1
|
Dimiza F, Barmpa A, Chronakis A, Hatzidimitriou AG, Sanakis Y, Papadopoulos AN, Psomas G. Iron(III) Complexes with Non-Steroidal Anti-Inflammatory Drugs: Structure, Antioxidant and Anticholinergic Activity, and Interaction with Biomolecules. Int J Mol Sci 2023; 24:ijms24076391. [PMID: 37047364 PMCID: PMC10094617 DOI: 10.3390/ijms24076391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
One the main research goals of bioinorganic chemists is the synthesis of novel coordination compounds possessing biological potency. Within this context, three novel iron(III) complexes with the non-steroidal anti-inflammatory drugs diflunisal and diclofenac in the presence or absence of the nitrogen donors 1,10-phenanthroline or pyridine were isolated and characterized by diverse techniques. The complexes were evaluated for their ability to scavenge in vitro free radicals such as hydroxyl, 1,1-diphenyl-2-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals, revealing their selective potency towards hydroxyl radicals. The in vitro inhibitory activity of the complexes towards the enzymes acetylcholinesterase and butyrylcholinesterase was evaluated, and their potential to achieve neuroprotection appeared promising. The interaction of the complexes with calf-thymus DNA was examined in vitro, revealing their ability to intercalate in-between DNA nucleobases. The affinity of the complexes for serum albumins was evaluated in vitro and revealed their tight and reversible binding.
Collapse
|
2
|
Wang Q, He X, Xiong H, Chen Y, Huang L. Structure, mechanism, and toxicity in antibiotics metal complexation: Recent advances and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157778. [PMID: 35926602 DOI: 10.1016/j.scitotenv.2022.157778] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic-metal complexes (AMCs) formed by antibiotics and metal ions have attracted considerable attentions in recent years. Although different removal methods for AMCs have been reported in the literature, very few investigations have focused on the mechanisms and toxic effects of antibiotic-metal coordination. This review briefly describes the structural characteristics of various commonly used antibiotics and the coordination mechanisms with metal ions. Considering the complexity of the real environment, various environmental factors affecting AMC formation are highlighted. The effects of AMCs on microbial community structure and the role of metal ions in influencing resistant genes from the molecular perspective are of interest within this work. The toxicities and mechanisms of AMCs on different species of biota are also discussed. These findings underline the need for more targeted detection and analysis methods and more suitable toxicity markers to verify the combination of antibiotics with metal ions and reveal environmental toxicities in future. This review presents an innovative idea that antibiotics combined with metal ions will change the toxicity and environmental behavior of antibiotics.
Collapse
Affiliation(s)
- Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Xi He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Haifeng Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| |
Collapse
|
3
|
Santos ACF, Monteiro LPG, Gomes ACC, Martel F, Santos TM, Ferreira BJML. NSAID-Based Coordination Compounds for Biomedical Applications: Recent Advances and Developments. Int J Mol Sci 2022; 23:2855. [PMID: 35269997 PMCID: PMC8911414 DOI: 10.3390/ijms23052855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
After the serendipitous discovery of cisplatin, a platinum-based drug with chemotherapeutic effects, an incredible amount of research in the area of coordination chemistry has been produced. Other transition metal compounds were studied, and several new relevant metallodrugs have been synthetized in the past few years. This review is focused on coordination compounds with first-row transition metals, namely, copper, cobalt, nickel or manganese, or with zinc, which have potential or effective pharmacological properties. It is known that metal complexes, once bound to organic drugs, can enhance the drugs' biological activities, such as anticancer, antimicrobial or anti-inflammatory ones. NSAIDs are a class of compounds with anti-inflammatory properties used to treat pain or fever. NSAIDs' properties can be strongly improved when included in complexes using their compositional N and O donor atoms, which facilitate their coordination to metal ions. This review focuses on the research on this topic and on the promising or effective results that complexes of first-row transition metals and NSAIDs can exhibit.
Collapse
Affiliation(s)
- Ariana C. F. Santos
- Department of Chemistry & CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (A.C.F.S.); (L.P.G.M.); (A.C.C.G.); (T.M.S.)
| | - Luís P. G. Monteiro
- Department of Chemistry & CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (A.C.F.S.); (L.P.G.M.); (A.C.C.G.); (T.M.S.)
| | - Adriana C. C. Gomes
- Department of Chemistry & CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (A.C.F.S.); (L.P.G.M.); (A.C.C.G.); (T.M.S.)
| | - Fátima Martel
- Instituto de Investigação e Inovação em Saúde (i3S), R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Department of Biomedicine–Unit of Biochemistry, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal;
| | - Teresa M. Santos
- Department of Chemistry & CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (A.C.F.S.); (L.P.G.M.); (A.C.C.G.); (T.M.S.)
| | - Bárbara J. M. Leite Ferreira
- Department of Chemistry & CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (A.C.F.S.); (L.P.G.M.); (A.C.C.G.); (T.M.S.)
