1
|
Yang H, Sharma A, Daly MJ, Hoffman BM. The ternary complex of Mn 2+, synthetic decapeptide DP1 (DEHGTAVMLK), and orthophosphate is a superb antioxidant. Proc Natl Acad Sci U S A 2024; 121:e2417389121. [PMID: 39665753 DOI: 10.1073/pnas.2417389121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Mn2+ coordinated by orthophosphate (Pi), metabolites, or peptides acts as a superoxide dismutase (SOD), and these Mn antioxidant complexes are universally accumulated in extremely radiation-resistant cell types across the tree of life. This behavior prompted design of decapeptide DP1 (DEHGTAVMLK) as a Mn2+ ligand, and development of a highly potent Mn2+-antioxidant (MDP) containing [Pi] = 25 mM, and [DP1] = 3 mM, the ratio found in the radioresistant bacterium Deinococcus radiodurans, with [Mn2+] = 1 mM. MDP is an exceptional antioxidant, both in vitro and in vivo, and has reinvigorated the development of radiation-inactivated whole-cell vaccines. This study investigates the nature of the active Mn2+ complex in MDP. We measure the affinity of DP1 for the substitutionally labile Mn2+ ion using isothermal-titration calorimetry (ITC) and use changes in the Mn2+ solution EPR spectrum to determine affinities of Mn2+ for DP1 and for Pi, and to monitor Mn2+ ligation while titrated with the fixed Pi/DP1 ratio of MDP, 25/3, using ENDOR/ESEEM to characterize DP1 ligation to Mn2+. In parallel, 1H NMR of DP1 was used to monitor binding interactions between Pi and DP1, and DP1 binding to the diamagnetic Ca2+. We report: i) DP1 forms an extremely weak, dynamic Mn2+ complex (Ka ≈ 40 M-1) ii) Mn2+ binds Pi much more strongly (Ka ≈ 390 M-1) as shown previously, but iii) DP1 and Pi jointly bind to Mn2+ in MDP to form a ternary Mn2+ (Pi) (DP1) complex with greater formation-constant than Pi alone (Kaapp ≈ 670 M-1). It is this ternary complex that is the superb antioxidant in MDP.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Michael J Daly
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Science, Bethesda, MD 20814
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
2
|
Lim S, Song HY, Park HR, Ahn KB. A Novel Deinococcus Antioxidant Peptide Mitigates Oxidative Stress in Irradiated CHO-K1 Cells. Microorganisms 2024; 12:2161. [PMID: 39597551 PMCID: PMC11596967 DOI: 10.3390/microorganisms12112161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Reactive oxygen species (ROS), byproducts of cellular metabolism and environmental factors, are linked to diseases like cancer and aging. Antioxidant peptides (AOPs) have emerged as effective countermeasures against ROS-induced damage. The Deinococcus genus is well known for its extraordinary resilience to ionizing radiation (IR) and possesses complex antioxidant systems designed to neutralize ROS generated by IR. In this study, we developed four peptides, each containing 9 to 11 amino acids, from the leaderless mRNA (lmRNA) sequences of D. deserti. Lacking a 5' untranslated region, lmRNAs directly initiate protein synthesis, potentially encoding small peptides such as AOPs. Of the four peptides, Ddes-P3 was found to exhibit significant antioxidant capabilities in vitro, effectively scavenging ABTS radicals. Ddes-P3 provided considerable defense against IR-induced oxidative stress in CHO-K1 cells, demonstrating a notable reduction in ROS production and lipid peroxidation. The peptide's potential was highlighted by its ability to enhance cell survival and maintain mitochondrial membrane potential under irradiative stress, suggesting its utility as a nontoxic and effective radioprotector in mitigating radiation-induced cellular damage. This study explores the potential role of lmRNA in synthesizing AOPs within Deinococcus. Identifying lmRNAs that encode AOPs could deepen our understanding of their cellular resistance to oxidative stress and pave the way for creating innovative biotechnological and therapeutic AOPs.
Collapse
Affiliation(s)
- Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (H.-Y.S.); (K.B.A.)
