1
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
2
|
Padayachee T, Lamb DC, Nelson DR, Syed K. Structure-Function Analysis of the Essential Mycobacterium tuberculosis P450 Drug Target, CYP121A1. Int J Mol Sci 2024; 25:4886. [PMID: 38732102 PMCID: PMC11084333 DOI: 10.3390/ijms25094886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Cytochrome P450 CYP121A1 is a well-known drug target against Mycobacterium tuberculosis, the human pathogen that causes the deadly disease tuberculosis (TB). CYP121A1 is a unique P450 enzyme because it uses classical and non-classical P450 catalytic processes and has distinct structural features among P450s. However, a detailed investigation of CYP121A1 protein structures in terms of active site cavity dynamics and key amino acids interacting with bound ligands has yet to be undertaken. To address this research knowledge gap, 53 CYP121A1 crystal structures were investigated in this study. Critical amino acids required for CYP121A1's overall activity were identified and highlighted this enzyme's rigid architecture and substrate selectivity. The CYP121A1-fluconazole crystal structure revealed a novel azole drug-P450 binding mode in which azole heme coordination was facilitated by a water molecule. Fragment-based inhibitor approaches revealed that CYP121A1 can be inhibited by molecules that block the substrate channel or by directly interacting with the P450 heme. This study serves as a reference for the precise understanding of CYP121A1 interactions with different ligands and the structure-function analysis of P450 enzymes in general. Our findings provide critical information for the synthesis of more specific CYP121A1 inhibitors and their development as novel anti-TB drugs.
Collapse
Affiliation(s)
- Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, Empangeni 3886, South Africa;
| | - David C. Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea SA2 8PP, UK;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, Empangeni 3886, South Africa;
| |
Collapse
|
3
|
Nguyen RC, Davis I, Dasgupta M, Wang Y, Simon PS, Butryn A, Makita H, Bogacz I, Dornevil K, Aller P, Bhowmick A, Chatterjee R, Kim IS, Zhou T, Mendez D, Paley D, Fuller F, Alonso-Mori R, Batyuk A, Sauter NK, Brewster AS, Orville AM, Yachandra VK, Yano J, Kern JF, Liu A. In Situ Structural Observation of a Substrate- and Peroxide-Bound High-Spin Ferric-Hydroperoxo Intermediate in the P450 Enzyme CYP121. J Am Chem Soc 2023; 145:25120-25133. [PMID: 37939223 PMCID: PMC10799213 DOI: 10.1021/jacs.3c04991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The P450 enzyme CYP121 from Mycobacterium tuberculosis catalyzes a carbon-carbon (C-C) bond coupling cyclization of the dityrosine substrate containing a diketopiperazine ring, cyclo(l-tyrosine-l-tyrosine) (cYY). An unusual high-spin (S = 5/2) ferric intermediate maximizes its population in less than 5 ms in the rapid freeze-quenching study of CYP121 during the shunt reaction with peracetic acid or hydrogen peroxide in acetic acid solution. We show that this intermediate can also be observed in the crystalline state by EPR spectroscopy. By developing an on-demand-rapid-mixing method for time-resolved serial femtosecond crystallography with X-ray free-electron laser (tr-SFX-XFEL) technology covering the millisecond time domain and without freezing, we structurally monitored the reaction in situ at room temperature. After a 200 ms peracetic acid reaction with the cocrystallized enzyme-substrate microcrystal slurry, a ferric-hydroperoxo intermediate is observed, and its structure is determined at 1.85 Å resolution. The structure shows a hydroperoxyl ligand between the heme and the native substrate, cYY. The oxygen atoms of the hydroperoxo are 2.5 and 3.2 Å from the iron ion. The end-on binding ligand adopts a near-side-on geometry and is weakly associated with the iron ion, causing the unusual high-spin state. This compound 0 intermediate, spectroscopically and structurally observed during the catalytic shunt pathway, reveals a unique binding mode that deviates from the end-on compound 0 intermediates in other heme enzymes. The hydroperoxyl ligand is only 2.9 Å from the bound cYY, suggesting an active oxidant role of the intermediate for direct substrate oxidation in the nonhydroxylation C-C bond coupling chemistry.
Collapse
Affiliation(s)
- Romie C. Nguyen
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Ian Davis
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Medhanjali Dasgupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Yifan Wang
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Philipp S. Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Agata Butryn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Kednerlin Dornevil
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Tiankun Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Derek Mendez
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Daniel Paley
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Franklin Fuller
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Roberto Alonso-Mori
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Alexander Batyuk
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jan F. Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| |
Collapse
|
4
|
Mohamed H, Ghith A, Bell SG. The binding of nitrogen-donor ligands to the ferric and ferrous forms of cytochrome P450 enzymes. J Inorg Biochem 2023; 242:112168. [PMID: 36870164 DOI: 10.1016/j.jinorgbio.2023.112168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The cytochrome P450 superfamily of heme-thiolate monooxygenase enzymes can catalyse various oxidation reactions. The addition of a substrate or an inhibitor ligand induces changes in the absorption spectrum of these enzymes and UV-visible (UV-vis) absorbance spectroscopy is the most common and readily available technique used to interrogate their heme and active site environment. Nitrogen-containing ligands can inhibit the catalytic cycle of heme enzymes by interacting with the heme. Here we evaluate the binding of imidazole and pyridine-based ligands to the ferric and ferrous forms of a selection of bacterial cytochrome P450 enzymes using UV-visible absorbance spectroscopy. The majority of these ligands interact with the heme as one would expect for type II nitrogen directly coordinated to a ferric heme-thiolate species. However, the spectroscopic changes observed in the ligand-bound ferrous forms indicated differences in the heme environment across these P450 enzyme/ligand combinations. Multiple species were observed in the UV-vis spectra of the ferrous ligand-bound P450s. None of the enzymes gave rise to the isolation of a single species with a Soret band at ∼442-447 nm, indicative of a 6-coordinate ferrous thiolate species with a nitrogen-donor ligand. A ferrous species with Soret band at ∼427 nm coupled with an α-band of increased intensity was observed with the imidazole ligands. With some enzyme-ligand combinations reduction resulted in breaking of the iron‑nitrogen bond yielding a 5-coordinate high-spin ferrous species. In other instances, the ferrous form was readily oxidised back to the ferric form on addition of the ligand.
