1
|
Wu XY, Liu QY, Jiang S, Pan ZY, Dong JH, Chen BH, Li JH, Liu YS, Liu Y, He L. Copper(II) aromatic heterocyclic complexes of Gatifloxacin with multi-targeting capabilities for antibacterial therapy and combating antibiotic resistance. Bioorg Chem 2024; 153:107938. [PMID: 39520787 DOI: 10.1016/j.bioorg.2024.107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
In recent years, the pace of novel antibiotic development has been relatively slow, intensifying the urgency of the antibiotic resistance issue. Consequently, scientists have turned their attention to enhancing antibiotic activity by coordinating antibiotics with metal elements. This study designs and synthesizes three novel antibacterial copper complexes based on Gatifloxacin. These complexes exhibit potent antibacterial activity, notably Cu-1, with a minimum inhibitory concentration (MIC) of only 0.063 μg/mL against Staphylococcus aureus (S.aureus), demonstrating potent bacteriostatic capabilities. Further investigations unveil the antibacterial mechanisms of complex Cu-1, revealing its ability not only to suppress the activities of DNA gyrase and topoisomerases IV, but also to effectively inhibit biofilm formation and disrupt the integrity of cell membrane. This multi-targeting action contributes to mitigating the risk of bacterial resistance emergence. Additionally, synergy between Cu-1 and conventional antibiotics is confirmed through checkerboard assays, offering novel strategies for antibacterial therapy. In vivo experiments using a murine model of S.aureus infection demonstrate the significant antibacterial efficacy of Cu-1, providing robust support for its potential in treating S.aureus infections. This study demonstrates that the coordination complexes formed by copper, Gatifloxacin and suitable aromatic heterocyclic ligands exhibit multi-targeting characteristics against bacteria, offering a new direction for combating antibiotic resistance in antibacterial therapy.
Collapse
Affiliation(s)
- Xiao-Yin Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Qi-Yan Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shan Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zheng-Yin Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jia-Hao Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Bai-Hua Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jin-Hao Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Shu Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Naik GARR, Roy AA, Mutalik S, Dhas N. Unleashing the power of polymeric nanoparticles - Creative triumph against antibiotic resistance: A review. Int J Biol Macromol 2024; 278:134977. [PMID: 39187099 DOI: 10.1016/j.ijbiomac.2024.134977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Antibiotic resistance (ABR) poses a universal concern owing to the widespread use of antibiotics in various sectors. Nanotechnology emerges as a promising solution to combat ABR, offering targeted drug delivery, enhanced bioavailability, reduced toxicity, and stability. This comprehensive review explores concepts of antibiotic resistance, its mechanisms, and multifaceted approaches to combat ABR. The review provides an in-depth exploration of polymeric nanoparticles as advanced drug delivery systems, focusing on strategies for targeting microbial infections and contributing to the fight against ABR. Nanoparticles revolutionize antimicrobial approaches, emphasizing passive and active targeting. The role of various molecules, including small molecules, antimicrobial peptides, proteins, carbohydrates, and stimuli-responsive systems, is being explored in recent research works. The complex comprehension mechanisms of ABR and strategic use of nanotechnology present a promising avenue for advancing antimicrobial tactics, ensuring treatment efficacy, minimizing toxic effects, and mitigating development of ABR. Polymeric nanoparticles, derived from natural or synthetic polymers, are crucial in overcoming ABR. Natural polymers like chitosan and alginate exhibit inherent antibacterial properties, while synthetic polymers such as polylactic acid (PLA), polyethylene glycol (PEG), and polycaprolactone (PCL) can be engineered for specific antibacterial effects. This comprehensive study provides a valuable source of information for researchers, healthcare professionals, and policymakers engaged in the urgent quest to overcome ABR.
Collapse
Affiliation(s)
- Gaurisha Alias Resha Ramnath Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Udupi, Karnataka State 576104, India
| | - Amrita Arup Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Udupi, Karnataka State 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Udupi, Karnataka State 576104, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Udupi, Karnataka State 576104, India.
| |
Collapse
|
3
|
Moreno-Latorre M, de la Torre MC, Cabeza JA, García-Álvarez P, Sierra MA. Attaching Metal-Containing Moieties to β-Lactam Antibiotics: The Case of Penicillin and Cephalosporin. Inorg Chem 2024; 63:12593-12603. [PMID: 38923955 PMCID: PMC11234371 DOI: 10.1021/acs.inorgchem.4c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Procedures for the preparation of transition metal complexes having intact bicyclic cepham or penam systems as ligands have been developed. Starting from readily available 4-azido-2-azetidinones, a synthetic approach has been tuned using a copper-catalyzed azide-alkyne cycloaddition between 3-azido-2-azetinones and alkynes, followed by methylation and transmetalation to Au(I) and Ir(III) complexes from the mesoionic carbene Ag(I) complexes. This methodology was applied to 6-azido penam and 7-azido cepham derivatives to build 6-(1,2,3-triazolyl)penam and 7-(1,2,3-triazolyl)cepham proligands, which upon methylation and metalation with Au(I) and Ir(III) complexes yielded products derived from the coordination of the metal to the penam C6 and cepham C7 positions, preserving intact the bicyclic structure of the penicillin and cephalosporin scaffolds. The crystal structure of complex 28b, which has an Ir atom directly bonded to the intact penicillin bicycle, was determined by X-ray diffraction. This is the first structural report of a penicillin-transition-metal complex having the bicyclic system of these antibiotics intact. The selectivity of the coordination processes was interpreted using DFT calculations.
Collapse
Affiliation(s)
- María Moreno-Latorre
- Instituto
de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Centro
de Innovación en Química Avanzada ORFEO-CINQA, https://orfeocinqa.es/
| | - María C. de la Torre
- Instituto
de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Centro
de Innovación en Química Avanzada ORFEO-CINQA, https://orfeocinqa.es/
| | - Javier A. Cabeza
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Química, Universidad de Oviedo, 33071 Oviedo, Spain
- Centro
de Innovación en Química Avanzada ORFEO-CINQA, https://orfeocinqa.es/
| | - Pablo García-Álvarez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Química, Universidad de Oviedo, 33071 Oviedo, Spain
- Centro
de Innovación en Química Avanzada ORFEO-CINQA, https://orfeocinqa.es/
| | - Miguel A. Sierra
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
- Centro
de Innovación en Química Avanzada ORFEO-CINQA, https://orfeocinqa.es/
| |
Collapse
|
4
|
Wu XR, Chen WY, Liu L, Yang KW. Discovery of hydroxamate as a promising scaffold dually inhibiting metallo- and serine-β-lactamases. Eur J Med Chem 2024; 265:116055. [PMID: 38134748 DOI: 10.1016/j.ejmech.2023.116055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
The bacterial infection mediated by β-lactamases MβLs and SβLs has grown into an emergent health threat, however, development of a molecule that dual inhibits both MβLs and SβLs is challenging. In this work, a series of hydroxamates 1a-g, 2a-e, 3a-c, 4a-c were synthesized, characterized by 1H and 13C NMR and confirmed by HRMS. Biochemical assays revealed that these molecules dually inhibited MβLs (NDM-1, IMP-1) and SβLs (KPC-2, OXA-48), with an IC50 value in the range of 0.64-41.08 and 1.01-41.91 μM (except 1a and 1d on SβLs, IC50 > 50 μM), and 1f was found to be the best inhibitor with an IC50 value in the range of 0.64-1.32 and 0.57-1.01 μM, respectively. Mechanism evaluation indicated that 1f noncompetitively and irreversibly inhibited NDM-1 and KPC-2, with Ki value of 2.5 and 0.55 μM, is a time- and dose-dependent inhibitor of both MβLs and SβLs. MIC tests shown that all hydroxamates increased the antimicrobial effect of MER on E. coli-NDM-1 and E. coli-IMP-1 (expect 1b, 1d, 1g and 2d), resulting in a 2-8-fold reduction in MICs of MER, 1e-g, 2b-d, 3a-c and 4b-c decreased 2-4-fold MICs of MER on E. coli-KPC-2, and 1c, 1f-g, 2a-c, 3b, 4a and 4c decreased 2-16-fold MICs of MER on E. coli-OXA-48. Most importantly, 1f-g, 2b-c, 3b and 4c exhibited the dual synergizing inhibition against both E. coli-MβLs and E. coli-SβLs tested, resulting in a 2-8-fold reduction in MICs of MER, and 1f was found to have the best effect on the drug-resistant bacteria tested. Also, 1f shown synergizing antimicrobial effect on five clinical isolates EC04, EC06, EC08, EC10 and EC24 that produce NDM-1, resulting in a 2-8-fold reduction in MIC of MER, but its effect on E. coli and K. pneumonia-KPC-NDM was not to be observed using the same dose of inhibitor. Mice tests shown that the monotherapy of 1f or 4a in combination with MER significantly reduced the bacterial load of E. coli-NDM-1 and E. coli-OXA-48 cells in liver and spleen, respectively. The discovery in this work offered a promising bifunctional scaffold for creating the specific molecules that dually inhibit MβLs and MβLs, in combating antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Xiao-Rong Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Wei-Ya Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Lu Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China.
