1
|
Wang M, Li F, Wang Z, Lv L, Liu W. Research progress of natural product-conjugated platinum and gold complexes as potential antitumor agents. Eur J Med Chem 2024; 280:116956. [PMID: 39413444 DOI: 10.1016/j.ejmech.2024.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Cancer is widely recognized as a serious disease that poses a significant threat to human life and health. The distinctive chemical properties and pronounced antiproliferative activity of platinum drugs are considered to be responsible for their remarkable efficacy in clinical applications. However, undesirable side effects and resistance have severely hampered the treatment of various types of cancer with platinum-based drugs. Natural products (NPs) exhibit extensive pharmacological activities and represent an important source for developing cancer therapeutics. Therefore, the combination of metals and NPs is an attractive strategy for the development of new anticancer agents. Several studies have indicated that combining metals with NPs has a synergistic enhancement effect in antitumor activity. For transition metals, there has been burgeoning research output investigating NP-conjugated platinum and gold complexes. The present article reviews the progress made over the past 5-10 years on the development of NP-conjugated platinum and gold complexes, including a brief introduction to their chemistry and mechanism of action, and a summary of their benefits.
Collapse
Affiliation(s)
- Meiyu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Fuwei Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhaoran Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lin Lv
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wukun Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Şeker Karatoprak G, Dumlupınar B, Celep E, Kurt Celep I, Küpeli Akkol E, Sobarzo-Sánchez E. A comprehensive review on the potential of coumarin and related derivatives as multi-target therapeutic agents in the management of gynecological cancers. Front Pharmacol 2024; 15:1423480. [PMID: 39364049 PMCID: PMC11447453 DOI: 10.3389/fphar.2024.1423480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Current treatments for gynecological cancers include surgery, radiotherapy, and chemotherapy. However, these treatments often have significant side effects. Phytochemicals, natural compounds derived from plants, offer promising anticancer properties. Coumarins, a class of benzopyrone compounds found in various plants like tonka beans, exhibit notable antitumor effects. These compounds induce cell apoptosis, target PI3K/Akt/mTOR signaling pathways, inhibit carbonic anhydrase, and disrupt microtubules. Additionally, they inhibit tumor multidrug resistance and angiogenesis and regulate reactive oxygen species. Specific coumarin derivatives, such as auraptene, praeruptorin, osthole, and scopoletin, show anti-invasive, anti-migratory, and antiproliferative activities by arresting the cell cycle and inducing apoptosis. They also inhibit metalloproteinases-2 and -9, reducing tumor cell migration, invasion, and metastasis. These compounds can sensitize tumor cells to radiotherapy and chemotherapy. Synthetic coumarin derivatives also demonstrate potent antitumor and anticancer activities with minimal side effects. Given their diverse mechanisms of action and minimal side effects, coumarin-class phytochemicals hold significant potential as therapeutic agents in gynecological cancers, potentially improving treatment outcomes and reducing side effects. This review will aid in the synthesis and development of novel coumarin-based drugs for these cancers.