| |
Collapse
|
4
|
Hu J, Cao T, Yuan B, Guo Y, Zhang J, Zhao J, Zhao X, Hou H. Benzimidazole-quinoline-based copper complexes: Exploration for their possible antitumor mechanism. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Jozefíková F, Perontsis S, Koňáriková K, Švorc Ľ, Mazúr M, Psomas G, Moncol J. In vitro biological activity of copper(II) complexes with NSAIDs and nicotinamide: Characterization, DNA- and BSA-interaction study and anticancer activity. J Inorg Biochem 2021; 228:111696. [PMID: 35030390 DOI: 10.1016/j.jinorgbio.2021.111696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022]
Abstract
Through the reaction of copper(II) acetate with nicotinamide (pyridine-3-carboxylic acid amide, niacinamide) and some derivatives of N-phenylanthranilic acid (fenamates), seven new mixed-ligand copper(II) compounds were isolated: [Cu(tolf-O)(tolf-O,O')nia-N)2(EtOH)] (1), [Cu(tolf-O)(tolf-O,O')(nia-N)2(MeOH)] (2), [Cu(meclf-O)(meclf-O,O')(nia-N)2(EtOH)] (3), [Cu(meclf-O)(meclf-O,O')(nia-N)2(MeOH)] (4), [Cu(meclf-O)(meclf-O,O')(nia-N)2(ACN)] (5), [Cu(mef-O)(mef-O,O')(nia-N)2(EtOH)] (6) and [Cu(mef-O)(mef-O,O')(nia-N)2(ACN)] (7) containing a molecule of relevant solvent as ligand in their primary crystal structure (tolf = tolfenamate, meclf = meclofenamate, mef = mefenamate, nia = nicotinamide, EtOH = ethanol, MeOH = methanol, ACN = acetonitrile). The structures of the complexes were determined by single-crystal X-ray analysis. The intermolecular interactions were studied by Hirshfeld surface analysis. The complexes were characterized by IR, UV-vis and EPR spectroscopy and their redox properties were determined by cyclic voltammetry. The interaction of the complexes with bovine serum albumin was studied by fluorescence emission spectroscopy and the albumin-binding constants of the compounds were calculated. The interaction of the complexes with calf-thymus DNA was monitored by diverse techniques (UV-vis spectroscopy, cyclic voltammetry, viscosity measurements) suggesting intercalation as the most possible mode of binding. DNA-competitive studies of the complexes with ethidium bromide were monitored by fluorescence emission spectroscopy. The cytotoxic effects of copper(II) complexes on lung carcinoma cells and healthy cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric technique.
Collapse
Affiliation(s)
- Flóra Jozefíková
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Spyros Perontsis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Katarína Koňáriková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 81372 Bratislava, Slovakia
| | - Ľubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Milan Mazúr
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Ján Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
6
|
Yuan B, Hu J, Guo Y, Zhang J, Zhang S, Zhang K, Zhao J, Hou H. Nuclei DNA and mitochondria dual damages induced by thiosemicarbazone tripyridyl copper complexes with potential anti-tumor activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
7
|
Bhattacharjee A, Das S, Das B, Roy P. Intercalative DNA binding, protein binding, antibacterial activities and cytotoxicity studies of a mononuclear copper(II) complex. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Kakoulidou C, Gritzapis PS, Hatzidimitriou AG, Fylaktakidou KC, Psomas G. Zn(II) complexes of (E)-4-(2-(pyridin-2-ylmethylene)hydrazinyl)quinazoline in combination with non-steroidal anti-inflammatory drug sodium diclofenac: Structure, DNA binding and photo-cleavage studies, antioxidant activity and interaction with albumin. J Inorg Biochem 2020; 211:111194. [DOI: 10.1016/j.jinorgbio.2020.111194] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
|
9
|
Psomas G. Copper(II) and zinc(II) coordination compounds of non-steroidal anti-inflammatory drugs: Structural features and antioxidant activity. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213259] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Li S, Zhao J, Guo Y, Mei Y, Yuan B, Gan N, Zhang J, Hu J, Hou H. Influence of the introduction of a triphenylphosphine group on the anticancer activity of a copper complex. J Inorg Biochem 2020; 210:111102. [PMID: 32574870 DOI: 10.1016/j.jinorgbio.2020.111102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
Abstract
Aiming at obtaining new copper complexes with good cytotoxicity against cancer cells, triphenylphosphine (TPP) was introduced to obtain insight into the influence of the co-ligands. In this paper, two copper complexes, Cu(2-pbmq)(CH3OH)Br2 (1) and [Cu(2-pbmq)(TPP)Br]2 (2) were designed, synthesized, and characterized by X-ray crystallography, 2-((2-(pyrazin-2-yl)-1H-benzo[d]imidazol-1-yl)methyl))quinolone (2-pbmq), to investigate the influence of the TPP group on the anticancer activity of the metal complex. Although the presence of the TPP group diminished the intensity of the interaction properties of the complex with DNA, the in vitro anticancer activity and cellular uptake of the TPP-containing complex were markedly superior to those of its TPP-lacking counterpart. Detailed studies on the more potently cytotoxic complex 2 revealed that it accumulated in nucleus, arrested the cell cycle at the G0-G1 phase, causing mitochondrial dysfunction, involving the potential simultaneous mitochondrial membrane collapse, cellular ATP level depletion, and Ca2+ leakage, eventually inducing cell apoptosis. In summary, the introduction of a TPP group enhances the biological activity and cytotoxicity of the complex.