Collapse
Affiliation(s)
- Hebatalla Mohamed
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia
| | - Amna Ghith
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
5
|
El Moudaka T, Murugan P, Abdul Rahman MB, Ario Tejo B. Discovery of Mycobacterium tuberculosis CYP121 New Inhibitor via Structure-based Drug Repurposing. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023. [DOI: 10.47836/pjst.31.3.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Tuberculosis (TB) remains a serious threat to human health with the advent of multi-drug resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). The urge to find novel drugs to deal with the appearance of drug-resistant TB and its variants is highly needed. This study aims to find new CYP121 inhibitors by screening 8,773 compounds from the drug repositioning database RepoDB. The selection of CYP121 potential inhibitors was based on two criteria: the new inhibitor should bind to CYP121 with higher affinity than its original ligand and interact with catalytically important residues for the function of CYP121. The ligands were docked onto CYP121 using AutoDock Vina, and the molecular dynamics simulation of the selected ligand was conducted using YASARA Structure. We found that antrafenine, an anti-inflammatory and analgesic agent with high CYP inhibitory promiscuity, was bound to CYP121 with a binding affinity of -12.6 kcal/mol and interacted with important residues at the CYP121 binding site. Molecular dynamics analysis of CYP121 bound to the original ligand and antrafenine showed that both ligands affected the dynamics of residues located distantly from the active site. Antrafenine caused more structural changes to CYP121 than the original ligand, as indicated by a significantly higher number of affected residues and rigid body movements caused by the binding of antrafenine to CYP121.
Collapse
|
6
|
Singh V, Dziwornu GA, Chibale K. The implication of Mycobacterium tuberculosis-mediated metabolism of targeted xenobiotics. Nat Rev Chem 2023; 7:340-354. [PMID: 37117810 PMCID: PMC10026799 DOI: 10.1038/s41570-023-00472-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 03/29/2023]
Abstract
Drug metabolism is generally associated with liver enzymes. However, in the case of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), Mtb-mediated drug metabolism plays a significant role in treatment outcomes. Mtb is equipped with enzymes that catalyse biotransformation reactions on xenobiotics with consequences either in its favour or as a hindrance by deactivating or activating chemical entities, respectively. Considering the range of chemical reactions involved in the biosynthetic pathways of Mtb, information related to the biotransformation of antitubercular compounds would provide opportunities for the development of new chemical tools to study successful TB infections while also highlighting potential areas for drug discovery, host-directed therapy, dose optimization and elucidation of mechanisms of action. In this Review, we discuss Mtb-mediated biotransformations and propose a holistic approach to address drug metabolism in TB drug discovery and related areas. ![]()
Mycobacterium tuberculosis-mediated metabolism of xenobiotics poses an important research question for antitubercular drug discovery. Identification of the metabolic fate of compounds can inform requisite structure–activity relationship strategies early on in a drug discovery programme towards improving the properties of the compound.
Collapse
Affiliation(s)
- Vinayak Singh
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Godwin Akpeko Dziwornu
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
7
|
Wu C, Yi H, Hu Y, Luo D, Tang Z, Wen X, Zhang Y, Tang M, Zhang L, Wu S, Chen M. Effects of second-line anti-tuberculosis drugs on the intestinal microbiota of patients with rifampicin-resistant tuberculosis. Front Cell Infect Microbiol 2023; 13:1127916. [PMID: 37187470 PMCID: PMC10178494 DOI: 10.3389/fcimb.2023.1127916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/13/2023] [Indexed: 05/17/2023] Open
Abstract
Objective To determine the effects of second-line anti-tuberculosis (TB) drugs on the composition and functions of intestinal microbiota in patients with rifampicin-resistant TB (RR-TB). Methods In this cross-sectional study, stool samples and relevant clinical information were collected from patients with RR-TB admitted to the Drug-resistant Specialty Department at Hunan Chest Hospital (Hunan Institute For Tuberculosis Control). The composition and functions of intestinal microbiota were analyzed using metagenomic sequencing and bioinformatics methods. Results Altered structural composition of the intestinal microbiota was found when patients from the control, intensive phase treatment, and continuation phase treatment groups were compared (P<0.05). Second-line anti-TB treatment resulted in a decrease in the relative abundance of species, such as Prevotella copri, compared with control treatment. However, the relative abundance of Escherichia coli, Salmonella enterica, and 11 other conditionally pathogenic species increased significantly in the intensive phase treatment group. Based on differential functional analysis, some metabolism-related functions, such as the biosynthesises of phenylalanine, tyrosine, and tryptophan, were significantly inhibited during second-line anti-TB drug treatment, while other functions, such as phenylalanine metabolism, were significantly promoted during the intensive phase of treatment. Conclusion Second-line anti-TB drug treatment caused changes in the structural composition of the intestinal microbiota in patients with RR-TB. In particular, this treatment induced a significant increase in the relative abundance of 11 conditionally pathogenic species, including Escherichia coli. Functional analysis revealed significantly decreased biosynthesises of phenylalanine, tyrosine, and tryptophan and significantly increased phenylalanine metabolism.
Collapse
Affiliation(s)
- Chunli Wu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Hengzhong Yi
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
- *Correspondence: Hengzhong Yi,
| | - Yanmei Hu
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Danlin Luo
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Zhigang Tang
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Xinmin Wen
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Yong Zhang
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Mi Tang
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Lizhi Zhang
- Orthopedics and integration Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Shu Wu
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Saprophytic to Pathogenic Mycobacteria: Loss of Cytochrome P450s Vis a Vis Their Prominent Involvement in Natural Metabolite Biosynthesis. Int J Mol Sci 2022; 24:ijms24010149. [PMID: 36613600 PMCID: PMC9820752 DOI: 10.3390/ijms24010149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cytochrome P450 monooxygenases (P450s/CYPs) are ubiquitous enzymes with unique regio- and stereo-selective oxidation activities. Due to these properties, P450s play a key role in the biosynthesis of natural metabolites. Mycobacterial species are well-known producers of complex metabolites that help them survive in diverse ecological niches, including in the host. In this study, a comprehensive analysis of P450s and their role in natural metabolite synthesis in 2666 mycobacterial species was carried out. The study revealed the presence of 62,815 P450s that can be grouped into 182 P450 families and 345 subfamilies. Blooming (the presence of more than one copy of the same gene) and expansion (presence of the same gene in many species) were observed at the family and subfamily levels. CYP135 was the dominant family in mycobacterial species. The mycobacterial species have distinct P450 profiles, indicating that lifestyle impacts P450 content in their genome vis a vis P450s, playing a key role in organisms' adaptation. Analysis of the P450 profile revealed a gradual loss of P450s from non-pathogenic to pathogenic mycobacteria. Pathogenic mycobacteria have more P450s in biosynthetic gene clusters that produce natural metabolites. This indicates that P450s are recruited for the biosynthesis of unique metabolites, thus helping these pathogens survive in their niches. This study is the first to analyze P450s and their role in natural metabolite synthesis in many mycobacterial species.