| |
Collapse
|
5
|
Khurana P, Pulicharla R, Brar SK. Imipenem-metal complexes: Computational analysis and toxicity studies with wastewater model microorganisms. ENVIRONMENTAL RESEARCH 2023; 239:117275. [PMID: 37827363 DOI: 10.1016/j.envres.2023.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
The occurrence of antibiotic residues in diverse water sources has long been acknowledged as a potential health concern due to the emergence and spread of antibiotic-resistant bacteria and genes. However, there have been limited studies into the presence of antibiotic-metal complexes (AMCs) in real-time wastewater matrices, and their impact on wastewater microbial communities. The present work, in this regard, investigated the stability of Imipenem-metal complexes (Me = Mg (II), Ca (II), Fe (II), Cu (II), and Al (III)) with computational studies, stoichiometry with potentiometric measurements, and their antibacterial activity towards wastewater model microorganisms- Bacillus subtilis (B. subtilis) and Escherichia coli (E. Coli) by Colony Forming Unit (CFU) method. The lower energy of Imipenem-metal complexes than the parent antibiotic- Imipenem, during energy optimization using density functional (DFT) methods, revealed that metal interactions of Imipenem stabilize the drug by minimizing its energy. Further, CFU studies indicated that these complexes display higher antimicrobial activity than parent antibiotics. The electron delocalization over the entire chelated system (AMCs) reduces polarity and increases the lipophilicity of the complexes, thereby facilitating stronger interaction between AMCs and the bacterial cell membrane. Results indicate increased antibacterial activity of Imipenem-metal complexes for both E. coli and B. subtilis. The antibacterial activity, was however, more pronounced in B. subtilis, with >97% growth inhibition for metal complexes of Imipenem (at a Minimum Inhibitory Concentration of 20 nM or 6 ppb (i.e., MIC90)), for both the stoichiometric ratios (metal to ligand) ratios (M: L 1: 1 and 2: 1). All around, with increased stability and toxicity, AMCs are emerging as contaminants of concern and demand immediate attention to devise methods for their removal.
Collapse
Affiliation(s)
- Pratishtha Khurana
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
6
|
Nafaee ZH, Egyed V, Jancsó A, Tóth A, Gerami AM, Dang TT, Heiniger‐Schell J, Hemmingsen L, Hunyadi‐Gulyás É, Peintler G, Gyurcsik B. Revisiting the hydrolysis of ampicillin catalyzed by Temoneira-1 β-lactamase, and the effect of Ni(II), Cd(II) and Hg(II). Protein Sci 2023; 32:e4809. [PMID: 37853808 PMCID: PMC10661098 DOI: 10.1002/pro.4809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/18/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
β-Lactamases grant resistance to bacteria against β-lactam antibiotics. The active center of TEM-1 β-lactamase accommodates a Ser-Xaa-Xaa-Lys motif. TEM-1 β-lactamase is not a metalloenzyme but it possesses several putative metal ion binding sites. The sites composed of His residue pairs chelate borderline transition metal ions such as Ni(II). In addition, there are many sulfur-containing donor groups that can coordinate soft metal ions such as Hg(II). Cd(II) may bind to both types of the above listed donor groups. No significant change was observed in the circular dichroism spectra of TEM-1 β-lactamase on increasing the metal ion content of the samples, with the exception of Hg(II) inducing a small change in the secondary structure of the protein. A weak nonspecific binding of Hg(II) was proven by mass spectrometry and 119m Hg perturbed angular correlation spectroscopy. The hydrolytic process of ampicillin catalyzed by TEM-1 β-lactamase was described by the kinetic analysis of the set of full catalytic progress curves, where the slow, yet observable conversion of the primary reaction product into a second one, identified as ampilloic acid by mass spectrometry, needed also to be considered in the applied model. Ni(II) and Cd(II) slightly promoted the catalytic activity of the enzyme while Hg(II) exerted a noticeable inhibitory effect. Hg(II) and Ni(II), applied at 10 μM concentration, inhibited the growth of E. coli BL21(DE3) in M9 minimal medium in the absence of ampicillin, but addition of the antibiotic could neutralize this toxic effect by complexing the metal ions.
Collapse
Affiliation(s)
- Zeyad H. Nafaee
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
- College of PharmacyUniversity of BabylonBabelIraq
| | - Viktória Egyed
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Attila Jancsó
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Annamária Tóth
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Adeleh Mokhles Gerami
- School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran
- European Organization for Nuclear Research (CERN)GenevaSwitzerland
| | - Thanh Thien Dang
- Institute for Materials Science and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Juliana Heiniger‐Schell
- European Organization for Nuclear Research (CERN)GenevaSwitzerland
- Institute for Materials Science and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Lars Hemmingsen
- Department of ChemistryUniversity of CopenhagenCopenhagenDenmark
| | - Éva Hunyadi‐Gulyás
- Laboratory of Proteomics Research, Biological Research CentreHungarian Research Network (HUN‐REN)SzegedHungary
| | - Gábor Peintler
- Department of Physical Chemistry and Material SciencesUniversity of SzegedSzegedHungary
| | - Béla Gyurcsik
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| |
Collapse
|
7
|
El-Zahry MR, Nasr JJM, Al-Shaalan NH, Mahmoud AF. SERS study of classical and newly β-lactams-metal complexation based on in situ laser-induced coral reefs-like silver photomicroclusters: In vitro study of antibacterial activity. J Pharm Biomed Anal 2023; 235:115617. [PMID: 37557063 DOI: 10.1016/j.jpba.2023.115617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
The influence of metal complexation of two polar β-lactam antibiotics was investigated using surface enhanced Raman spectroscopy (SERS) technique. SERS method was applied to track the structural changes and the degradation behaviour of the studied compounds upon Zinc (II) ions-complexation. In situ laser-induced coral reefs-like photomicroclusters have been utilized as a SERS platform. The produced coral reefs-like photomicroclusters were characterized using scanning electron microscopy (SEM) and transmission electron microscope (TEM). The antibacterial efficiency of the antibiotics was investigated and compared before and after metal complexation using two techniques; agar well diffusion and growth curve. To provide a detailed elucidation of the complexation reaction, mass fragmentation of metal- antibiotics complexes was investigated using liquid chromatography/mass spectrometric (LC/MS) technique. It was found that metal complexation of classical β-lactam antibiotic (Ticarcillin) promoted the rate of its degradation, leading to a decrease of the antibacterial efficiency. On the other side, the antibacterial activity of the newly developed β-lactam (Faropenem) has been greatly enhanced via metal-complexation reaction.