Collapse
Affiliation(s)
- Sen Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Jin'an Zhao
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, PR China.
| | - Yan Guo
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, PR China
| | - Yameng Mei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Bangpeng Yuan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Ning Gan
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, PR China
| | - Junshuai Zhang
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, PR China
| | - Jiyong Hu
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, PR China.
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| |
Collapse
|
11
|
Amino hydroxyapatite/chitosan hybrids reticulated with glutaraldehyde at different pH values and their use for diclofenac removal. Carbohydr Polym 2020; 236:116036. [DOI: 10.1016/j.carbpol.2020.116036] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/10/2019] [Accepted: 02/18/2020] [Indexed: 01/08/2023]
|
12
|
The new metal-based compound from anticancer drug cytarabine: Spectral, electrochemical, DNA-binding, antiproliferative effect and in silico studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Perontsis S, Dimitriou A, Fotiadou P, Hatzidimitriou AG, Papadopoulos AN, Psomas G. Cobalt(II) complexes with the non-steroidal anti-inflammatory drug diclofenac and nitrogen-donor ligands. J Inorg Biochem 2019; 196:110688. [DOI: 10.1016/j.jinorgbio.2019.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
|
14
|
Rada JP, Bastos BSM, Anselmino L, Franco CHJ, Lanznaster M, Diniz R, Fernández CO, Menacho-Márquez M, Percebom AM, Rey NA. Binucleating Hydrazonic Ligands and Their μ-Hydroxodicopper(II) Complexes as Promising Structural Motifs for Enhanced Antitumor Activity. Inorg Chem 2019; 58:8800-8819. [DOI: 10.1021/acs.inorgchem.9b01195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jesica Paola Rada
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Beatriz S. M. Bastos
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Luciano Anselmino
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | | | | | - Renata Diniz
- Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Claudio O. Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Mauricio Menacho-Márquez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Ana Maria Percebom
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Nicolás A. Rey
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| |
Collapse
|
15
|
Hamamci Alisir S, Dege N, Tapramaz R. Synthesis, crystal structures and characterizations of three new copper(II) complexes including anti-inflammatory diclofenac. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:388-397. [DOI: 10.1107/s2053229619001827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/31/2019] [Indexed: 04/03/2023]
Abstract
Three new diclofenac-based copper(II) complexes, namely tetrakis{μ-2-[2-(2,6-dichloroanilino)phenyl]acetato-κ2
O:O′}bis(methanol-κO)copper(II), [Cu2(μ-dicl)4(CH3OH)2] (1), bis{2-[2-(2,6-dichloroanilino)phenyl]acetato-κ2
O,O′}bis(1-vinyl-1H-imidazole-κN
3)copper(II), [Cu(dicl)2(vim)2] (2), and bis{2-[2-(2,6-dichloroanilino)phenyl]acetato-κ2
O,O′}bis(1H-imidazole-κN
3)copper(II), [Cu(dicl)2(im)2] (3) [dicl is diclofenac (C14H10Cl2NO2), vim is 1-vinylimidazole (C5H6N2) and im is imidazole (C3H4N2)], have been synthesized and characterized by elemental analysis, FT–IR spectroscopy, thermal analysis and single-crystal X-ray diffraction. X-ray diffraction analysis shows that complex 1 consists of dimeric units in which the dicl ligand exhibits a bidentate syn,syn-μ2 coordination mode linking two copper(II) centres. Complexes 2 and 3 have mononuclear units with the general formula [Cu(dicl)2
L
2] (L is vim or im) in which the CuII ions are octahedrally coordinated by two L and two dicl chelating ligands. The L and dicl ligands both occupy the trans positions of the coordination octahedron. The different coordination modes of dicl in the title complexes were revealed by Fourier transform IR (FT–IR) spectroscopy. The spin matching between the copper(II) centres in the dimeric [Cu2(μ-dicl)4(CH3OH)2] units was also confirmed by magnetic data to be lower than the spin-only value and electron paramagnetic resonance (EPR) spectra. The thermal properties of the complexes were investigated by thermogravimetric (TG) and differential thermal analysis (DTA) techniques.
Collapse
|
16
|
Kumar M, Kumar G, Dadure KM, Masram DT. Copper(ii) complexes based on levofloxacin and 2N-donor ligands: synthesis, crystal structures and in vitro biological evaluation. NEW J CHEM 2019. [DOI: 10.1039/c9nj03178b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The molecular structures and in vitro biological applications of two cationic copper(ii) complexes are reported.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | | | | | | |
Collapse
|