- Department of Radiation Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ha-Yeon Song
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (H.-Y.S.); (K.B.A.)
| | - Hae Ran Park
- Cyclotron Applied Research Section, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea;
| | - Ki Bum Ahn
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (H.-Y.S.); (K.B.A.)
| |
Collapse
|
3
|
Hood MN, Ayompe E, Holmes-Hampton GP, Korotcov A, Wuddie K, Aschenake Z, Ahmed AE, Creavalle M, Knollmann-Ritschel B. Preliminary Promising Findings for Manganese Chloride as a Novel Radiation Countermeasure Against Acute Radiation Syndrome. Mil Med 2024; 189:598-607. [PMID: 39160887 DOI: 10.1093/milmed/usae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/01/2024] [Accepted: 04/05/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Military members and first responders may, at moment's notice, be asked to assist in incidents that may result in radiation exposure such as Operation Tomadachi in which the U.S. Navy provided significant relief for the Fukushima Daiichi Nuclear Reactor accident in Japan after an earthquake and tsunami in 2011. We are also currently facing potential threats from nuclear power plants in the Ukraine should a power disruption to a nuclear plant interfere with cooling or other safety measures. Exposure to high doses of radiation results in acute radiation syndrome (ARS) characterized by symptoms arising from hematopoietic, gastrointestinal, and neurovascular injuries. Although there are mitigators FDA approved to treat ARS, there are currently no FDA-approved prophylactic medical interventions to help protect persons who may need to respond to radiation emergencies. There is strong evidence that manganese (Mn) has radiation protective efficacy as a promising prophylactic countermeasure. MATERIALS AND METHODS All animal procedures were approved by the Institutional Animal Care and Use Committee. Male and female B6D2F1J mice, 10 to 11 weeks old, were used for neurotoxicity studies and temporal effects of Mn. Four groups were evaluated: (1) vehicle injection, (2) dose of 4.5 mg/kg for 3 days, (3) dose of 13.5 mg/kg, and (4) sham. Irradiated mice were exposed to 9.5 Gy whole body Co60 γ-radiation. MRI was performed with a high dose of manganese chloride (MnCl2) (150 mg/kg) to assess the distribution of the MnCl2. RESULTS The mice have promising survival curves (highest survival-13.5 mg/kg dose over 3 days of MnCl2 at 80% [87% female, 73% male] P = 0.0004). The complete blood count (CBC) results demonstrated a typical hematopoietic response in all of the irradiated groups, followed by mildly accelerated recovery by day 28 in the treated groups. No difference between groups was measured by Rota Rod, DigiGait, and Y-maze. Histologic evaluation of the bone marrow sections in the group given 13.5 mg/kg dose over 3 days had the best return to cellularity at 80%. MRI showed a systemic distribution of MnCl2. DISCUSSION The preliminary data suggest that a dose of 13.5 mg/kg of MnCl2 given over 3 days prior to exposure of radiation may have a protective benefit while not exhibiting the neurobehavioral problems. A countermeasure that can prophylactically protect emergency personnel entering an area contaminated with high levels of radiation is needed, especially in light that nuclear accidents are a continued global threat. There is a need for a protective agent with easy long-term storage, easy to transport, easy to administer, and low cost. Histologic evaluation supports the promising effect of MnCl2 in protecting tissue, especially the bone marrow using the dose given over 3 days (4.5 mg/kg per day) of MnCl2. CONCLUSIONS Initial experiments show that MnCl2 is a promising safe and effective prophylactic countermeasure against ARS. MRI data support the systemic distribution of MnCl2 which is needed in order to protect multiple tissues in the body. The pathology data in bone marrow and the brain support faster recovery from radiation exposure in the treated animals and decreased organ damage.