Collapse
Affiliation(s)
- Marwa R El-Zahry
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt; Pharmaceutical Chemistry Department, Badr University in Assiut, 2014101 Assiut, Egypt.
| | - Jenny Jeehan M Nasr
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nora H Al-Shaalan
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amer F Mahmoud
- Plant Pathology Department, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| |
Collapse
|
8
|
Božić Cvijan B, Korać Jačić J, Bajčetić M. The Impact of Copper Ions on the Activity of Antibiotic Drugs. Molecules 2023; 28:5133. [PMID: 37446795 DOI: 10.3390/molecules28135133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
Copper (Cu) is an essential trace metal and its concentration in body plasma is tightly regulated. An increase in Cu concentration in body fluids is observed in numerous pathological conditions, including infections caused by microorganisms. Evidence shows that Cu ions can impact the activity of antibiotics by increasing efficiency or diminishing/neutralizing antibiotic activity, forming complexes which may lead to antibiotic structure degradation. Herein, we represent the evidence available on Cu-antibiotic interactions and their possible impact on antimicrobial therapy efficiency. So far, in vitro studies described interactions between Cu ions and the majority of antibiotics in clinical use: penicillins, cephalosporins, carbapenems, macrolides, aminoglycosides, tetracyclines, fluoroquinolones, isoniazid, metronidazole. In vitro-described degradation or lower antimicrobial activity of amoxicillin, ampicillin, cefaclor, ceftriaxone, and meropenem in the presence of Cu ions suggest caution when using prescribed antibiotics in patients with altered Cu levels. On the other hand, several Cu-dependent compounds with antibacterial activity including the drug-resistant bacteria were discovered, such as thiosemicarbazones, disulfiram, dithiocarbamates, 8-hydroxiquinoline, phenanthrolines, pyrithione. Having in mind that the development of new antibiotics is already marked as inadequate and does not meet global needs, the potential of Cu-antibiotic interactions to change the efficiency of antimicrobial therapy requires further investigation.
Collapse
Affiliation(s)
- Bojana Božić Cvijan
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Korać Jačić
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Milica Bajčetić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinical Pharmacology Unit, University Children's Hospital, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Elbialy NA, Elhakim HKA, Mohamed MH, Zakaria Z. Evaluation of the synergistic effect of chitosan metal ions (Cu 2+/Co 2+) in combination with antibiotics to counteract the effects on antibiotic resistant bacteria. RSC Adv 2023; 13:17978-17990. [PMID: 37323456 PMCID: PMC10265139 DOI: 10.1039/d3ra02758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
The effectiveness of antibiotics that save millions of lives is in danger due to the increasing rise of resistant bacteria around the world. We proposed chitosan-copper ions (CSNP-Cu2+) and chitosan-cobalt ion nanoparticles (CSNP-Co2+) as biodegradable nanoparticles loaded with metal ions synthesized via an ionic gelation method for treatment of antibiotic resistant bacteria. The nanoparticles were characterized using TEM, FT-IR, zeta potential and ICP-OES. The MIC was evaluated for the NPs in addition to evaluating the synergetic effect of the nanoparticles in combination with cefepime or penicillin for five different antibiotic resistant bacterial strains. In order to investigate the mode of action, MRSA, DSMZ 28766 and Escherichia coli E0157:H7 were selected for further evaluation of antibiotic resistant genes expression upon treatment with NPs. Finally, the cytotoxic activities were investigated using MCF7, HEPG2 and A549 and WI-38 cell lines. The results showed quasi spherical shape and mean particle size of 19.9 ± 5 nm, 21 ± 5 nm and 22.27 ± 5 for CSNP, CSNP-Cu2+ and CSNP-Co2+ respectively. FT-IR showed slight shifting of the hydroxyl and amine group's peaks of chitosan indicating the adsorption of metal ions. Both nanoparticles had antibacterial activity with MIC ranging between 125 and 62 μg ml-1 for the used standard bacterial strains. Moreover, the combination of each of the synthesized NP with either cefepime or penicillin not only showed a synergetic effect as antibacterial activity of each NP or antibiotics alone, but also decreased the fold of antibiotic resistance genes expression. The NPs showed potent cytotoxic activities for MCF-7, HepG2 and A549 cancer cell lines with lower cytotoxic values for the WI-38 normal cell line. The NPs' antibacterial activity may be due to penetration and rupture of the cell membrane and the outer membrane of Gram negative and Gram positive bacteria causing bacterial cell death, in addition to, penetration into the bacterial genes and blocking gene expression that is vital to bacterial growth. The fabricated nanoparticles can be an effective, affordable and biodegradable solution to challenge antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Nouran A Elbialy
- Biotechnology and Bimolecular Chemistry Department, Faculty of Science, Cairo University Giza Egypt
| | - Heba K A Elhakim
- Biochemistry Division, Faculty of Science, Cairo University Giza Egypt
| | | | - Zainab Zakaria
- Research and Development Department, Faculty of Pharmacy, Heliopolis University Cairo Egypt
| |
Collapse
|
10
|
Zhai M, Fu B, Zhai Y, Wang W, Maroney A, Keller AA, Wang H, Chovelon JM. Simultaneous removal of pharmaceuticals and heavy metals from aqueous phase via adsorptive strategy: A critical review. WATER RESEARCH 2023; 236:119924. [PMID: 37030197 DOI: 10.1016/j.watres.2023.119924] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/03/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
The coexistence of pharmaceuticals and heavy metals is regarded as a serious threat to aquatic environments. Adsorbents have been widely applied to the simultaneous removal of pharmaceuticals and metals from aqueous phase. Through a comprehensive review, behaviors that promote, inhibit, or have no effect on simultaneous adsorption of pharmaceuticals and heavy metals were found to depend on the system of contaminants and adsorbents and their environmental conditions, such as: characteristics of adsorbent and pollutant, temperature, pH, inorganic ions, and natural organic matter. Bridging and competition effects are the main reasons for promoting and inhibiting adsorption in coexisting systems, respectively. The promotion is more significant in neutral or alkaline conditions. After simultaneous adsorption, a solvent elution approach was most commonly used for regeneration of saturated adsorbents. To conclude, this work could help to sort out the theoretical knowledge in this field, and may provide new insights into the prevention and control of pharmaceuticals and heavy metals coexisting in wastewater.
