of rutin (OH-C5 and O(-)-C5) are present, which are rather difficult to be assessed experimentally.
Collapse
Affiliation(s)
- Haroldo
C. Da Silva
- Laboratório
de Química Computacional e Modelagem Molecular (LQC-MM), Departamento
de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus
do Valonguinho, Centro, 24020-141 Niterói, Rio de Janeiro, Brazil
| | - Leonardo A. De Souza
- Departamento
de Química, ICEx, Universidade Federal
de Minas Gerais, Campus Universitário,
Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Hélio F. Dos Santos
- Núcleo
de Estudos em Química Computacional (NEQC), Departamento de
Química, ICE, Universidade Federal
de Juiz de Fora (UFJF), Campus Universitário,
Martelos, Juiz de Fora, Minas Gerais 36036-330, Brazil
| | - Wagner B. De Almeida
- Laboratório
de Química Computacional e Modelagem Molecular (LQC-MM), Departamento
de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus
do Valonguinho, Centro, 24020-141 Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Biological Activity of New Cichoric Acid-Metal Complexes in Bacterial Strains, Yeast-Like Fungi, and Human Cell Cultures In Vitro. Nutrients 2020; 12:nu12010154. [PMID: 31935840 PMCID: PMC7019225 DOI: 10.3390/nu12010154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 01/04/2020] [Indexed: 12/23/2022] Open
Abstract
Cichoric acid (CA) belongs to the group of polyphenols, which occurs in a variety of plant species and it is characterized by anticancer, antibacterial, and antiviral properties. Selected polyphenols have the ability to combine with metal ions to form chelate complexes that reveal greater biological activity than free compounds. In order to study possible antimicrobial and anticancer effect of CA and its complexes with copper(II)/zinc(II)/nickel(II)/cobalt(II) we decided to conduct cytotoxicity tests to estimate the most effective concentrations of tested compounds. The results of the presented study demonstrated, for the first time, that the treatment with newly synthesized CA-metal complexes has anticancer and antimicrobial effects, which were examined in seven different cell lines: MCF-7, MDA-MB-231, and ZR-75-1 breast cancer cell lines, A375 melanoma cell line, DLD-1 cell line, LN-229 cell line, FN cell line; five bacterial strains: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, Proteus vulgaris, Lactobacillus rhamnosus, yeast Sacchcaromyces boulardii, and pathogenic yeast-like fungi Candida albicans. The presented study indicates that CA-metal complexes could be considered as a potential supplementary tool in anticancer therapy, however, because of their possible toxic activity on fibroblasts, they should be used with caution. Some of the tested complexes have also preservative properties and positive influence on normal non-pathogenic microorganisms, which was demonstrated in selected microbial strains, therefore they may serve as food preservatives of natural origin with cytoprotective properties.
Collapse
|
12
|
Alper P, Erkisa M, Genckal HM, Sahin S, Ulukaya E, Ari F. Synthesis, characterization, anticancer and antioxidant activity of new nickel(II) and copper(II) flavonoid complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Pisano M, Arru C, Serra M, Galleri G, Sanna D, Garribba E, Palmieri G, Rozzo C. Antiproliferative activity of vanadium compounds: effects on the major malignant melanoma molecular pathways. Metallomics 2019; 11:1687-1699. [PMID: 31490510 DOI: 10.1039/c9mt00174c] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Malignant melanoma (MM) is the most fatal skin cancer, whose incidence has critically increased in the last decades. Recent molecular therapies are giving excellent results in the remission of melanoma but often they induce drug resistance in patients limiting their therapeutic efficacy. The search for new compounds able to overcome drug resistance is therefore essential. Vanadium has recently been cited for its anticancer properties against several tumors, but only a few data regard its effect against MM. In a previous work we demonstrated the anticancer activity of four different vanadium species towards MM cell lines. The inorganic anion vanadate(v) (VN) and the oxidovanadium(iv) complex [VO(dhp)2] (VS2), where dhp is 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate, showed IC50 values of 4.7 and 2.6 μM, respectively, against the A375 MM cell line, causing apoptosis and cell cycle arrest. Here we demonstrate the involvement of Reactive Oxygen Species (ROS) production in the pro-apoptotic effect of these two V species and evaluate the activation of different cell cycle regulators, to investigate the molecular mechanisms involved in their antitumor activity. We establish that VN and VS2 treatments reduce the phosphorylation of extracellular-signal regulated kinase (ERK) by about 80%, causing the deactivation of the mitogen activated protein kinase (MAPK) pathway in A375 cells. VN and VS2 also induce dephosphorylation of the retinoblastoma protein (Rb) (VN 100% and VS2 90%), together with a pronounced increase of cyclin-dependent kinase inhibitor 1 p21 (p21Cip1) protein expression up to 1800%. Taken together, our results confirm the antitumor properties of vanadium against melanoma cells, highlighting its ability to induce apoptosis through generation of ROS and cell cycle arrest by counteracting MAPK pathway activation and strongly inducing p21Cip1 expression and Rb hypo-phosphorylation.