Collapse
Affiliation(s)
- Maureen N Hood
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emmanuel Ayompe
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alexandru Korotcov
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kefale Wuddie
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Zemenu Aschenake
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Anwar E Ahmed
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Marqus Creavalle
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | |
Collapse
|
4
|
Petersen C, Buonanno M, Guan L, Hinzer A, Urbano J, Hashmi R, Shuryak I, Parker C, Welch D. Susceptibility of extremophiles to far-UVC light for bioburden reduction in spacecraft assembly facilities. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:56-63. [PMID: 38670653 DOI: 10.1016/j.lssr.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/02/2024] [Accepted: 01/25/2024] [Indexed: 04/28/2024]
Abstract
The prevention and reduction of microbial species entering and leaving Earth's biosphere is a critical aspect of planetary protection research. While various decontamination methods exist and are currently utilized for planetary protection purposes, the use of far-UVC light (200-230 nm) as a means for microbial reduction remains underexplored. Unlike conventional germicidal ultraviolet at 254 nm, which can pose a health risk to humans even with small exposure doses, far-UVC light poses minimal health hazard making it a suitable candidate for implementation in occupied areas of spacecraft assembly facilities. This study investigates the efficacy of far-UVC 222-nm light to inactivate bacteria using microbial species which are relevant to planetary protection either in vegetative cell or spore form. All the tested vegetative cells demonstrated susceptibility to 222-nm exposure, although susceptibility varied among the tested species. Notably, Deinococcus radiodurans, a species highly tolerant to extreme environmental conditions, exhibited the most resistance to far-UVC exposure with a dose of 112 mJ/cm2 required for a 1-log reduction in survival. While spore susceptibility was similar across the species tested, Bacillus pumilus spores were the most resistant of the tested spores when analyzed with a bi-exponential cell killing model (D90 of 6.8 mJ/cm2). Overall, these results demonstrate the efficacy of far-UVC light for reducing microbial bioburden to help ensure the success and safety of future space exploration missions.
Collapse
Affiliation(s)
- Camryn Petersen
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Lisa Guan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Akemi Hinzer
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Joshua Urbano
- California State Polytechnic University, Pomona, CA, United States
| | - Raabia Hashmi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Ceth Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - David Welch
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
5
|
Sadowska-Bartosz I, Bartosz G. Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? Int J Radiat Biol 2023; 99:1803-1829. [PMID: 37498212 DOI: 10.1080/09553002.2023.2241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Deinococcus radiodurans is an extremely radioresistant bacterium characterized by D10 of 10 kGy, and able to grow luxuriantly under chronic ionizing radiation of 60 Gy/h. The aim of this article is to review the antioxidant system of D. radiodurans and its possible role in the unusual resistance of this bacterium to ionizing radiation. CONCLUSIONS The unusual radiation resistance of D. radiodurans has apparently evolved as a side effect of the adaptation of this extremophile to other damaging environmental factors, especially desiccation. The antioxidant proteins and low-molecular antioxidants (especially low-molecular weight Mn2+ complexes and carotenoids, in particular, deinoxanthin), as well as protein and non-protein regulators, are important for the antioxidant defense of this species. Antioxidant protection of proteins from radiation inactivation enables the repair of DNA damage caused by ionizing radiation.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
6
|
Borg RE, Ozbakir HF, Xu B, Li E, Fang X, Peng H, Chen IA, Mukherjee A. Genetically engineered filamentous phage for bacterial detection using magnetic resonance imaging. SENSORS & DIAGNOSTICS 2023; 2:948-955. [PMID: 38405385 PMCID: PMC10888512 DOI: 10.1039/d3sd00026e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Detecting bacterial cells with high specificity in deep tissues is challenging. Optical probes provide specificity, but are limited by the scattering and absorption of light in biological tissues. Conversely, magnetic resonance imaging (MRI) allows unfettered access to deep tissues, but lacks contrast agents for detecting specific bacterial strains. Here, we introduce a biomolecular platform that combines both capabilities by exploiting the modularity of M13 phage to target bacteria with tunable specificity and allow deep-tissue imaging using T1-weighted MRI. We engineered two types of phage probes: one for detecting the phage's natural host, viz., F-pilus expressing E. coli; and the other for detecting a different (F-negative) bacterial target, V. cholerae. We show that these phage sensors generate 3-9-fold stronger T1 relaxation upon recognizing target cells relative to non-target bacteria. We further establish a preliminary proof-of-concept for in vivo applications, by demonstrating that phage-labeled bacteria can be detected in mice using MRI. The framework developed in this study may have potential utility in a broad range of applications, from basic biomedical research to in situ diagnostics, which require methods to detect and track specific bacteria in the context of intact living systems.