Collapse
Affiliation(s)
- Mudi Zhai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Bomin Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Macao Environmental Research Institute, Macau University of Science and Technology, Macao 999078, China
| | - Yuhui Zhai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Weijie Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Amy Maroney
- College of Engineering and Science, Louisiana Tech University, 201 Mayfield Ave. Ruston, LA 71272, United States
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, United States
| | - Hongtao Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, UNEP-TONGJI Institute of Environment for Sustainable Development, Shanghai 200092, China.
| | - Jean-Marc Chovelon
- IRCELYON, CNRS UMR 5256, Université Claude Bernard Lyon 1, 2 Avenue Albert-Einstein, Villeurbanne F-69626, France
| |
Collapse
|
11
|
Bourouai MA, Si Larbi K, Bouchoucha A, Terrachet-Bouaziz S, Djebbar S. New Ni(II) and Pd(II) complexes bearing derived sulfa drug ligands: synthesis, characterization, DFT calculations, and in silico and in vitro biological activity studies. Biometals 2023; 36:153-188. [PMID: 36427181 DOI: 10.1007/s10534-022-00469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
In the present study, the synthesis of six new Ni(II) and Pd(II) complexes with three derived sulfamethoxazole drug ligands is reported. The coordination mode, geometry, and chemical formula of all the synthesized compounds have been determined by elemental analysis, mass spectrometry, emission atomic spectroscopy, conductivity measurements, magnetic susceptibility, FTIR, TGA, 1H-NMR, electronic absorption spectroscopy, SEM-EDX along with DFT calculations. The Schiff Base ligands were found to be bidentate and coordinated to the metal ions through sulfonamidic nitrogen and oxazolic nitrogen atoms leading to a square planar geometry for palladium (II) while a distorted octahedral geometry around Nickel (II) ion was suggested. Biological applications of the new complexes including in vitro antimicrobial, antioxidant and anticancer properties were investigated. The results showed that the new metal (II) compounds exhibit remarkable antibacterial inhibition activity against both Gram-positive and Gram-negative bacteria, in addition to noticeable DPPH free radical scavenging activity. The in vitro cytotoxicity assay of the complexes against cell lines of chronic myelogenous leukaemia (K562) showed promising potential for the application of the coordination compounds in antitumor therapy. Subsequently, to evaluate the pharmaceutical potential of the metal-containing compounds, pharmacokinetics and toxicity were studied by ADMET simulations while interactions between the complexes and bacterial proteins were evaluated by molecular docking.
Collapse
Affiliation(s)
- Mohamed Amine Bourouai
- Hydrometallurgy and Molecular Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Science and Technology Houari Boumediene, BP 32 El Alia, 16111, Algiers, Algeria
| | - Karima Si Larbi
- Hydrometallurgy and Molecular Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Science and Technology Houari Boumediene, BP 32 El Alia, 16111, Algiers, Algeria
| | - Afaf Bouchoucha
- Hydrometallurgy and Molecular Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Science and Technology Houari Boumediene, BP 32 El Alia, 16111, Algiers, Algeria.
| | | | - Safia Djebbar
- Hydrometallurgy and Molecular Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Science and Technology Houari Boumediene, BP 32 El Alia, 16111, Algiers, Algeria
| |
Collapse
|
12
|
Xin X, Liu H, Sun J, Gao K, Jia R. Enhanced photocatalytic activity of Fe-, S- and N-codoped TiO 2 for sulfadiazine degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-12. [PMID: 36686289 PMCID: PMC9846705 DOI: 10.1007/s13762-023-04771-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/26/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The composite material based on N-, S-, and Fe-doped TiO2 (NSFe-TiO2) synthesized by wet impregnation was used as a photocatalyst to rapidly degrade sulfadiazine. The photocatalytic degradation behavior and mechanism of sulfadiazine on NSFe-TiO2 were investigated for revealing the role of degradation under ultraviolet light. The results showed that compared with TiO2, NSFe-TiO2 markedly improved the efficiency in photocatalytic degradation of sulfadiazine: more than 90% of sulfadiazine could be removed within 120 min by NSFe-TiO2 dosage of 20 mg L-1. The process conformed to first-order reaction kinetics model. The parameters such as loaded amount of NSFe-TiO2, solution pH value, humic acid concentration and recycle numbers on removal efficiency were also studied. Compared to neutral and alkaline conditions, acidic condition was not conducive to the photocatalysis. HA, Ca2+, Cu2+ and Zn2+ in the actual water body had mild inhibition on sulfadiazine degradation in UV/NSFe-TiO2 system. Fragments screened by high-resolution mass spectrometry were conducted to explore the oxidation mechanism and pathways of sulfadiazine degradation. On the whole, UV/NSFe-TiO2 photocatalysis has a good effect on sulfadiazine removal. Supplementary Information The online version contains supplementary material available at 10.1007/s13762-023-04771-6.
Collapse
Affiliation(s)
- X. Xin
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250101 China
| | - H. Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022 China
| | - J. Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022 China
| | - K. Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022 China
| | - R. Jia
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250101 China
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022 China
| |
Collapse
|
13
|
Wang Q, He X, Xiong H, Chen Y, Huang L. Structure, mechanism, and toxicity in antibiotics metal complexation: Recent advances and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157778. [PMID: 35926602 DOI: 10.1016/j.scitotenv.2022.157778] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic-metal complexes (AMCs) formed by antibiotics and metal ions have attracted considerable attentions in recent years. Although different removal methods for AMCs have been reported in the literature, very few investigations have focused on the mechanisms and toxic effects of antibiotic-metal coordination. This review briefly describes the structural characteristics of various commonly used antibiotics and the coordination mechanisms with metal ions. Considering the complexity of the real environment, various environmental factors affecting AMC formation are highlighted. The effects of AMCs on microbial community structure and the role of metal ions in influencing resistant genes from the molecular perspective are of interest within this work. The toxicities and mechanisms of AMCs on different species of biota are also discussed. These findings underline the need for more targeted detection and analysis methods and more suitable toxicity markers to verify the combination of antibiotics with metal ions and reveal environmental toxicities in future. This review presents an innovative idea that antibiotics combined with metal ions will change the toxicity and environmental behavior of antibiotics.
Collapse
Affiliation(s)
- Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Xi He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Haifeng Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| |
Collapse
|
14
|
Ma Z, Gao X, Yang X, Lin L, Wei X, Wang S, Li Y, Peng X, Zhao C, Chen J, Xiao H, Yuan Y, Dai J. Low-dose florfenicol and copper combined exposure during early life induced health risks by affecting gut microbiota and metabolome in SD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114120. [PMID: 36174320 DOI: 10.1016/j.ecoenv.2022.114120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The potential health risks associated with simultaneous presence of residues of heavy metals and antibiotics in the environment and food have been of wide concern. However, the adverse health effects of combined heavy metal and antibiotic exposure at low doses remain unclear. In this study, the effects of combined exposure to florfenicol and copper at low doses during early life on toxicity, gut microbiota, drug resistance genes, and the fecal metabolome were investigated in Sprague-Dawley (SD) rats. The results showed that combined exposure induced inflammatory responses and visceral injury as well as faster weight gain compared with florfenicol or copper exposure alone. Alpha and beta diversity indices indicated that the composition of the gut microbiota and the abundance of bacteria related to energy intake and disease in the combined exposure group were significantly altered. The increase in resistance genes (floR, fexA) induced by florfenicol exposure was suppressed under combined exposure to florfenicol and copper. The fecal metabolome also demonstrated that metabolic pathways related to energy intake and liver injury were significantly affected in the combined exposure group. In conclusion, this study shows that combined exposure to florfenicol and copper during early life can pose a nonnegligible health risk even if the exposure concentration of florfenicol or copper is below the safe limit.
Collapse
Affiliation(s)
- Zheng Ma
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Xue Gao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Lin Lin
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Xiangyi Wei
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Shuhan Wang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Yuke Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Xinyue Peng
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Chuchu Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Ya Yuan
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China.