Collapse
Affiliation(s)
- Marina Pisano
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca 3, 07100 Sassari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Crans DC, Koehn JT, Petry SM, Glover CM, Wijetunga A, Kaur R, Levina A, Lay PA. Hydrophobicity may enhance membrane affinity and anti-cancer effects of Schiff base vanadium(v) catecholate complexes. Dalton Trans 2019; 48:6383-6395. [PMID: 30941380 DOI: 10.1039/c9dt00601j] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Anti-cancer activities of vanadium compounds have generated recent interest because of a combination of desirable properties for chemotherapy, i.e., strong cytotoxicities, anti-metastatic activities and relatively low systemic toxicities. Certain hydrophobic vanadium(v) Schiff base/catecholate compounds, which as shown herein, have increased stability in aqueous media and affinity for membrane interfaces. Depending on their hydrophobicity, they may be able to enter cells intact. In this manuscript, two hydrophobic V(v) catecholate substituted analogues, [VO(Hshed)(cat)] and [VO(Hshed)(dtb)], (Hshed = N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine, cat = pyrocatechol, and dtb = 3,5-di(tert-butyl)catechol and the vanadium(v) precursor [V(O)2(Hshed)]) were synthesized for their ability to interact with membranes and their anti-cancer effects. Using 51V and 1H NMR spectroscopy, the presence and location of the free ligand, H2shed, and the three V(v) complexes were examined in a model membrane microemulsion system. The stability of the three complexes was measured in aqueous solution, cell media and an inhomogeneous microemulsion system. Our results demonstrated that free ligand H2shed and the intact V(v) complexes associated with the interface but that the V-complexes hydrolyzed to some extent because oxovanadates were observed by 51V NMR spectroscopy and decreasing complex by absorption spectroscopy in cell media. When determining the effects of V(v) catecholate complexes on bone cancer cells, the strongest effects were observed with the more stable hydrophobic complex [VO(Hshed)(dtb)] that was able to best associate and penetrate the model membrane system intact. These studies are consistent with the membrane permeability studies being a good predictor for in vitro cytotoxicity assays because [VO(Hshed)(dtb)] can pass through the cellular membrane intact, which may enhance its anti-cancer activities.