Collapse
Affiliation(s)
- Raymond E Borg
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Harun F Ozbakir
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Binzhi Xu
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Eugene Li
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Xiwen Fang
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Huan Peng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Arnab Mukherjee
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Biological Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
7
|
Peana M, Gumienna-Kontecka E, Piras F, Ostrowska M, Piasta K, Krzywoszynska K, Medici S, Zoroddu MA. Exploring the Specificity of Rationally Designed Peptides Reconstituted from the Cell-Free Extract of Deinococcus radiodurans toward Mn(II) and Cu(II). Inorg Chem 2020; 59:4661-4684. [PMID: 32212645 PMCID: PMC7467671 DOI: 10.1021/acs.inorgchem.9b03737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
A series of five
rationally designed decapeptides [DEHGTAVMLK (DP1), THMVLAKGED (DP2),
GTAVMLKDEH (Term-DEH), TMVLDEHAKG (Mid-DEH), and DEHGGGGDEH (Bis-DEH)]
have been studied for their interactions with Cu(II) and Mn(II) ions.
The peptides, constructed including the most prevalent amino acid
content found in the cell-free extract of Deinococcus radiodurans (DR), play a fundamental role in the antioxidant mechanism related
to its exceptional radioresistance. Mn(II) ions, in complex with these
peptides, are found to be an essential ingredient for the DR protection
kit. In this work, a detailed characterization of Cu(II) systems was
included, because Cu(II)–peptide complexes have also shown
remarkable antioxidant properties. All peptides studied contain in
their sequence coordinating residues that can bind effectively Mn(II)
or Cu(II) ions with high affinity, such as Asp, Glu, and His. Using
potentiometric techniques, NMR, EPR, UV–vis, and CD spectroscopies,
ESI-MS spectrometry, and molecular model calculations, we explored
the binding properties and coordination modes of all peptides toward
the two metal ions, were able to make a metal affinity comparison
for each metal system, and built a structural molecular model for
the most stable Cu(II) and Mn(II) complexes in agreement with experimental
evidence. Five rationally designed decapeptides
reconstituted from the cell-free extract of Deinococcus radiodurans have been precisely analyzed in terms of their coordination properties
toward Mn(II) and Cu(II). The results provide new insight to enhance
our understanding of the impact of metal complexes in the protection
of the bacterium from various damaging agents such as ionizing radiation,
ultraviolet radiation, and oxidative stress and novel information
useful for exploiting this extraordinary ability in future biotechnological
applications.
Collapse
Affiliation(s)
- Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | | | - Francesca Piras
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Malgorzata Ostrowska
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Karolina Piasta
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | | |
Collapse
|
8
|
A novel gamma radiation-inactivated sabin-based polio vaccine. PLoS One 2020; 15:e0228006. [PMID: 31999745 PMCID: PMC6991977 DOI: 10.1371/journal.pone.0228006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/05/2020] [Indexed: 12/18/2022] Open
Abstract
A concerted action on the part of international agencies and national governments has resulted in the near-eradication of poliomyelitis. However, both the oral polio vaccine (OPV) and the inactivated polio vaccine (IPV) have deficiencies which make them suboptimal for use after global eradication. OPV is composed of attenuated Sabin strains and stimulates robust immunity, but may revert to neurovirulent forms in the intestine which can be shed and infect susceptible contacts. The majority of IPV products are manufactured using pathogenic strains inactivated with formalin. Upon eradication, the production of large quantities of pathogenic virus will present an increased biosecurity hazard. A logical ideal endgame vaccine would be an inactivated form of an attenuated strain that could afford protective immunity while safely producing larger numbers of doses per unit of virus stock than current vaccines. We report here the development of an ionizing radiation (IR)-inactivated Sabin-based vaccine using a reconstituted Mn-decapeptide (MDP) antioxidant complex derived from the radioresistant bacterium Deinococcus radiodurans. In bacteria, Mn2+-peptide antioxidants protect proteins from oxidative damage caused by extreme radiation exposure. Here we show for the first time, that MDP can protect immunogenic neutralizing epitopes in picornaviruses. MDP protects epitopes in Polio Virus 1 and 2 Sabin strains (PV1-S and PV2-S, respectively), but viral genomic RNA is not protected during supralethal irradiation. IR-inactivated Sabin viruses stimulated equivalent or improved neutralizing antibody responses in Wistar rats compared to the commercially used IPV products. Our approach reduces the biosecurity risk of the current PV vaccine production method by utilizing the Sabin strains instead of the wild type neurovirulent strains. Additionally, the IR-inactivation approach could provide a simpler, faster and less costly process for producing a more immunogenic IPV. Gamma-irradiation is a well-known method of virus inactivation and this vaccine approach could be adapted to any pathogen of interest.