Collapse
|
9
|
Keshavarzian E, Asadi Z, Poupon M, Dusek M, Rastegari B. A New Heterotrimetallic Sandwich‐like Cu
II
‐La
III
‐Cu
II
(3d‐4f‐3d) Cluster as a Model Anticancer Drug in Interaction with FS‐DNA & BSA and as a New Artificial Catalyst for Catecholase Activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elahe Keshavarzian
- Department of Chemistry, School of Sciences Shiraz University Shiraz Iran
| | - Zahra Asadi
- Department of Chemistry, School of Sciences Shiraz University Shiraz Iran
| | | | | | - Banafsheh Rastegari
- Diagnostic laboratory sciences and technology research center, paramedical School Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
10
|
Genome-wide association studies of global Mycobacterium tuberculosis resistance to 13 antimicrobials in 10,228 genomes identify new resistance mechanisms. PLoS Biol 2022; 20:e3001755. [PMID: 35944070 PMCID: PMC9363015 DOI: 10.1371/journal.pbio.3001755] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
The emergence of drug-resistant tuberculosis is a major global public health concern that threatens the ability to control the disease. Whole-genome sequencing as a tool to rapidly diagnose resistant infections can transform patient treatment and clinical practice. While resistance mechanisms are well understood for some drugs, there are likely many mechanisms yet to be uncovered, particularly for new and repurposed drugs. We sequenced 10,228 Mycobacterium tuberculosis (MTB) isolates worldwide and determined the minimum inhibitory concentration (MIC) on a grid of 2-fold concentration dilutions for 13 antimicrobials using quantitative microtiter plate assays. We performed oligopeptide- and oligonucleotide-based genome-wide association studies using linear mixed models to discover resistance-conferring mechanisms not currently catalogued. Use of MIC over binary resistance phenotypes increased sample heritability for the new and repurposed drugs by 26% to 37%, increasing our ability to detect novel associations. For all drugs, we discovered uncatalogued variants associated with MIC, including in the Rv1218c promoter binding site of the transcriptional repressor Rv1219c (isoniazid), upstream of the vapBC20 operon that cleaves 23S rRNA (linezolid) and in the region encoding an α-helix lining the active site of Cyp142 (clofazimine, all p < 10-7.7). We observed that artefactual signals of cross-resistance could be unravelled based on the relative effect size on MIC. Our study demonstrates the ability of very large-scale studies to substantially improve our knowledge of genetic variants associated with antimicrobial resistance in M. tuberculosis.
Collapse
|
11
|
Du W, Zhao Y, Wang C, Dong Y, Qu X, Liu Z, Li K, Che N. Spatial bacterial subpopulations of a human lung lobe and their potential impact on the progression of pulmonary tuberculosis. Microb Pathog 2022; 169:105656. [PMID: 35777521 DOI: 10.1016/j.micpath.2022.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Better understanding the spatial variation in resident pulmonary bacteria can help to link the disease severity of pulmonary tuberculosis (TB) with lung bacteriomes. This study aimed to investigate bacterial compositions in subniches of a lung lobe from pulmonary TB patient with two separate visible lesions. There were no significant differences between the bacterial compositions in normal tissue and TB lesions, but the bacterial compositions of the two TB lesions differed significantly (P = 0.009). Interestingly, 52 OTUs (relative abundance >1%) that specifically inhabiting certain lung niches were observed and they were affiliated with five phyla. Specific OTUs affiliated with Firmicutes mainly inhabited normal tissues. The dominant phylum in the lung subniches was Proteobacteria, with a relative abundance between 67.03% and 99.99%. Ralstonia, Achromobacter, and Pseudomonas were the most abundant genera, collectively accounting for 34.02% of total bacterial species. A total of 667 of the 700 bacterial connections in a co-correlation network of 145 OTUs (Operational Taxonomic Unit) were positive, indicating a cooperative relationship between bacterial members. Using PICRUSt tool, we do predict bacterial MetaCyc functions responsible for lipid synthesis and heme biosynthesis across the lung lobe that are essential for generation of caseous necrosis and TB disease pathology. MetaCyc pathways responsible for the degradation of aromatic biogenic amines, sulfur oxidation, and denitrification were all related to M.tb growth status, and they were significantly enriched in the lesion with necrosis than that with inflammation. These results open a new insight for us to comprehend the spatial profile of bacteriomes in a pulmonary TB human lung lobe, and shed light on the design of future diagnosis and treatment for pulmonary TB disease.
Collapse
Affiliation(s)
- Weili Du
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Yingli Zhao
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Chong Wang
- Minimally Invasive Treatment Center, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Yujie Dong
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Xiaodie Qu
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Zichen Liu
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Kun Li
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Nanying Che
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China.
| |
Collapse
|
12
|
Zampolli J, Orro A, Manconi A, Ami D, Natalello A, Di Gennaro P. Transcriptomic analysis of Rhodococcus opacus R7 grown on polyethylene by RNA-seq. Sci Rep 2021; 11:21311. [PMID: 34716360 PMCID: PMC8556283 DOI: 10.1038/s41598-021-00525-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Plastic waste management has become a global issue. Polyethylene (PE) is the most abundant synthetic plastic worldwide, and one of the most resistant to biodegradation. Indeed, few bacteria can degrade polyethylene. In this paper, the transcriptomic analysis unveiled for the first time Rhodococcus opacus R7 complex genetic system based on diverse oxidoreductases for polyethylene biodegradation. The RNA-seq allowed uncovering genes putatively involved in the first step of oxidation. In-depth investigations through preliminary bioinformatic analyses and enzymatic assays on the supernatant of R7 grown in the presence of PE confirmed the activation of genes encoding laccase-like enzymes. Moreover, the transcriptomic data allowed identifying candidate genes for the further steps of short aliphatic chain oxidation including alkB gene encoding an alkane monooxygenase, cyp450 gene encoding cytochrome P450 hydroxylase, and genes encoding membrane transporters. The PE biodegradative system was also validated by FTIR analysis on R7 cells grown on polyethylene.