Collapse
Affiliation(s)
| | - Berrak Dumlupınar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Okan University, İstanbul, Türkiye
| | - Engin Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Türkiye
| | - Inci Kurt Celep
- Department of Biotechnology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Türkiye
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado Facultad de Ciencias de la Salud Universidad Central de Chile, Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Yadav AK, Maharjan Shrestha R, Yadav PN. Anticancer mechanism of coumarin-based derivatives. Eur J Med Chem 2024; 267:116179. [PMID: 38340509 DOI: 10.1016/j.ejmech.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The structural motif of coumarins is related with various biological activities and pharmacological properties. Both natural coumarin extracted from various plants or a new coumarin derivative synthesized by modification of the basic structure of coumarin, in vitro experiments showed that coumarins are a promising class of anti-tumor agents with high selectivity. Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled and abnormal growth of cells in the body. This review focuses on the anticancer mechanism of various coumarins synthesized and isolated in more than a decade. Isopentenyloxycoumarins inhibit angiogenesis by reducing CCl2 chemokine levels. Ferulin C is a potent colchicine-binding agent that destabilizes microtubules, exhibiting antiproliferative and anti-metastatic effects in breast cancer cells through PAK1 and PAK2-mediated signaling. Trimers of triphenylethylene-coumarin hybrids demonstrated significant proliferation inhibition in HeLa, A549, K562, and MCF-7 cell lines. Platinum(IV) complexes with 4-hydroxycoumarin have the potential for high genotoxicity against tumor cells, inducing apoptosis in SKOV-3 cells by up-regulating caspase 3 and caspase 9 expression. Derivatives of 3-benzyl coumarin seco-B-ring induce apoptosis, mediated through the PI3K/Akt/mTOR signaling pathway. Sesquiterpene coumarins inhibit the efflux pump of multidrug resistance-associated protein. Coumarin imidazolyl derivatives inhibit the aromatase enzyme, a major contributor to estrogen overproduction in estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Anand Kumar Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
4
|
Du LQ, Zeng CJ, Mo DY, Qin QP, Tan MX, Liang H. 8-hydroxyquinoline-N-oxide copper(II)- and zinc(II)-phenanthroline and bipyridine coordination compounds: Design, synthesis, structures, and antitumor evaluation. J Inorg Biochem 2024; 251:112443. [PMID: 38100902 DOI: 10.1016/j.jinorgbio.2023.112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Fourteen novel tumor-targeting copper(II) and zinc(II) complexes, [Cu(ONQ)(QD1)(NO3)]·CH3OH (NQ3), [Cu(ONQ)(QD2)(NO3)] (NQ2), [Cu(NQ)(QD2)Cl] (NQ3), [Cu(ONQ)(QD1)Cl] (NQ4), [Cu(ONQ)(QD3)](NO3) (NQ5), [Cu(ONQ)(QD3)Cl] (NQ6), [Zn(ONQ)(QD4)Cl] (NQ7), [Zn(ONQ)(QD1)Cl] (NQ8), [Zn(ONQ)(QD5)Cl] (NQ9), [Zn(ONQ)(QD2)Cl] (NQ10), [Zn(ONQ)(QD6)Cl] (NQ11), [Zn(ONQ)(QD7)Cl] (NQ12), and [Zn(ONQ)(QD3)Cl] (NQ13) supported on 8-hydroxyquinoline-N-oxide (H-ONQ), 2,2'-dipyridyl (QD1), 5,5'-dimethyl-2,2'-bipyridyl (QD2), 1,10-phenanthroline (QD3), 4,4'-dimethoxy-2,2'-bipyridyl (QD4), 4,4'-dimethyl-2,2'-bipyridyl (QD5), 5-chloro-1,10-phenanthroline (QD6), and bathophenanthroline (QD7), were first synthesized and characterized using various spectroscopic techniques. Furthermore, NQ1-NQ13 exhibited higher antiproliferative activity and selectivity for cisplatin-resistant SK-OV-3/DDP tumor cells (CiSK3) compared to normal HL-7702 cells based on results obtained from the cell counting Kit-8 (CCK-8) assay. The complexation of copper(II) ion with QD2 and ONQ ligands resulted in an evident increase in the antiproliferation of NQ1-NQ6, with NQ6 exhibiting the highest antitumor potency against CiSK3 cells compared to NQ1-NQ5, H-ONQ, QD1-QD7, and NQ7-NQ13 as well as the reference cisplatin drug with an IC50 value of 0.17 ± 0.05 μM. Mechanistic studies revealed that NQ4 and NQ6 induced apoptosis of CiSK3 cells via mitophagy pathway regulation and adenosine triphosphate (ATP) depletion. Further, the differential induction of mitophagy decreased in the order of NQ6 > NQ4, which can be attributed to the major impact of the QD3 ligand with a large planar geometry and the Cl leaving group within the NQ6 complex. In summary, these results confirmed that the newly synthesized H-ONQ copper(II) and zinc(II) coordination metal compounds NQ1-NQ13 exhibit potential as anticancer drugs for cisplatin-resistant ovarian CiSK3 cancer treatment.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Chu-Jie Zeng