Collapse
|
9
|
Qi HZ, Wang WZ, He JY, Ma Y, Xiao FZ, He SY. Antioxidative system of Deinococcus radiodurans. Res Microbiol 2019; 171:45-54. [PMID: 31756434 DOI: 10.1016/j.resmic.2019.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Deinococcus radiodurans is famous for its extreme resistance to various stresses such as ionizing radiation (IR), desiccation and oxidative stress. The underlying mechanism of exceptional resistance of this robust bacterium still remained unclear. However, the antioxidative system of D. radiodurans has been considered to be the determinant factor for its unparalleled resistance and protects the proteome during stress, then the DNA repair system and metabolic system exert their functions to restore the cell to normal physiological state. The antioxidative system not only equipped with the common reactive oxygen species (ROS) scavenging enzymes (e.g., catalase and superoxide dismutase) but also armed with a variety of non-enzyme antioxidants (e.g., carotenoids and manganese species). And the small manganese complexes play an important role in the antioxidative system of D. radiodurans. Recent studies have characterized several regulators (e.g., PprI and PprM) in D. radiodurans, which play critical roles in the protection of the bacteria from various stresses. In this review, we offer a panorama of the progress regarding the characteristics of the antioxidative system in D. radiodurans and its application in the future.
Collapse
Affiliation(s)
- Hui-Zhou Qi
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Function Laboratory Center, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Wu-Zhou Wang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Jun-Yan He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Fang-Zhu Xiao
- Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Shu-Ya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China.
| |
Collapse
|
10
|
Peana M, Chasapis CT, Simula G, Medici S, Zoroddu MA. A Model for Manganese interaction with Deinococcus radiodurans proteome network involved in ROS response and defense. J Trace Elem Med Biol 2018; 50:465-473. [PMID: 29449107 DOI: 10.1016/j.jtemb.2018.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/17/2018] [Accepted: 02/01/2018] [Indexed: 01/28/2023]
Abstract
A complex network of regulatory proteins takes part in the mechanism underlying the radioresistance of Deinoccocus radiodurans bacterium (DR). The interaction of Mn(II) ions with DR-proteins and peptides seems to be responsible for proteins protection from oxidative damage induced by Reactive Oxygen Species during irradiation. In the present work we describe a combined approach of bioinformatic strategies based on structural data and annotation to predict the Mn(II)-binding proteins encoded by the genome of DR and, in parallel, the same predictions for other bacteria were performed; the comparison revealed that, in most of the cases, the content of Mn(II)-binding proteins is significantly higher in radioresistant than in radiosensitive bacteria. Moreover, we report the in silico protein-protein interaction network of the putative Mn(II)-proteins, remodeled in order to enhance the knowledge about the impact of Mn-binding proteins in DR ability to protect also DNA from various damaging agents such as ionizing radiation, UV radiation and oxidative stress.
Collapse
Affiliation(s)
- M Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
| | - C T Chasapis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology, Hellas (FORTH), 26504, Patras, Greece.
| | - G Simula
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - S Medici
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - M A Zoroddu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
11
|
Nurchi VM, Crisponi G, Lachowicz JI, Jaraquemada-Pelaez MDG, Bretti C, Peana M, Medici S, Zoroddu MA. Equilibrium studies of new bis-hydroxypyrone derivatives with Fe3+, Al3+, Cu2+ and Zn2+. J Inorg Biochem 2018; 189:103-114. [DOI: 10.1016/j.jinorgbio.2018.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 11/25/2022]
|
12
|
Lachowicz JI, Nurchi VM, Crisponi G, Cappai I, Cappai R, Busato M, Melchior A, Tolazzi M, Peana M, Garribba E, Zoroddu MA, Coni P, Pichiri G, Aaseth J. para-Aminosalicylic acid in the treatment of manganese toxicity. Complexation of Mn2+ with 4-amino-2-hydroxybenzoic acid and its N-acetylated metabolite. NEW J CHEM 2018. [DOI: 10.1039/c7nj04648k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese excess can induce in humans neurological disorders known as manganism.