Collapse
Affiliation(s)
- Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Alessandro Orro
- Institute of Biomedical Technologies, National Research Council, CNR, via Fratelli Cervi 19, Segrate, 20133, Milan, Italy
| | - Andrea Manconi
- Institute of Biomedical Technologies, National Research Council, CNR, via Fratelli Cervi 19, Segrate, 20133, Milan, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
13
|
Campomizzi CS, Ghanatios GE, Estrada DF. 19F-NMR reveals substrate specificity of CYP121A1 in Mycobacterium tuberculosis. J Biol Chem 2021; 297:101287. [PMID: 34634307 PMCID: PMC8571521 DOI: 10.1016/j.jbc.2021.101287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cytochromes P450 are versatile enzymes that function in endobiotic and xenobiotic metabolism and undergo meaningful structural changes that relate to their function. However, the way in which conformational changes inform the specific recognition of the substrate is often unknown. Here, we demonstrate the utility of fluorine (19F)-NMR spectroscopy to monitor structural changes in CYP121A1, an essential enzyme from Mycobacterium tuberculosis. CYP121A1 forms functional dimers that catalyze the phenol-coupling reaction of the dipeptide dicyclotyrosine. The thiol-reactive compound 3-bromo-1,1,1-trifluoroacetone was used to label an S171C mutation of the enzyme FG loop, which is located adjacent to the homodimer interface. Substrate titrations and inhibitor-bound 19F-NMR spectra indicate that ligand binding reduces conformational heterogeneity at the FG loop in both the dimer and in an engineered monomer of CYP121A1. However, only the dimer was found to promote a substrate-bound conformation that was preexisting in the substrate-free spectra, thus confirming a role for the dimer interface in dicyclotyrosine recognition. Moreover, 19F-NMR spectra in the presence of substrate analogs indicate the hydrogen-bonding feature of the dipeptide aromatic side chain as a dicyclotyrosine specificity criterion. This study demonstrates the utility of 19F-NMR as applied to a multimeric cytochrome P450, while also revealing mechanistic insights for an essential M. tuberculosis enzyme.
Collapse
Affiliation(s)
- Christopher S Campomizzi
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - George E Ghanatios
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
14
|
Malwal SR, Zimmerman MD, Alvarez N, Sarathy JP, Dartois V, Nacy CA, Oldfield E. Structure, In Vivo Detection, and Antibacterial Activity of Metabolites of SQ109, an Anti-Infective Drug Candidate. ACS Infect Dis 2021; 7:2492-2507. [PMID: 34279904 DOI: 10.1021/acsinfecdis.1c00259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SQ109 is a drug candidate for the treatment of tuberculosis (TB). It is thought to target primarily the protein MmpL3 in Mycobacterium tuberculosis, but it also inhibits the growth of some other bacteria. SQ109 is metabolized by the liver, and it has been proposed that some of its metabolites might be responsible for its activity against TB. Here, we synthesized six potential P450 metabolites of SQ109 and used these as well as 10 other likely metabolites as standards in a mass spectrometry study of M. tuberculosis-infected rabbits treated with SQ109, in addition to testing all 16 putative metabolites for antibacterial activity. We found that there were just two major metabolites in lung tissue: a hydroxy-adamantyl analog of SQ109 and N'-adamantylethylenediamine. Neither of these, or the other potential metabolites tested, inhibited the growth of M. tuberculosis or of M. smegmatis, Bacillus subtilis, or E. coli, making it unlikely that an SQ109 metabolite contributes to its antibacterial activity. In the rabbit TB model, it is thus the gradual accumulation of nonmetabolized SQ109 in tissues to therapeutic levels that leads to good efficacy. Our results also provide new insights into how SQ109 binds to its target MmpL3, based on our mass spectroscopy results which indicate that the charge in SQ109 is primarily localized on the geranyl nitrogen, explaining the very short distance to a key Asp found in the X-ray structure of SQ109 bound to MmpL3.
Collapse
Affiliation(s)
- Satish R. Malwal
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, New Jersey 07110, United States
| | - Nadine Alvarez
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, New Jersey 07110, United States
| | - Jansy P. Sarathy
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, New Jersey 07110, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, New Jersey 07110, United States
- Hackensack School of Medicine, Department of Medical Sciences, 123, Metro Boulevard, Nutley, New Jersey 07110, United States
| | - Carol A. Nacy
- Sequella, Inc., 9610 Medical Center Drive, Suite 200, Rockville, Maryland 20850, United States
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Ancient Bacterial Class Alphaproteobacteria Cytochrome P450 Monooxygenases Can Be Found in Other Bacterial Species. Int J Mol Sci 2021; 22:ijms22115542. [PMID: 34073951 PMCID: PMC8197338 DOI: 10.3390/ijms22115542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s), heme-thiolate proteins, are well-known players in the generation of chemicals valuable to humans and as a drug target against pathogens. Understanding the evolution of P450s in a bacterial population is gaining momentum. In this study, we report comprehensive analysis of P450s in the ancient group of the bacterial class Alphaproteobacteria. Genome data mining and annotation of P450s in 599 alphaproteobacterial species belonging to 164 genera revealed the presence of P450s in only 241 species belonging to 82 genera that are grouped into 143 P450 families and 214 P450 subfamilies, including 77 new P450 families. Alphaproteobacterial species have the highest average number of P450s compared to Firmicutes species and cyanobacterial species. The lowest percentage of alphaproteobacterial species P450s (2.4%) was found to be part of secondary metabolite biosynthetic gene clusters (BGCs), compared other bacterial species, indicating that during evolution large numbers of P450s became part of BGCs in other bacterial species. Our study identified that some of the P450 families found in alphaproteobacterial species were passed to other bacterial species. This is the first study to report on the identification of CYP125 P450, cholesterol and cholest-4-en-3-one hydroxylase in alphaproteobacterial species (Phenylobacterium zucineum) and to predict cholesterol side-chain oxidation capability (based on homolog proteins) by P. zucineum.