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Dong-Yin Mo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|
5
|
Liang CJ, Wu RC, Huang XQ, Qin QP, Liang H, Tan MX. Synthesis and anticancer mechanisms of four novel platinum(II) 4'-substituted-2,2':6',2''-terpyridine complexes. Dalton Trans 2024; 53:2143-2152. [PMID: 38189098 DOI: 10.1039/d3dt03197g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mitophagy, a selective autophagic process, has emerged as a pathway involved in degrading dysfunctional mitochondria. Herein, new platinum(II)-based chemotherapeutics with mitophagy-targeting properties are proposed. Four novel binuclear anticancer Pt(II) complexes with 4'-substituted-2,2':6',2''-terpyridine derivatives (tpy1-tpy4), i.e., [Pt2(tpy1)(DMSO)2Cl4]·CH3OH (tpy1Pt), [Pt(tpy2)Cl][Pt(DMSO)Cl3]·CH3COCH3 (tpy2Pt), [Pt(tpy3)Cl][Pt(DMSO)Cl3] (tpy3Pt), and [Pt(tpy4)Cl]Cl·CH3OH (tpy4Pt), were designed and prepared. Moreover, their potential antitumor mechanism was studied. Tpy1Pt-tpy4Pt exhibited more selective cytotoxicity against cisplatin-resistant SK-OV-3/DDP (SKO3cisR) cancer cells compared with those against ovarian SK-OV-3 (SKO3) cancer cells and normal HL-7702 liver (H702) cells. This selective cytotoxicity of Tpy1Pt-tpy4Pt was better than that of its ligands (i.e., tpy1-tpy4), the clinical drug cisplatin, and cis-Pt(DMSO)2Cl2. The results of various experiments indicated that tpy1Pt and tpy2Pt kill SKO3cisR cancer cells via a mitophagy pathway, which involves the disruption of the mitophagy-related protein expression, dissipation of the mitochondrial membrane potential, elevation of the [Ca2+] and reactive oxygen species levels, promotion of mitochondrial DNA damage, and reduction in the adenosine triphosphate and mitochondrial respiratory chain levels. Furthermore, in vivo experiments indicated that the dinuclear anticancer Pt(II) coordination compound (tpy1Pt) has remarkable therapeutic efficiency (ca. 52.4%) and almost no toxicity. Therefore, the new 4'-substituted-2,2':6',2''-terpyridine Pt(II) coordination compound (tpy1Pt) is a potential candidate for next-generation mitophagy-targeting dinuclear Pt(II)-based anticancer drugs.
Collapse
Affiliation(s)
- Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Run-Chun Wu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Xiao-Qiong Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| |
Collapse
|
6
|
Koley M, Han J, Soloshonok VA, Mojumder S, Javahershenas R, Makarem A. Latest developments in coumarin-based anticancer agents: mechanism of action and structure-activity relationship studies. RSC Med Chem 2024; 15:10-54. [PMID: 38283214 PMCID: PMC10809357 DOI: 10.1039/d3md00511a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 01/30/2024] Open
Abstract
Many researchers around the world are working on the development of novel anticancer drugs with different mechanisms of action. In this case, coumarin is a highly promising pharmacophore for the development of novel anticancer drugs. Besides, the hybridization of this moiety with other anticancer pharmacophores has emerged as a potent breakthrough in the treatment of cancer to decrease its side effects and increase its efficiency. This review aims to provide a comprehensive overview of the recent development of coumarin derivatives and their application as novel anticancer drugs. Herein, we highlight and describe the largest number of research works reported in this field from 2015 to August 2023, along with their mechanisms of action and structure-activity relationship studies, making this review different from the other review articles published on this topic to date.