Collapse
Affiliation(s)
- Debbie C Crans
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
De Souza LA, Da Silva HC, De Almeida WB. Structural Determination of Antioxidant and Anticancer Flavonoid Rutin in Solution through DFT Calculations of 1H NMR Chemical Shifts. ChemistryOpen 2018; 7:902-913. [PMID: 30460171 PMCID: PMC6234759 DOI: 10.1002/open.201800209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Indexed: 11/28/2022] Open
Abstract
As the knowledge of the predominant molecular structure of antioxidant and anticancer flavonoid rutin in solution is very important for understanding the mechanism of action, a quantum chemical investigation of plausible rutin structures including solvent effects is of relevance. In this work, DFT calculations were performed to find possible minimum energy structures for the rutin molecule. 1H NMR chemical shift DFT calculations were carried out in DMSO solution using the polarizable continuum model (PCM) to simulate the solvent effect. Analysis of the experimental and theoretical 1H NMR chemical shift profiles offers a powerful fingerprint criterion to determine the predominant molecular structure in solution. Therefore, our aim is to find the best match between experimental (in DMSO‐d) and theoretical (PCM–DMSO) 1H NMR spectrum profiles. Among 34 optimized structures located on the potential energy surface, we found that structure 32, with a B‐ring deviated 30° from a planar configuration (geometry usually assumed for polyphenols), showed an almost perfect agreement with experimental the 1H NMR pattern when compared to the corresponding fully optimized planar geometry. This structure is also predicted as the global minimum based on room‐temperature Gibbs free energy calculations in solution and, therefore, should be experimentally observed. This is new and valuable structural information regarding structure–activity relationship studies, and such information is hard to obtain by experimentalists without the aid of the X‐ray diffraction technique.
Collapse
Affiliation(s)
- Leonardo A. De Souza
- Departamento de Química InorgânicaInstituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus do Valonguinho24020-141, CentroNiteróiRJBrazil
| | - Haroldo C. Da Silva
- Departamento de Química InorgânicaInstituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus do Valonguinho24020-141, CentroNiteróiRJBrazil
| | - Wagner B. De Almeida
- Departamento de Química InorgânicaInstituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus do Valonguinho24020-141, CentroNiteróiRJBrazil
| |
Collapse
|
16
|
Sanna D, Ugone V, Micera G, Buglyó P, Bíró L, Garribba E. Speciation in human blood of Metvan, a vanadium based potential anti-tumor drug. Dalton Trans 2018. [PMID: 28640312 DOI: 10.1039/c7dt00943g] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The first report on the anti-cancer activity of the compound Metvan, [VIVO(Me2phen)2(SO4)], where Me2phen is 4,7-dimethyl-1,10-phenanthroline, dates back to 2001. Although it was immediately identified as one of the most promising multitargeted anti-cancer V compounds, no development on the medical experimentation was carried out. One of the possible reasons is the lack of information on its speciation in aqueous solution and its thermodynamic stability, factors which influence the transport in the blood and the final form which reaches the target organs. To fill this gap, in this work the speciation of Metvan in aqueous solution and human blood was studied by instrumental (EPR, electronic absorption spectroscopy, ESI-MS and ESI-MS/MS), analytical (pH-potentiometry) and computational (DFT) methods. The results suggested that Metvan transforms at physiological pH into the hydrolytic species cis-[VO(Me2phen)2(OH)]+ and that both citrate and proteins (transferrin and albumin in the blood serum, and hemoglobin in the erythrocytes) form mixed complexes, denoted [VO(Me2phen)(citrH-1)]2- and VO-Me2phen-Protein with the probable binding of His-N donors. The measurements with erythrocytes suggest that Metvan is able to cross their membrane forming mixed species VO-Me2phen-Hb. The redox stability in cell culture medium was also examined, showing that ca. 60% is oxidized to VV after 5 h. Overall, the speciation of Metvan in the blood mainly depends on the V concentration: when it is larger than 50 μM, [VO(Me2phen)(citrH-1)]2- and VO-Me2phen-Protein are the major species, while for concentrations lower than 10 μM, (VO)(hTf) is formed and Me2phen is lost. Therefore, it is plausible that the pharmacological activity of Metvan could be due to the synergic action of free Me2phen, and VIVO and VVO/VVO2 species.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Synthesis and Characterization of Oxidovanadium(IV) Complexes of 2-((E)-(6-Fluorobenzo[d]thiazol-2-ylimino)methyl)-6-methoxyphenol and Their Antimicrobial, Antioxidant, and DNA-Binding Studies. Bioinorg Chem Appl 2018; 2018:2452869. [PMID: 30050562 PMCID: PMC6040275 DOI: 10.1155/2018/2452869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Accepted: 05/23/2018] [Indexed: 11/17/2022] Open