Collapse
|
16
|
Msomi NN, Padayachee T, Nzuza N, Syed PR, Kryś JD, Chen W, Gront D, Nelson DR, Syed K. In Silico Analysis of P450s and Their Role in Secondary Metabolism in the Bacterial Class Gammaproteobacteria. Molecules 2021; 26:1538. [PMID: 33799696 PMCID: PMC7998510 DOI: 10.3390/molecules26061538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The impact of lifestyle on shaping the genome content of an organism is a well-known phenomenon and cytochrome P450 enzymes (CYPs/P450s), heme-thiolate proteins that are ubiquitously present in organisms, are no exception. Recent studies focusing on a few bacterial species such as Streptomyces, Mycobacterium, Cyanobacteria and Firmicutes revealed that the impact of lifestyle affected the P450 repertoire in these species. However, this phenomenon needs to be understood in other bacterial species. We therefore performed genome data mining, annotation, phylogenetic analysis of P450s and their role in secondary metabolism in the bacterial class Gammaproteobacteria. Genome-wide data mining for P450s in 1261 Gammaproteobacterial species belonging to 161 genera revealed that only 169 species belonging to 41 genera have P450s. A total of 277 P450s found in 169 species grouped into 84 P450 families and 105 P450 subfamilies, where 38 new P450 families were found. Only 18% of P450s were found to be involved in secondary metabolism in Gammaproteobacterial species, as observed in Firmicutes as well. The pathogenic or commensal lifestyle of Gammaproteobacterial species influences them to such an extent that they have the lowest number of P450s compared to other bacterial species, indicating the impact of lifestyle on shaping the P450 repertoire. This study is the first report on comprehensive analysis of P450s in Gammaproteobacteria.
Collapse
Affiliation(s)
- Ntombizethu Nokuphiwa Msomi
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.M.); (T.P.); (N.N.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.M.); (T.P.); (N.N.)
| | - Nomfundo Nzuza
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.M.); (T.P.); (N.N.)
| | - Puleng Rosinah Syed
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Justyna Dorota Kryś
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany;
| | - Dominik Gront
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.M.); (T.P.); (N.N.)
| |
Collapse
|
17
|
Campaniço A, Harjivan SG, Warner DF, Moreira R, Lopes F. Addressing Latent Tuberculosis: New Advances in Mimicking the Disease, Discovering Key Targets, and Designing Hit Compounds. Int J Mol Sci 2020; 21:ijms21228854. [PMID: 33238468 PMCID: PMC7700174 DOI: 10.3390/ijms21228854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Despite being discovered and isolated more than one hundred years ago, tuberculosis (TB) remains a global public health concern arch. Our inability to eradicate this bacillus is strongly related with the growing resistance, low compliance to current drugs, and the capacity of the bacteria to coexist in a state of asymptomatic latency. This last state can be sustained for years or even decades, waiting for a breach in the immune system to become active again. Furthermore, most current therapies are not efficacious against this state, failing to completely clear the infection. Over the years, a series of experimental methods have been developed to mimic the latent state, currently used in drug discovery, both in vitro and in vivo. Most of these methods focus in one specific latency inducing factor, with only a few taking into consideration the complexity of the granuloma and the genomic and proteomic consequences of each physiological factor. A series of targets specifically involved in latency have been studied over the years with promising scaffolds being discovered and explored. Taking in account that solving the latency problem is one of the keys to eradicate the disease, herein we compile current therapies and diagnosis techniques, methods to mimic latency and new targets and compounds in the pipeline of drug discovery.
Collapse
Affiliation(s)
- André Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Shrika G. Harjivan
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Digby F. Warner
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa;
- Department of Pathology, SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Welcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
- Correspondence:
| |
Collapse
|
18
|
Ngcobo NS, Chiliza ZE, Chen W, Yu JH, Nelson DR, Tuszynski JA, Preto J, Syed K. Comparative Analysis, Structural Insights, and Substrate/Drug Interaction of CYP128A1 in Mycobacterium tuberculosis. Int J Mol Sci 2020; 21:E4816. [PMID: 32650369 PMCID: PMC7404182 DOI: 10.3390/ijms21144816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s) are well known for their role in organisms' primary and secondary metabolism. Among 20 P450s of the tuberculosis-causing Mycobacterium tuberculosis H37Rv, CYP128A1 is particularly important owing to its involvement in synthesizing electron transport molecules such as menaquinone-9 (MK9). This study employs different in silico approaches to understand CYP128 P450 family's distribution and structural aspects. Genome data-mining of 4250 mycobacterial species has revealed the presence of 2674 CYP128 P450s in 2646 mycobacterial species belonging to six different categories. Contrast features were observed in the CYP128 gene distribution, subfamily patterns, and characteristics of the secondary metabolite biosynthetic gene cluster (BGCs) between M. tuberculosis complex (MTBC) and other mycobacterial category species. In all MTBC species (except one) CYP128 P450s belong to subfamily A, whereas subfamily B is predominant in another four mycobacterial category species. Of CYP128 P450s, 78% was a part of BGCs with CYP124A1, or together with CYP124A1 and CYP121A1. The CYP128 family ranked fifth in the conservation ranking. Unique amino acid patterns are present at the EXXR and CXG motifs. Molecular dynamic simulation studies indicate that the CYP128A1 bind to MK9 with the highest affinity compared to the azole drugs analyzed. This study provides comprehensive comparative analysis and structural insights of CYP128A1 in M. tuberculosis.
Collapse
Affiliation(s)
- Nokwanda Samantha Ngcobo
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.S.N.); (Z.E.C.)
| | - Zinhle Edith Chiliza
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.S.N.); (Z.E.C.)