Collapse
Affiliation(s)
- Manankar Koley
- CSIR-Central Glass & Ceramic Research Institute Kolkata India
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University Nanjing China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, University of the Basque Country San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | | | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Ata Makarem
- Institute of Pharmacy, University of Hamburg Hamburg Germany
| |
Collapse
|
7
|
Yang Y, Du LQ, Huang Y, Liang CJ, Qin QP, Liang H. Platinum(II) 5-substituted-8-hydroxyquinoline coordination compounds induces mitophagy-mediated apoptosis in A549/DDP cancer cells. J Inorg Biochem 2023; 241:112152. [PMID: 36736244 DOI: 10.1016/j.jinorgbio.2023.112152] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
For the first time, two new mononuclear platinum(II) coordination compounds, [Pt(L1)(DMSO)Cl] (PtL1) and [Pt(L2)(DMSO)Cl] (PtL2) with the 5-(ethoxymethyl)-8-hydroxyquinoline hydrochloride (H-L1) and 5-bromo-8-hydroxyquinoline (H-L2) have been synthesized and characterized. The cytotoxic activity of PtL1 and PtL2 were screened in both healthy HL-7702 cell line and cancer cell lines, human lung adenocarcinoma A549 cancer cells and cisplatin-resistant lung adenocarcinoma A549/DDP cancer cells (A549R), and were compared to that of the H-L1, H-L2, H-L3 ligands and 8-hydroxyquinoline (H-L3) platinum(II) complex [Pt(L3)(DMSO)Cl] (PtL3). MTT results showed that PtL1 bearing one deprotonated L1 ligand against A549R was more potent by 8.8-48.6 fold than that of PtL2 and PtL3 complexes but was more selective toward healthy HL-7702 cells. In addition, PtL1 and PtL3 overcomes tumour drug resistance by significantly inducing mitophagy and causing the change of the related proteins expression, which leads to cell apoptosis. Moreover, the inhibitory effect of PtL1 on A549 xenograft tumour was 68.2%, which was much higher than that of cisplatin (cisPt, ca. 50.0%), without significantly changing nude mice weight in comparison with the untreated group. This study helps to explore the potential of the platinum(II) 5-substituted-8-hydroxyquinoline coordination compounds for the new Pt-resistant cancer therapy.
Collapse
Affiliation(s)
- Yan Yang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yan Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|
8
|
Second and third-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumour activity. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Arya C, Chandrakanth M, Fabitha K, Thomas NM, Pramod RN, Gondru R, Banothu J. Coumarin – Benzimidazole hybrids: A review on Diverse synthetic strategies. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Zhou Z, Du LQ, Huang XM, Zhu LG, Wei QC, Qin QP, Bian H. Novel glycosylation zinc(II)-cryptolepine complexes perturb mitophagy pathways and trigger cancer cell apoptosis and autophagy in SK-OV-3/DDP cells. Eur J Med Chem 2022; 243:114743. [PMID: 36116236 DOI: 10.1016/j.ejmech.2022.114743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/04/2022]
Abstract
With the aim of shedding some light on the mechanism of action of zinc(II) complexes in antiproliferative processes and molecular signaling pathways, three novel glycosylated zinc(II)-cryptolepine complexes, i.e., [Zn(QA1)Cl2] (Zn(QA1)), [Zn(QA2)Cl2] (Zn(QA2)), and [Zn(QA3)Cl2] (Zn(QA3)), were prepared by conjugating a glucose moiety with cryptolepine, followed by complexation of the resulting glycosylated cryptolepine compounds N-((1-(2-morpholinoethyl)-1H-1,2,3-triazol-4-yl)methyl)-benzofuro[3,2-b]quinolin-11-amine (QA1), 2-(4-((benzofuro[3,2-b]quinolin-11-ylamino)methyl)-1H-1,2,3-triazol-1-yl)ethan-1-ol (QA2), and (2S,3S,4R,5R,6S)-2-(4-((benzofuro[3,2-b]quinolin-11-ylamino)-methyl)-1H-1,2,3-triazol-1-yl)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (QA3) with zinc(II), and their anticancer activity was evaluated. In MTT assays, Zn(QA1)-Zn(QA3) were more active against cisplatin-resistant ovarian SK-OV-3/DDP cancer cells (SK-OV-3cis) than ZnCl2 and the QA1-QA3 ligands, with IC50 values of 1.81 ± 0.50, 2.92 ± 0.32, and 1.01 ± 0.11 μM, respectively. Complexation of glycosylated cryptolepine QA3 with zinc(II) increased the antiproliferative activity of the ligand, suggesting that Zn(QA3) could act as a chaperone to deliver the active ligand intracellularly, in contrast with other cryptolepine metal complexes previously reported. In vivo and in vitro investigations suggested that Zn(QA3) exhibited enhanced anticancer activity with treatment effects comparable to those of the clinical drug cisplatin. Furthermore, Zn(QA1)-Zn(QA3) triggered SK-OV-3cis cell apoptosis through mitophagy pathways in the order Zn(QA1) > Zn(QA1) > Zn(QA2). These results demonstrate the potential of glycosylated zinc(II)-cryptolepine complexes for the development of chemotherapy drugs against cisplatin-resistant SK-OV-3cis cells.