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China.
| |
Collapse
|
15
|
Su J, Zhang Q, Peng H, Feng J, He J, Zhang Y, Lin B, Wu N, Xiang Y. Exploring the impact of intensity and duration of Cu (II) depression on aniline-degrading biosystem: Performance, sludge activity and microbial diversity. BIORESOURCE TECHNOLOGY 2022; 360:127548. [PMID: 35779746 DOI: 10.1016/j.biortech.2022.127548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
To evaluate the ecological risk of aniline wastewater biodegradation, the aniline wastewater (200 mg/L) was treated in this work under the stress of Cu (II) at 3, 6 and 10 mg/L, respectively. The slight fluctuation of aniline-degrading performance and the significant inhibition of nitrogen removal was caused by the Cu (II) stress at below 6 mg/L. Meanwhile, the tolerance of nitrifying performance to Cu (II) was higher than denitrifying. The collapse of biosystem was caused by the Cu (II) stress at 10 mg/L and the decontamination function was disabled within 8 days. The activity and stability of sludge declined under the increase of Cu (II) content. Microbial diversity results demonstrated that the genera with heavy-metal tolerance represented by Zoogloea and Azospira significantly dominated under the continuously Cu (II) stress. Whereas, the biosystem with these dominant genera did not achieve the comparable aniline and nitrogen removal performance as the control group.
Collapse
Affiliation(s)
- Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China; Hainan Research Institute of Wuhan University of Technology, Sanya 572025, PR China.
| | - Haojin Peng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yunjie Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Nanping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yutong Xiang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
16
|
Bismuth complex of quinoline thiosemicarbazone restores carbapenem sensitivity in NDM-1-positive Klebsiella pneumoniae. J Inorg Biochem 2022; 234:111887. [DOI: 10.1016/j.jinorgbio.2022.111887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022]
|
17
|
Ouyang Z, Lei F, Hu E, Li S, Yao Q, Guo X. New insight into transformation of tetracycline in presence of Mn(II): Oxidation versus photolysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118998. [PMID: 35176411 DOI: 10.1016/j.envpol.2022.118998] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Tetracycline (TC) and Mn(II) is a common antibiotic and metal ion respectively. Nevertheless, literatures involving in the effects of Mn(II) on TC transformation are still insufficient. In this study, the kinetic experiment, spectral analysis, complexation experiment and electrochemical analysis, theoretical calculation and products detection were carried out to probe into oxidation and photolysis of TC with Mn(II). Mn(II) greatly accelerated TC oxidation, preferably tending to complex with TC at O10 - O12 or O2 - O3 site. There were a TC-Mn(II)/TC-Mn(III) redox couple and electron transfer process. Conversely, Mn(II) inhibited photolysis of TC. The photolysis of excited TC could compete with energy dissipation reactions. The electron transfer and complexation reaction easily made excited TC energy transfer, thus slowing down photolysis process. During the TC transformation, the intensity of functional groups was significantly decreased. Simultaneously, the degradation pathways mainly included eight reactions. It is a very interesting and probably overlooked phenomenon, which identifies new transformation of TC with Mn(II). This study helps to further understand fate and environmental behavior of antibiotics and metal ion.
Collapse
Affiliation(s)
- Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Fadan Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Endian Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuxing Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Yao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
18
|
Avello MG, Moreno-Latorre M, de la Torre MC, Casarrubios L, Gornitzka H, Hemmert C, Sierra MA. β-Lactam and penicillin substituted mesoionic metal carbene complexes. Org Biomol Chem 2022; 20:2651-2660. [PMID: 35293422 DOI: 10.1039/d2ob00216g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,2,3-Triazolylidene MIC M-complexes (M = Au, Pd, Pt) having 2-azetidinones and penicillin G substituents at the triazole ring were prepared by CuAAC on 2-azetidinones having a terminal alkyne tethered at N1, followed by alkylation of the 1,2,3-triazole ring and transmetallation [Au(I), Pd(II) and Pt(II)]. The Au-MIC complexes efficiently catalyze the regioselective cycloisomerization of enynes, while the Pt-MIC complexes were efficient catalysts in hydrosilylation reactions.
Collapse
Affiliation(s)
- Marta G Avello
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain. .,Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - María Moreno-Latorre
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - María C de la Torre
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - Luis Casarrubios
- Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - Heinz Gornitzka
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Miguel A Sierra
- Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
19
|
The effect of nickel ions on the susceptibility of bacteria to ciprofloxacin and ampicillin. Folia Microbiol (Praha) 2022; 67:649-657. [PMID: 35353362 DOI: 10.1007/s12223-022-00960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/19/2022] [Indexed: 11/04/2022]
Abstract
To explore the interaction effects of ciprofloxacin and ampicillin with nickel on the growth of bacteria, Staphylococcus aureus strain ATCC 29213, Enterococcus faecalis ATCC 29212 and Escherichia coli ATCC 25922 were used. Minimum inhibitory concentrations (MICs) were determined for nickel, ciprofloxacin and ampicillin, and the checkerboard method was used to assess their cumulative effects on bacterial growth. The interactions between the metal and antibiotics were assessed by the fractional inhibitory concentration (FIC). The MICs for ciprofloxacin and ampicillin were 0.31 and 1 mg/L for E. faecalis, 0.62 and 1 mg/L for S. aureus and 0.005 and 2.5 for E. coli, respectively. The MIC for nickel was 1000 mg/L for all bacteria. The FIC results for ciprofloxacin and nickel demonstrated an antagonistic effect of the two agents on the growth of E. coli and E. faecalis and an additive effect on S. aureus. The FICs for ampicillin and nickel demonstrated a synergistic effect on the growth of E. faecalis and E. coli. Different interactions of metals and antibiotics were observed depending on the bacteria and the type of antibiotic.
Collapse
|
20
|
Hrioua A, Loudiki A, Farahi A, Laghrib F, Bakasse M, Lahrich S, Saqrane S, El Mhammedi MA. Complexation of amoxicillin by transition metals: Physico-chemical and antibacterial activity evaluation. Bioelectrochemistry 2021; 142:107936. [PMID: 34474204 DOI: 10.1016/j.bioelechem.2021.107936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Some bacteria have developed resistance to antibiotics that were once commonly used to treat them. Moreover, this resistance has become more and more massive and worrying. During this work, we succeeded in synthesizing "metal-antibiotic" complexes, combining as a ligand for the metals of Cu (II), Zn (II) and Fe (III). These complexes AMX - M (M = Cu, Fe and Zn) were characterized by UV-Vis spectrophotometry, IR spectroscopy, and electrochemical methods. Job's method of continuous variation suggested 1:1 metals to ligand stoichiometry for all amoxicillin complexes. The binding constant/association constant (K) of the AMX with Zn(II), Cu(II), and Fe(III) were found to be 4.46 × 104, 7.17 × 102 and 7.65 × 102 L mol-1, respectively. The IR spectra shows that the ligands coordinated to the metal ions through amino, imino, carboxylate, β-lactamic and carbonyl groups. The electrochemical results proved that amoxicillin oxidation process can be delayed by transition metal complexation. After, the complex synthesis, the antibacterial activity of ligand and its metal complexes were evaluated against Escherichia. coli bacteria by antibiogram method. The results show that the metal-amoxicillin complexes have better antibacterial activity against Escherichia coli (E. coli) than the free ligand (amoxicillin) due to the AMX protection against oxidation after complexation.