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, 3155 MSB, 1550 Linden Drive, Madison, WI 53706, USA;
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Jack A. Tuszynski
- Department of Physics and Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada;
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino TO, Italy
| | - Jordane Preto
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69622 Lyon, France
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.S.N.); (Z.E.C.)
| |
Collapse
|
19
|
Mnguni FC, Padayachee T, Chen W, Gront D, Yu JH, Nelson DR, Syed K. More P450s Are Involved in Secondary Metabolite Biosynthesis in Streptomyces Compared to Bacillus, Cyanobacteria, and Mycobacterium. Int J Mol Sci 2020; 21:ijms21134814. [PMID: 32646068 PMCID: PMC7369989 DOI: 10.3390/ijms21134814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Unraveling the role of cytochrome P450 monooxygenases (CYPs/P450s), heme-thiolate proteins present in living and non-living entities, in secondary metabolite synthesis is gaining momentum. In this direction, in this study, we analyzed the genomes of 203 Streptomyces species for P450s and unraveled their association with secondary metabolism. Our analyses revealed the presence of 5460 P450s, grouped into 253 families and 698 subfamilies. The CYP107 family was found to be conserved and highly populated in Streptomyces and Bacillus species, indicating its key role in the synthesis of secondary metabolites. Streptomyces species had a higher number of P450s than Bacillus and cyanobacterial species. The average number of secondary metabolite biosynthetic gene clusters (BGCs) and the number of P450s located in BGCs were higher in Streptomyces species than in Bacillus, mycobacterial, and cyanobacterial species, corroborating the superior capacity of Streptomyces species for generating diverse secondary metabolites. Functional analysis via data mining confirmed that many Streptomyces P450s are involved in the biosynthesis of secondary metabolites. This study was the first of its kind to conduct a comparative analysis of P450s in such a large number (203) of Streptomyces species, revealing the P450s’ association with secondary metabolite synthesis in Streptomyces species. Future studies should include the selection of Streptomyces species with a higher number of P450s and BGCs and explore the biotechnological value of secondary metabolites they produce.
Collapse
Affiliation(s)
- Fanele Cabangile Mnguni
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany;
| | - Dominik Gront
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, 3155 MSB, 1550 Linden Drive, Madison, WI 53706, USA;
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (D.R.N.); (K.S.)
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
- Correspondence: (D.R.N.); (K.S.)
| |
Collapse
|
20
|
A comparison of steroid and lipid binding cytochrome P450s from Mycobacterium marinum and Mycobacterium tuberculosis. J Inorg Biochem 2020; 209:111116. [PMID: 32473484 DOI: 10.1016/j.jinorgbio.2020.111116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
The steroid lipid binding cytochrome P450 (CYP) enzymes of Mycobacterium tuberculosis are essential for organism survival through metabolism of cholesterol and its derivatives. The counterparts to these enzymes from Mycobacterium marinum were studied to determine the degree of functional conservation between them. Spectroscopic analyses of substrate and inhibitor binding for the four M. marinum enzymes CYP125A6, CYP125A7, CYP142A3 and CYP124A1 were performed and compared to the equivalent enzymes of M. tuberculosis. The sequence of CYP125A7 from M. marinum was more similar to CYP125A1 from M. tuberculosis than CYP125A6 but both showed differences in the resting heme spin state and in the binding modes and affinities of certain azole inhibitors. CYP125A7 did not show a significant Type II inhibitor-like shift with any of the azoles tested. CYP142A3 bound a similar range of steroids and inhibitors to CYP142A1. However, there were some differences in the extent of the Type I shifts to the high-spin form with steroids and a higher affinity for the azole inhibitors compared to CYP142A1. The two CYP124 enzymes had similar substrate binding properties. M. marinum CYP124 was characterised by X-ray crystallography and displayed strong conservation of active site residues, except near the region where the carboxylate terminus of the phytanic acid substrate would be bound. As these enzymes in M. tuberculosis have been identified as candidates for inhibition the data here demonstrates that alternative strategies for inhibitor design may be required to target CYP family members from distinct pathogenic Mycobacterium species or other bacteria.
Collapse
|
21
|
Moopanar K, Mvubu NE. Lineage-specific differences in lipid metabolism and its impact on clinical strains of Mycobacterium tuberculosis. Microb Pathog 2020; 146:104250. [PMID: 32407863 DOI: 10.1016/j.micpath.2020.104250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
Mycobacterium tuberculosis (M. tb) is the causative agent of TB and its incidences has been on the rise since 1993. Lipid metabolism is an imperative metabolic process, which grants M. tb the ability to utilize host-derived lipids as a secondary source of nutrition during infection. In addition to degrading host lipids, M. tb is proficient at using lipids, such as cholesterol, to facilitate its entry into macrophages. Mycolic acids, constituents of the mycobacterial cell wall, offer protection and aid in persistence of the bacterium. These are effectively synthesized using a complex fatty acid synthase system. Many pathogenesis studies have reported differences in lipid-metabolism of clinical strains of M. tb that belongs to diverse lineages of the Mycobacterium tuberculosis complex (MTBC). East-Asian and Euro-American lineages possess "unique" cell wall-associated lipids compared to the less transmissible Ethiopian lineage, which may offer these lineages a competitive advantage. Therefore, it is crucial to comprehend the complexities among the MTBC lineages with lipid metabolism and their impact on virulence, transmissibility and pathogenesis. Thus, this review provides an insight into lipid metabolism in various lineages of the MTBC and their impact on virulence and persistence during infection, as this may provide critical insight into developing novel therapeutics to combat TB.
Collapse
Affiliation(s)
- K Moopanar
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa.