Collapse
|
13
|
Peana M, Zdyb K, Medici S, Pelucelli A, Simula G, Gumienna-Kontecka E, Zoroddu MA. Ni(II) interaction with a peptide model of the human TLR4 ectodomain. J Trace Elem Med Biol 2017; 44:151-160. [PMID: 28965571 DOI: 10.1016/j.jtemb.2017.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/29/2022]
Abstract
Ni(II) stimulates innate immunity via the direct binding to human Toll Like Receptor 4 (hTLR4), the bacterial lypopolysaccharide receptor. The binding is specific for humans and causes nickel contact allergy. The protein sequence analysis of hTLR4 revealed that the ectodomain, the region supposed to coordinate the metal ions, contains a histidine-rich motif that is not conserved among all organisms. To elucidate the role of each histidine residue on the protein-nickel binding, we examined the formation of Ni(II) complexes with the model peptide NH2-FQHSNRKQMSERSVFRSRRNRIYRDISHTHTR-COO-, which encompasses the sequence 429-460 of hTLR4. The amino acid sequence of the peptide has been modified by the substitution of some selected lipophilic residues (Leu and Phe) with hydrophilic residues (Arg), aiming at increasing the peptide hydro solubility of the protein fragment. Potentiometric, ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) and circular dichroism (CD) measurements demonstrate that the non-conserved histidines in the ectodomain cooperate in metal coordination and consequently enable the activation of the molecular mechanism of nickel hypersensitivity reaction.
Collapse
Affiliation(s)
| | - Karolina Zdyb
- Faculty of Chemistry, University of Wroclaw, Poland.
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | | | - Giancarlo Simula
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | | | | |
Collapse
|
14
|
Across the tree of life, radiation resistance is governed by antioxidant Mn 2+, gauged by paramagnetic resonance. Proc Natl Acad Sci U S A 2017; 114:E9253-E9260. [PMID: 29042516 PMCID: PMC5676931 DOI: 10.1073/pnas.1713608114] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite concerted functional genomic efforts to understand the complex phenotype of ionizing radiation (IR) resistance, a genome sequence cannot predict whether a cell is IR-resistant or not. Instead, we report that absorption-display electron paramagnetic resonance (EPR) spectroscopy of nonirradiated cells is highly diagnostic of IR survival and repair efficiency of DNA double-strand breaks (DSBs) caused by exposure to gamma radiation across archaea, bacteria, and eukaryotes, including fungi and human cells. IR-resistant cells, which are efficient at DSB repair, contain a high cellular content of manganous ions (Mn2+) in high-symmetry (H) antioxidant complexes with small metabolites (e.g., orthophosphate, peptides), which exhibit narrow EPR signals (small zero-field splitting). In contrast, Mn2+ ions in IR-sensitive cells, which are inefficient at DSB repair, exist largely as low-symmetry (L) complexes with substantially broadened spectra seen with enzymes and strongly chelating ligands. The fraction of cellular Mn2+ present as H-complexes (H-Mn2+), as measured by EPR of live, nonirradiated Mn-replete cells, is now the strongest known gauge of biological IR resistance between and within organisms representing all three domains of life: Antioxidant H-Mn2+ complexes, not antioxidant enzymes (e.g., Mn superoxide dismutase), govern IR survival. As the pool of intracellular metabolites needed to form H-Mn2+ complexes depends on the nutritional status of the cell, we conclude that IR resistance is predominantly a metabolic phenomenon. In a cross-kingdom analysis, the vast differences in taxonomic classification, genome size, and radioresistance between cell types studied here support that IR resistance is not controlled by the repertoire of DNA repair and antioxidant enzymes.
Collapse
|