Collapse
Affiliation(s)
- A Hrioua
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty, 25 000 Khouribga, Morocco
| | - A Loudiki
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty, 25 000 Khouribga, Morocco; Chouaib Doukkali University, Faculty of Sciences, Laboratory of Organic Bioorganic Chemistry and Environment, El Jadida, Morocco
| | - A Farahi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty, 25 000 Khouribga, Morocco
| | - F Laghrib
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty, 25 000 Khouribga, Morocco; Sidi Mohamed Ben Abdellah University, City of Innovation, Immouzer Road, B. P 2626 Fez, Morocco; Sidi Mohamed Ben Abdellah University, Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of Sciences, Fez, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Faculty of Sciences, Laboratory of Organic Bioorganic Chemistry and Environment, El Jadida, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty, 25 000 Khouribga, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty, 25 000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty, 25 000 Khouribga, Morocco.
| |
Collapse
|
21
|
Wang YJ, Wang W, You ZY, Liu XX. Observation of synergistic antibacterial properties of prodigiosin from Serratia marcescens jx-1 with metal ions in clinical isolates of Staphylococcus aureus. Prep Biochem Biotechnol 2021; 52:344-350. [PMID: 34289781 DOI: 10.1080/10826068.2021.1944201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are a major global health problem, and novel and effective antimicrobial drugs are urgently required to combat this life-threatening pathogen. Prodigiosin (PG) is a bacterial secondary metabolite with excellent anticancer and antibacterial properties. However, little is known about the antibacterial function of PG against MRSA. Therefore, the antibacterial efficacy of PG alone and PG in combination with different metal ions against clinic isolates of MRSA and methicillin-sensitive S. aureus (MSSA) strain was evaluated in the present study. The minimum inhibitory concentration of PG against both MRSA and MSSA was 0.25 μg/mL. However, 0.1 μg/mL PG showed a stronger inhibitory effect on MSSA cell growth (47.12%) than on MRSA cell growth (35.87%). Surprisingly, we observed a significant difference (p < 0.01) in membrane integrity between PG-treated MRSA and MSSA using the propidium iodide staining assay. Further, we found that in combination with PG, Zn2+, Al3+, and Cu2+ showed synergistic antibacterial effects against MRSA and MSSA. Our results could increase the current knowledge regarding the efficacy of PG in inhibiting the growth of different types of S. aureus clinical isolates and also offer a novel strategy for developing efficient antibacterial agents.
Collapse
Affiliation(s)
- Yu-Jie Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Wei Wang
- Clinical Laboratory of First Hospital of Jiaxing, Jiaxing, China
| | - Zhong-Yu You
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Xiao-Xia Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
22
|
Maciuca AM, Munteanu AC, Mihaila M, Badea M, Olar R, Nitulescu GM, Munteanu CVA, Bostan M, Uivarosi V. Rare-Earth Metal Complexes of the Antibacterial Drug Oxolinic Acid: Synthesis, Characterization, DNA/Protein Binding and Cytotoxicity Studies. Molecules 2020; 25:molecules25225418. [PMID: 33228104 PMCID: PMC7699381 DOI: 10.3390/molecules25225418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 01/04/2023] Open
Abstract
"Drug repositioning" is a current trend which proved useful in the search for new applications for existing, failed, no longer in use or abandoned drugs, particularly when addressing issues such as bacterial or cancer cells resistance to current therapeutic approaches. In this context, six new complexes of the first-generation quinolone oxolinic acid with rare-earth metal cations (Y3+, La3+, Sm3+, Eu3+, Gd3+, Tb3+) have been synthesized and characterized. The experimental data suggest that the quinolone acts as a bidentate ligand, binding to the metal ion via the keto and carboxylate oxygen atoms; these findings are supported by DFT (density functional theory) calculations for the Sm3+ complex. The cytotoxic activity of the complexes, as well as the ligand, has been studied on MDA-MB 231 (human breast adenocarcinoma), LoVo (human colon adenocarcinoma) and HUVEC (normal human umbilical vein endothelial cells) cell lines. UV-Vis spectroscopy and competitive binding studies show that the complexes display binding affinities (Kb) towards double stranded DNA in the range of 9.33 × 104 - 10.72 × 105. Major and minor groove-binding most likely play a significant role in the interactions of the complexes with DNA. Moreover, the complexes bind human serum albumin more avidly than apo-transferrin.
Collapse
Affiliation(s)
- Ana-Madalina Maciuca
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, 020956 Bucharest, Romania;
| | - Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, 020956 Bucharest, Romania;
- Correspondence: (A.-C.M.); (V.U.); Tel.: +4-021-318-0742 (V.U.); Fax: +4-021-318-0750 (V.U.)
| | - Mirela Mihaila
- Center of Immunology, Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Ave, 030304 Bucharest, Romania; (M.M.); (M.B.)
| | - Mihaela Badea
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str, 050663 Bucharest, Romania; (M.B.); (R.O.)
| | - Rodica Olar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str, 050663 Bucharest, Romania; (M.B.); (R.O.)
| | - George Mihai Nitulescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str, 020956 Bucharest, Romania;
| | - Cristian V. A. Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy (IBRA), 296 Spl. Independenţei, 060031 Bucharest, Romania;
| | - Marinela Bostan
- Center of Immunology, Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Ave, 030304 Bucharest, Romania; (M.M.); (M.B.)
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, 020956 Bucharest, Romania;
- Correspondence: (A.-C.M.); (V.U.); Tel.: +4-021-318-0742 (V.U.); Fax: +4-021-318-0750 (V.U.)
| |
Collapse
|
23
|
Abstract
Traditional organic antimicrobials mainly act on specific biochemical processes such as replication, transcription and translation. However, the emergence and wide spread of microbial resistance is a growing threat for human beings. Therefore, it is highly necessary to design strategies for the development of new drugs in order to target multiple cellular processes that should improve their efficiency against several microorganisms, including bacteria, viruses or fungi. The present review is focused on recent advances and findings of new antimicrobial strategies based on metal complexes. Recent studies indicate that some metal ions cause different types of damages to microbial cells as a result of membrane degradation, protein dysfunction and oxidative stress. These unique modes of action, combined with the wide range of three-dimensional geometries that metal complexes can adopt, make them suitable for the development of new antimicrobial drugs.
Collapse
|
24
|
Lachowicz JI, Szczepski K, Scano A, Casu C, Fais S, Orrù G, Pisano B, Piras M, Jaremko M. The Best Peptidomimetic Strategies to Undercover Antibacterial Peptides. Int J Mol Sci 2020; 21:E7349. [PMID: 33027928 PMCID: PMC7583890 DOI: 10.3390/ijms21197349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Health-care systems that develop rapidly and efficiently may increase the lifespan of humans. Nevertheless, the older population is more fragile, and is at an increased risk of disease development. A concurrently growing number of surgeries and transplantations have caused antibiotics to be used much more frequently, and for much longer periods of time, which in turn increases microbial resistance. In 1945, Fleming warned against the abuse of antibiotics in his Nobel lecture: "The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily underdose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant". After 70 years, we are witnessing the fulfilment of Fleming's prophecy, as more than 700,000 people die each year due to drug-resistant diseases. Naturally occurring antimicrobial peptides protect all living matter against bacteria, and now different peptidomimetic strategies to engineer innovative antibiotics are being developed to defend humans against bacterial infections.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Alessandra Scano
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Cinzia Casu
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Sara Fais
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Germano Orrù
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
25
|
Moo CL, Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Lim SHE, Lai KS. Mechanisms of Antimicrobial Resistance (AMR) and Alternative Approaches to Overcome AMR. Curr Drug Discov Technol 2020; 17:430-447. [PMID: 30836923 DOI: 10.2174/1570163816666190304122219] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/21/2023]
Abstract
Antimicrobials are useful compounds intended to eradicate or stop the growth of harmful microorganisms. The sustained increase in the rates of antimicrobial resistance (AMR) worldwide is worrying and poses a major public health threat. The development of new antimicrobial agents is one of the critical approaches to overcome AMR. However, in the race towards developing alternative approaches to combat AMR, it appears that the scientific community is falling behind when pitched against the evolutionary capacity of multi-drug resistant (MDR) bacteria. Although the "pioneering strategy" of discovering completely new drugs is a rational approach, the time and effort taken are considerable, the process of drug development could instead be expedited if efforts were concentrated on enhancing the efficacy of existing antimicrobials through: combination therapies; bacteriophage therapy; antimicrobial adjuvants therapy or the application of nanotechnology. This review will briefly detail the causes and mechanisms of AMR as background, and then provide insights into a novel, future emerging or evolving strategies that are currently being evaluated and which may be developed in the future to tackle the progression of AMR.