| | - N E Mvubu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
22
|
Ortega Ugalde S, Wallraven K, Speer A, Bitter W, Grossmann TN, Commandeur JNM. Acetylene containing cyclo(L-Tyr-L-Tyr)-analogs as mechanism-based inhibitors of CYP121A1 from Mycobacterium tuberculosis. Biochem Pharmacol 2020; 177:113938. [PMID: 32224137 DOI: 10.1016/j.bcp.2020.113938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/24/2020] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a globally significant infective disease that is caused by a single infectious agent, Mycobacterium tuberculosis (Mtb). Because of the rise in the number of multidrug-resistant (MDR) TB strains, identification of alternative drug targets for the development of drugs with different mechanism of actions is desired. CYP121A1, one of the twenty cytochrome P450 enzymes encoded in the Mtb genome, was previously shown to be essential for bacterial growth. This enzyme catalyzes the intramolecular C-C crosslinking reaction of the cyclopeptide cyclo(L-tyr-L-tyr) (cYY) yielding the metabolite mycocyclosin. In the present study, acetylene-substituted cYY-analogs were synthesized and evaluated as potential mechanism-based inhibitors of CYP121A1. The acetylene-substituted cYY-analogs were capable of binding to CYP121A1 with affinities comparable with cYY, and exhibited a Type I binding mode, indicative of a substrate-like binding, mandatory for metabolism. Only the cYY-analogs which contain an acetylene-substitution at one (2a) or both (3) para-positions of cYY showed mechanism-based inhibition of CYP121A1 activity. The values of KI and kinact were 236 µM and 0.045 min-1, respectively, for compound 2a, and 145 µM and 0.015 min-1, repectively, for compound 3 The inactivation could neither be reversed by dialysis nor be prevented by including glutathione. LC-MS analysis demonstrated that the inactivation results from covalent binding to the apoprotein, whereas the heme was unmodified. Interestingly, the mass increment of the CYP121A1 apoprotein was significantly smaller than was expected from the ketene formed by oxidation of the acetylene-group, indicative for a secondary cleavage reaction in the active site of CYP121A1. Although the two acetylene-containing cYY-analogs showed significant mechanism-based inhibition, growth inhibition of the Mtb strains was only observed at millimolar concentrations. This low efficacy may be due to insufficient irreversible inactivation of CYP121A1 and/or insufficient cellular uptake. Although the identified mechanism-based inhibitors have no perspective for Mtb-treatment, this study is the first proof-of-principle that mechanism-based inhibition of CYP121A1 is feasible and may provide the basis for new strategies in the design and development of compounds against this promising therapeutic target.
Collapse
Affiliation(s)
- Sandra Ortega Ugalde
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Kerstin Wallraven
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Jan N M Commandeur
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Nguyen RC, Yang Y, Wang Y, Davis I, Liu A. Substrate-Assisted Hydroxylation and O-Demethylation in the Peroxidase-like Cytochrome P450 Enzyme CYP121. ACS Catal 2020; 10:1628-1639. [PMID: 32391185 DOI: 10.1021/acscatal.9b04596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CYP121 is a P450 enzyme from Mycobacterium tuberculosis that catalyzes a C-C coupling reaction between the two aromatic rings on its native substrate cyclo(l-Tyr-l-Tyr) (cYY) to form mycocyclosin, a necessary product for cell survival. Unlike the typical P450 enzymes for hydroxylation, CYP121 is believed to behave like a peroxidase and conduct radical-mediated C-C bond formation. Here, we probe whether the phenolic hydrogen of the substrate is the site of the postulated hydrogen atom abstraction for radical formation. We synthesized a singly O-methylated substrate analogue, cYF-4-OMe, and characterized its interaction with CYP121 by ultraviolet-visible and electron paramagnetic resonance spectroscopies and X-ray crystallography. We found that cYF-4-OMe can function as a substrate of CYP121 using the established assay via the peroxide shunt. Analysis of the enzymatic reaction revealed an O-demethylation of cYF-4-OMe instead of cyclization, yielding cYY and formaldehyde. A hydroxylated substrate, cYF-4-OMeOH, is expected to be the intermediate product, which was trapped and structurally characterized by X-ray crystallography. We further determined that the deformylation reaction of cYF-4-OMeOH proceeds via an alkyl-oxygen rather than aryl-oxygen bond cleavage by the 18O-labeling studies. Finally, the pH dependence catalytic study on the native substrate and the methoxy analogue further supports the mechanistic understanding that the hydrogen atom abstraction is the critical first oxidation step exerted by a heme-based oxidant during the cyclization reaction of cYY. The switch in catalytic activity reveals the power of CYP121 as a P450 enzyme and provides insight into the peroxidase-like catalytic mechanism.
Collapse
Affiliation(s)
- Romie C. Nguyen
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Yu Yang
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Yifan Wang
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Ian Davis
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| |
Collapse
|
24
|
Multiple drug binding modes in Mycobacterium tuberculosis CYP51B1. J Inorg Biochem 2020; 205:110994. [PMID: 31982812 DOI: 10.1016/j.jinorgbio.2020.110994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 01/08/2023]
Abstract
The Mycobacterium tuberculosis (Mtb) genome encodes 20 different cytochrome P450 enzymes (CYPs), many of which serve essential biosynthetic roles. CYP51B1, the Mtb version of eukaryotic sterol demethylase, remains a potential therapeutic target. The binding of three drug fragments containing nitrogen heterocycles to CYP51B1 is studied here by continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) techniques to determine how each drug fragment binds to the heme active-site. All three drug fragments form a mixture of complexes, some of which retain the axial water ligand from the resting state. Hyperfine sublevel correlation spectroscopy (HYSCORE) and electron-nuclear double resonance spectroscopy (ENDOR) observe protons of the axial water and on the drug fragments that reveal drug binding modes. Binding in CYP51B1 is complicated by the presence of multiple binding modes that coexist in the same solution. These results aid our understanding of CYP-inhibitor interactions and will help guide future inhibitor design.
Collapse
|
25
|
Ortega Ugalde S, Ma D, Cali JJ, Commandeur JNM. Evaluation of Luminogenic Substrates as Probe Substrates for Bacterial Cytochrome P450 Enzymes: Application to Mycobacterium tuberculosis. SLAS DISCOVERY 2019; 24:745-754. [PMID: 31208248 PMCID: PMC6651611 DOI: 10.1177/2472555219853220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several cytochrome P450 enzymes (CYPs) encoded in the genome of Mycobacterium tuberculosis (Mtb) are considered potential new drug targets due to the essential roles they play in bacterial viability and in the establishment of chronic intracellular infection. Identification of inhibitors of Mtb CYPs at present is conducted by ultraviolet-visible (UV-vis) optical titration experiments or by metabolism studies using endogenous substrates, such as cholesterol and lanosterol. The first technique requires high enzyme concentrations and volumes, while analysis of steroid hydroxylation is dependent on low-throughput analytical methods. Luciferin-based luminogenic substrates have proven to be very sensitive substrates for the high-throughput profiling of inhibitors of human CYPs. In the present study, 17 pro-luciferins were evaluated as substrates for Mtb CYP121A1, CYP124A1, CYP125A1, CYP130A1, and CYP142A1. Luciferin-BE was identified as an excellent probe substrate for CYP130A1, resulting in a high luminescence yield after addition of luciferase and adenosine triphosphate (ATP). Its applicability for high-throughput screening was supported by a high Z'-factor and high signal-to-background ratio. Using this substrate, the inhibitory properties of a selection of known inhibitors could be characterized using significantly less protein concentration when compared to UV-vis optical titration experiments. Although several luminogenic substrates were also identified for CYP121A1, CYP124A1, CYP125A1, and CYP142A1, their relatively low yield of luminescence and low signal-to-background ratios make them less suitable for high-throughput screening since high enzyme concentrations will be needed. Further structural optimization of luminogenic substrates will be necessary to obtain more sensitive probe substrates for these Mtb CYPs.