Abstract
Two novel oxidovanadium(IV) complexes with a new bidentate (O- and N-) imine-based ligand 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino)methyl)-6-methoxyphenol (HL) were synthesized under in situ experimental condition where VOSO4 acts as a kinetic template in the ratio 2 : 1 (L : M) and mixed ligand complex using 1,10-phenanthroline (phen) in 1 : 1 : 1 (L : M : phen) ratio. The synthesized compounds were structurally characterized by microanalysis, magnetic susceptibility, FTIR, electronic spectra, TG/DTA, ESR, and molar conductance studies. Based on the spectral studies, the complexes have the general composition [VO(L)2] (C 1 ) and [VO(L)phen] (C 2 ) in a square pyramid geometrical fashion. The synthesized compounds were primarily screened for their in vitro growth inhibiting activity against different strains of bacteria, namely, E. coli, B. subtilis, S. aureus, and P. aeruginosa by the disc diffusion method. Also, the antifungal activity was determined against C. albicans and A. niger by the Bateman poisoned technique. The in vitro antioxidant activity of all the compounds was determined by DPPH free radical-scavenging assay. Intercalative mode of DNA-binding properties of the oxidovanadium(IV) complexes with calf-thymus DNA (CT-DNA) was investigated using UV, fluorescence spectra, and viscosity measurements.
Collapse
|
18
|
Sanna D, Ugone V, Buglyó P, Nagy S, Kacsir I, Garribba E. Speciation in aqueous solution and interaction with low and high molecular mass blood bioligands of [V IV O(oda)(H 2 O) 2 ], a V compound with in vitro anticancer activity. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Łodyga-Chruscińska E, Pilo M, Zucca A, Garribba E, Klewicka E, Rowińska-Żyrek M, Symonowicz M, Chrusciński L, Cheshchevik VT. Physicochemical, antioxidant, DNA cleaving properties and antimicrobial activity of fisetin-copper chelates. J Inorg Biochem 2018; 180:101-118. [DOI: 10.1016/j.jinorgbio.2017.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
|
20
|
Malik BA, Mir JM. Synthesis, characterization and DFT aspects of some oxovanadium(IV) and manganese(II) complexes involving dehydroacetic acid and β-diketones. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1429600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bashir Ahmad Malik
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, India
| | - Jan Mohammad Mir
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P. G. Studies and Research in Chemistry & Pharmacy, R. D. University, Jabalpur, India
| |
Collapse
|
21
|
Oxovanadium phenanthroimidazole derivatives: synthesis, DNA binding and antitumor activities. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0205-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Koleša-Dobravc T, Maejima K, Yoshikawa Y, Meden A, Yasui H, Perdih F. Bis(picolinato) complexes of vanadium and zinc as potential antidiabetic agents: synthesis, structural elucidation and in vitro insulin-mimetic activity study. NEW J CHEM 2018. [DOI: 10.1039/c7nj04189f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The studied vanadium(iv), vanadium(v) and zinc(ii) complexes show inhibition of the free fatty acid release from rat adipocytes.
Collapse
Affiliation(s)
- Tanja Koleša-Dobravc
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- Večna pot 113
- SI-1000 Ljubljana
- Slovenia
| | - Keiichi Maejima
- Department of Analytical and Bioinorganic Chemistry
- Division of Analytical and Physical Chemistry
- Kyoto Pharmaceutical University
- Kyoto 607-8414
- Japan
| | - Yutaka Yoshikawa
- Department of Health, Sports, and Nutrition
- Faculty of Health and Welfare
- Kobe Women's University
- Kobe
- Japan
| | - Anton Meden
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- Večna pot 113
- SI-1000 Ljubljana
- Slovenia
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry
- Division of Analytical and Physical Chemistry
- Kyoto Pharmaceutical University
- Kyoto 607-8414
- Japan
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- Večna pot 113
- SI-1000 Ljubljana
- Slovenia
| |
Collapse
|