Collapse
Affiliation(s)
- Chew-Li Moo
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shun-Kai Yang
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Pre Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Warren Thomas
- Perdana University-Royal College of Surgeons in Ireland School of Medicine, Perdana University, MAEPS Building, Serdang, Selangor, Malaysia
| | - Aisha Abushelaibi
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012 Abu Dhabi, United Arab Emirates
| | - Swee-Hua-Erin Lim
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012 Abu Dhabi, United Arab Emirates
| | - Kok-Song Lai
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
26
|
Sun Y, Li S, Zhang Y, Li Q, Xie X, Zhao D, Tian T, Shi S, Meng L, Lin Y. Tetrahedral Framework Nucleic Acids Loading Ampicillin Improve the Drug Susceptibility against Methicillin-Resistant Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36957-36966. [PMID: 32814381 DOI: 10.1021/acsami.0c11249] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yue Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qirong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xueping Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lingxian Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Lewandowski EM, Szczupak Ł, Kowalczyk A, Mendoza G, Arruebo M, Jacobs LMC, Stączek P, Chen Y, Kowalski K. Metallocenyl 7‐ACA Conjugates: Antibacterial Activity Studies and Atomic‐Resolution X‐ray Crystal Structure with CTX‐M β‐Lactamase. Chembiochem 2020; 21:2187-2195. [DOI: 10.1002/cbic.202000054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/13/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Eric M. Lewandowski
- Department of Molecular Medicine University of South Florida, >Morsani College of Medicine 12901 Bruce B. Downs Boulevard Tampa FL 33612 US
| | - Łukasz Szczupak
- Department of Organic Chemistry, Faculty of Chemistry University of Łódź Tamka 12 91-403 Łódź Poland
| | - Aleksandra Kowalczyk
- Department of Microbial Genetics, Faculty of Biology and Environmental Protection University of Łódź Banacha 12/16 90-237 Łódź Poland
| | - Gracia Mendoza
- Department of Chemical Engineering Aragon Health Research Institute (IIS Aragón) University of Zaragoza Campus Río Ebro-Edificio I+D, c/ Poeta Mariano Esquillor s/n 5018 Zaragoza Spain
| | - Manuel Arruebo
- Department of Chemical Engineering Aragon Health Research Institute (IIS Aragón) University of Zaragoza Campus Río Ebro-Edificio I+D, c/ Poeta Mariano Esquillor s/n 5018 Zaragoza Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine CIBER-BBN 28029 Madrid Spain
| | - Lian M. C. Jacobs
- Department of Molecular Medicine University of South Florida, >Morsani College of Medicine 12901 Bruce B. Downs Boulevard Tampa FL 33612 US
| | - Paweł Stączek
- Department of Microbial Genetics, Faculty of Biology and Environmental Protection University of Łódź Banacha 12/16 90-237 Łódź Poland
| | - Yu Chen
- Department of Molecular Medicine University of South Florida, >Morsani College of Medicine 12901 Bruce B. Downs Boulevard Tampa FL 33612 US
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry University of Łódź Tamka 12 91-403 Łódź Poland
| |
Collapse
|
28
|
|
29
|
Conjugation of Penicillin-G with Silver(I) Ions Expands Its Antimicrobial Activity against Gram Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9010025. [PMID: 31941048 PMCID: PMC7168214 DOI: 10.3390/antibiotics9010025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/06/2023] Open
Abstract
Conjugation of penicillin G (PenH) with silver(I) ions forms a new CoMeD (conjugate of metal with a drug) with formula [Ag(pen)(CH3OH)]2 (PenAg). PenAg was characterized by a plethora of physical and spectroscopic techniques, which include in the solid state m.p.; elemental analysis; X-ray fluorescence (XRF) spectroscopy; scanning electron microscopy (SEM); energy-dispersive X-ray spectroscopy (EDX); FT-IR; and in solution: attenuated total reflection spectroscopy (FT-IR-ATR), UV–Vis, 1H NMR, and atomic absorption (AA). The structure of PenAg was determined by NMR spectroscopy. Silver(I) ions coordinate to the carboxylic group of PenH, while secondary intra-molecular interactions are developed through (i) the nitrogen atom of the amide group in MeOD-d4 or (ii) the sulfur atom in the thietane ring in deuterated dimethyl sulfoxide DMSO-d6. The antibacterial activities of PenAg and the sodium salt of penicillin (PenNa) (the formulation which is clinically used) against Gram positive (Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus)) and Gram negative (Pseudomonas aeruginosa (P. aeuroginosa PAO1)) bacteria were evaluated by the means of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and inhibition zone (IZ). PenAg inhibits the growth of the Gram negative bacterial strain P. aeuroginosa with a MIC value of 23.00 ± 2.29 μM, in contrast to PenNa, which shows no such activity (>2 mM). The corresponding antimicrobial activities of PenAg against the Gram positive bacteria S. epidermidis and S. aureus are even better than those of PenNa. Moreover, PenAg exhibits no in vivo toxicity against Artemia salina at concentration up to 300 μΜ. The wide therapeutic window and the low toxicity, make PenAg a possible candidate for the development of a new antibiotic.
Collapse
|
30
|
Li H, Duan L, Wang H, Chen Y, Wang F, Zhang S. Photolysis of sulfadiazine under UV radiation: Effects of the initial sulfadiazine concentration, pH, NO3− and Cd2+. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Khatoon N, Alam H, Khan A, Raza K, Sardar M. Ampicillin Silver Nanoformulations against Multidrug resistant bacteria. Sci Rep 2019; 9:6848. [PMID: 31048721 PMCID: PMC6497658 DOI: 10.1038/s41598-019-43309-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/09/2019] [Indexed: 12/23/2022] Open
Abstract
The present study reported a single step synthesis of silver nanoparticles using ampicillin (Amp-AgNps), a second-generation β lactam antibiotic to get nanoformulation having dual properties that of antibiotic and silver. The Amp-AgNps was characterized by UV-VIS spectroscopy, TEM, XRD, FTIR and TGA. FTIR and TGA results suggested that amine group of Ampicllin reduce the metalic silver into nano form. These results were further validated by computational molecular dynamics simulation. The antibacterial potential of Amp-AgNps was investigated against sensitive and drug resistant bacteria. MIC of Amp-AgNps against 6 different bacterial strains were in the range of 3–28 µg/ml which is much lower than the MIC of ampicillin (12–720 µg/ml) and chemically synthesized silver nanoparticles (280–640 µg/ml). The repeated exposure to drugs may lead to development of resistance mechanism in bacteria against that drug, so the efficacy of Amp-AgNps after repeated exposure to bacterial strains were also studied. The results indicate that bacterial strains do not show any resistance to these Amp-AgNps even after exposure up to 15 successive cycles. The biocompatibility of these Amp-AgNps was checked against cell lines by using Keratinocytes cell lines (HaCaT).