Collapse
Affiliation(s)
- Sandra Ortega Ugalde
- 1 AIMMS-Division of Molecular Toxicology, Faculty of Science, Vrije Universiteit, Amsterdam, North-Holland, The Netherlands
| | | | | | - Jan N M Commandeur
- 1 AIMMS-Division of Molecular Toxicology, Faculty of Science, Vrije Universiteit, Amsterdam, North-Holland, The Netherlands
| |
Collapse
|
26
|
Cytochrome P450 Monooxygenase CYP139 Family Involved in the Synthesis of Secondary Metabolites in 824 Mycobacterial Species. Int J Mol Sci 2019; 20:ijms20112690. [PMID: 31159249 PMCID: PMC6600245 DOI: 10.3390/ijms20112690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is one of the top infectious diseases causing numerous human deaths in the world. Despite enormous efforts, the physiology of the causative agent, Mycobacterium tuberculosis, is poorly understood. To contribute to better understanding the physiological capacity of these microbes, we have carried out extensive in silico analyses of the 1111 mycobacterial species genomes focusing on revealing the role of the orphan cytochrome P450 monooxygenase (CYP) CYP139 family. We have found that CYP139 members are present in 894 species belonging to three mycobacterial groups: M. tuberculosis complex (850-species), Mycobacterium avium complex (34-species), and non-tuberculosis mycobacteria (10-species), with all CYP139 members belonging to the subfamily “A”. CYP139 members have unique amino acid patterns at the CXG motif. Amino acid conservation analysis placed this family in the 8th among CYP families belonging to different biological domains and kingdoms. Biosynthetic gene cluster analyses have revealed that 92% of CYP139As might be associated with producing different secondary metabolites. Such enhanced secondary metabolic potentials with the involvement of CYP139A members might have provided mycobacterial species with advantageous traits in diverse niches competing with other microbial or viral agents, and might help these microbes infect hosts by interfering with the hosts’ metabolism and immune system.
Collapse
|
27
|
Ortega Ugalde S, Boot M, Commandeur JNM, Jennings P, Bitter W, Vos JC. Function, essentiality, and expression of cytochrome P450 enzymes and their cognate redox partners in Mycobacterium tuberculosis: are they drug targets? Appl Microbiol Biotechnol 2019; 103:3597-3614. [PMID: 30810776 PMCID: PMC6469627 DOI: 10.1007/s00253-019-09697-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 11/26/2022]
Abstract
This review covers the current knowledge of the cytochrome P450 enzymes (CYPs) of the human pathogen Mycobacterium tuberculosis (Mtb) and their endogenous redox partners, focusing on their biological function, expression, regulation, involvement in antibiotic resistance, and suitability for exploitation as antitubercular targets. The Mtb genome encodes twenty CYPs and nine associated redox partners required for CYP catalytic activity. Transposon insertion mutagenesis studies have established the (conditional) essentiality of several of these enzymes for in vitro growth and host infection. Biochemical characterization of a handful of Mtb CYPs has revealed that they have specific physiological functions in bacterial virulence and persistence in the host. Analysis of the transcriptional response of Mtb CYPs and redox partners to external insults and to first-line antibiotics used to treat tuberculosis showed a diverse expression landscape, suggesting for some enzymes a potential role in drug resistance. Combining the knowledge about the physiological roles and expression profiles indicates that, at least five Mtb CYPs, CYP121A1, CYP125A1, CYP139A1, CYP142A1, and CYP143A1, as well as two ferredoxins, FdxA and FdxC, can be considered promising novel therapeutic targets.
Collapse
Affiliation(s)
- Sandra Ortega Ugalde
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Maikel Boot
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Paul Jennings
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section of Molecular Microbiology, AIMMS, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - J Chris Vos
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Szaleniec M, Wojtkiewicz AM, Bernhardt R, Borowski T, Donova M. Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms. Appl Microbiol Biotechnol 2018; 102:8153-8171. [PMID: 30032434 PMCID: PMC6153880 DOI: 10.1007/s00253-018-9239-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
Abstract
The steroid superfamily includes a wide range of compounds that are essential for living organisms of the animal and plant kingdoms. Structural modifications of steroids highly affect their biological activity. In this review, we focus on hydroxylation of steroids by bacterial hydroxylases, which take part in steroid catabolic pathways and play an important role in steroid degradation. We compare three distinct classes of metalloenzymes responsible for aerobic or anaerobic hydroxylation of steroids, namely: cytochrome P450, Rieske-type monooxygenase 3-ketosteroid 9α-hydroxylase, and molybdenum-containing steroid C25 dehydrogenases. We analyze the available literature data on reactivity, regioselectivity, and potential application of these enzymes in organic synthesis of hydroxysteroids. Moreover, we describe mechanistic hypotheses proposed for all three classes of enzymes along with experimental and theoretical evidences, which have provided grounds for their formulation. In case of the 3-ketosteroid 9α-hydroxylase, such a mechanistic hypothesis is formulated for the first time in the literature based on studies conducted for other Rieske monooxygenases. Finally, we provide comparative analysis of similarities and differences in the reaction mechanisms utilized by bacterial steroid hydroxylases.
Collapse
Affiliation(s)
- Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland.
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Rita Bernhardt
- Lehrstuhl für Biochemie, Universität des Saarlandes, Campus B2 2, 66123, Saarbrücken, Germany
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Marina Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Oblast, 142290, Russia
| |
Collapse
|