Collapse
Affiliation(s)
- Nafeesa Khatoon
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Hammad Alam
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Afreen Khan
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
32
|
Song Z, Liu J, Hou Y, Yuan W, Yang B. Study on the interaction between pyridoxal and CopC by multi-spectroscopy and docking methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:214-221. [PMID: 30321861 DOI: 10.1016/j.saa.2018.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
The interaction between pyridoxal hydrochloride (HQ) and apoCopC was investigated using Fourier transform infrared spectroscopy (FTIR), isothermal titration calorimetry (ITC), circular dichroism (CD), fluorescence spectroscopy, three-dimensional (3D) fluorescence spectroscopy, fluorescence lifetime, TNS fluorescence and docking methods. FTIR, CD, TNS fluorescence and fluorescence lifetime experiments suggested that the apoCopC conformation was altered by HQ with an increase in the random coil content and a reduction in the β-sheet content. In addition, the data from fluorescence spectroscopy, 3D fluorescence spectroscopy and molecular docking revealed that the binding site of HQ was located in the hydrophobic area of apoCopC, and a redshift of the HQ fluorescence spectra was observed. Furthermore, ITC and fluorescence quenching data manifested that the binding ratio of HQ and apoCopC was 1:1, and the forming constant was calculated to be (7.06 ± 0.21) × 105 M-1. The thermodynamic parameters ΔH and ΔS suggested that the formation of a CopC-HQ complex depended on the hydrophobic force. Furthermore, the average binding distance between tryptophan in apoCopC and HQ was determined by means of Förster non-radioactive resonance energy transfer and molecular docking. The results agreed well with each other. As a redox switch in the modulation of copper, the interaction of apoCopC with small molecules will affect the action of the redox switch. These findings could provide useful information to illustrate the copper regulation mechanism.
Collapse
Affiliation(s)
- Zhen Song
- Taiyuan Normal University Department of Chemistry, Jinzhong 030619, China
| | - Jin Liu
- Hubei Provincial Corps Hospital, Chinese People's Armed Police Forces, Wuhan 430061, China
| | - Yuxin Hou
- Taiyuan Normal University Department of Chemistry, Jinzhong 030619, China
| | - Wen Yuan
- Taiyuan Normal University Department of Chemistry, Jinzhong 030619, China
| | - Binsheng Yang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
33
|
Song Y, Song Z, Yang B. Spectral Study on the Interactions Among Cu(II), Doxorubicin and CopC. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8284-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Cuprys A, Pulicharla R, Brar SK, Drogui P, Verma M, Surampalli RY. Fluoroquinolones metal complexation and its environmental impacts. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007⁻2017). ANTIBIOTICS (BASEL, SWITZERLAND) 2018. [PMID: 30373130 DOI: 10.3390/antibiotics7040093]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of silver to control infections was common in ancient civilizations. In recent years, this material has resurfaced as a therapeutic option due to the increasing prevalence of bacterial resistance to antimicrobials. This renewed interest has prompted researchers to investigate how the antimicrobial properties of silver might be enhanced, thus broadening the possibilities for antimicrobial applications. This review presents a compilation of patented products utilizing any forms of silver for its bactericidal actions in the decade 2007⁻2017. It analyses the trends in patent applications related to different forms of silver and their use for antimicrobial purposes. Based on the retrospective view of registered patents, statements of prognosis are also presented with a view to heightening awareness of potential industrial and health care applications.
Collapse
|
36
|
Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007⁻2017). Antibiotics (Basel) 2018; 7:antibiotics7040093. [PMID: 30373130 PMCID: PMC6315945 DOI: 10.3390/antibiotics7040093] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
The use of silver to control infections was common in ancient civilizations. In recent years, this material has resurfaced as a therapeutic option due to the increasing prevalence of bacterial resistance to antimicrobials. This renewed interest has prompted researchers to investigate how the antimicrobial properties of silver might be enhanced, thus broadening the possibilities for antimicrobial applications. This review presents a compilation of patented products utilizing any forms of silver for its bactericidal actions in the decade 2007–2017. It analyses the trends in patent applications related to different forms of silver and their use for antimicrobial purposes. Based on the retrospective view of registered patents, statements of prognosis are also presented with a view to heightening awareness of potential industrial and health care applications.
Collapse
|
37
|
Akcha S, Gómez-Ruiz S, Kellou-Tairi S, Lezama L, Pérez FB, Benali-Baitich O. Synthesis, characterization, solution equilibria, DFT study, DNA binding affinity and cytotoxic properties of a cobalt(II) complex with a 5-pyrazolone ligand. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Silver bullets: A new lustre on an old antimicrobial agent. Biotechnol Adv 2018; 36:1391-1411. [PMID: 29847770 DOI: 10.1016/j.biotechadv.2018.05.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 04/26/2018] [Accepted: 05/21/2018] [Indexed: 01/19/2023]
Abstract
Silver was widely used in medicine to treat bacterial infections in the 19th and early 20th century, up until the discovery and development of the first modern antibiotics in the 1940s, which were markedly more effective. Since then, every new antibiotic introduced to the clinic has led to an associated development of drug resistance. Today, the threat of extensive bacterial resistance to antibiotics has reignited interest in alternative strategies to treat infectious diseases, with silver regaining well-deserved renewed attention. Silver ions are highly disruptive to bacterial integrity and biochemical function, with comparatively minimal toxicity to mammalian cells. This review focuses on the antimicrobial properties of silver and their use in synergistic combination therapy with traditional antibiotic drugs.
Collapse
|
39
|
Surface characteristics and antimicrobial properties of modified catheter surfaces by polypyrogallol and metal ions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:673-684. [PMID: 29853139 DOI: 10.1016/j.msec.2018.04.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
Catheter associated infections (CAIs) are the major cause of nosocomial infections leading to increased morbidity, mortality rates and economical loss. Though the antibiotic coated surface modified catheters are reported to be effective in preventing CAIs, presence of sub-lethal concentrations of antibiotics in long term instilled catheters poses a risk of development and spread of drug resistant microbial strains. Herein, we have developed an antibiotic-free alternative strategy to coat catheter surfaces using pyrogallol (PG) and metal ions (Ag+/Mg2+). Surface characteristics, antimicrobial and anti-biofilm properties with hemocompatibility of the coated catheters were studied. Structural characteristics of coated catheters were similar to the uncoated catheters with improved wettability. All the coated catheters with PG and different PG/metal ion combinations exhibited broad spectrum antibacterial activity. Catheters coated with PG/metal ions combination showed effective antibiofilm properties against MRSA strains. None of the coated catheters showed any significant hemolysis for rabbit erythrocytes. In addition, polypyrogallol (pPG) coating attenuated the hemolytic properties of silver without altering the antimicrobial properties. The inherent antimicrobial properties of the coating agent along with antimicrobial metal ions broaden the application landscape which includes coating of other medical devices, clean room construction and development of antimicrobial surfaces. The chemical formulation can also be used to design antiseptic solutions to prevent healthcare associated infections.
Collapse
|
40
|
|