Collapse
Affiliation(s)
- Zhen Zhou
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities (Guangxi Minzu University), Nanning, 530006, China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Xiao-Mei Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Li-Gang Zhu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China.
| | - Qiao-Chang Wei
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Hedong Bian
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities (Guangxi Minzu University), Nanning, 530006, China.
| |
Collapse
|
11
|
Zhang SH, Wang ZF, Tan H. Novel zinc(II)−curcumin molecular probes bearing berberine and jatrorrhizine derivatives as potential mitochondria-targeting anti-neoplastic drugs. Eur J Med Chem 2022; 243:114736. [DOI: 10.1016/j.ejmech.2022.114736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
|
12
|
Fragkiadaki P, Renieri E, Kalliantasi K, Kouvidi E, Apalaki E, Vakonaki E, Mamoulakis C, Spandidos DA, Tsatsakis A. Τelomerase inhibitors and activators in aging and cancer: A systematic review. Mol Med Rep 2022; 25:158. [PMID: 35266017 PMCID: PMC8941523 DOI: 10.3892/mmr.2022.12674] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
The main aim of the present systematic review was to summarize the most frequently used telomerase regulators with an impact on aging and cancer that are referred to in in vitro and in vivo studies. For this purpose, a systematic review of the available literature on telomerase regulators referred to in articles from PubMed and Scopus libraries published from 2002 to 2021 and in accordance with PRISMA 2020 criteria, was conducted. Articles were included if they met the following criteria: They referred to telomerase modulators in aging and in cancer and were in vitro and/or in vivo studies, while studies that did not provide sufficient data or studies not written in English were excluded. In the present systematic review, 54 publications were included, of which 29 were full‑text published studies, 11 were full‑text reviews, 10 structure‑based design studies and 4 abstracts are reported in this review. Telomerase regulators were then categorized as synthetic direct telomerase inhibitors, synthetic indirect telomerase inhibitors, synthetic telomerase activators, natural direct telomerase activators, natural telomerase inhibitors and natural indirect telomerase activators, according to their origin and their activity. On the whole, as demonstrated herein, telomerase regulators appear to be promising treatment agents in various age‑related diseases. However, further in vivo and in vitro studies need to be performed in order to clarify the potentiality of telomerase as a therapeutic target.
Collapse
Affiliation(s)
- Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| | - Elisavet Renieri
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Katerina Kalliantasi
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Elisavet Kouvidi
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens 15232, Greece
| | - Evita Apalaki
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, 75105 Uppsala, Sweden
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| |
Collapse
|
13
|
G AC, Gondru R, Li Y, Banothu J. Coumarin-benzimidazole hybrids: A review of developments in medicinal chemistry. Eur J Med Chem 2022; 227:113921. [PMID: 34715585 DOI: 10.1016/j.ejmech.2021.113921] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Coumarin and benzimidazole are privileged structures in medicinal chemistry and are widely used in drug discovery and development due to their vast biological properties. The pharmacokinetic and pharmacodynamic properties of the individual scaffolds can be improved by developing coumarin-benzimidazole chimeric molecules via molecular hybridization approach. The three major classes of coumarin-benzimidazole hybrids are merged, fused and spacer-linked hybrids. Depending on the substitution position, fused hybrids and spacer-linked hybrids can be further classified as coumarin-C3 hybrids, coumarin-C4 hybrids and coumarin-C5/6/7/8 hybrids. Most of the coumarin-benzimidazole hybrid molecules exhibited potent anticancer, antiviral, antimicrobial, antitubercular, anthelmintic, anti-inflammatory, antioxidant, anticonvulsant and carbonic anhydrase inhibitory activities. The fused coumarin-C3 hybrid (2), thiomethylene-linked coumarin-C3 hybrid (45), N-glucoside substituted thiomethylene-linked coumarin-C3 hybrid (37c), amide-linked coumarin-C3 hybrid (50a), and sulfonylmethylene-linked coumarin-C4 hybrid (63) were identified as the representative potent anticancer, antimicrobial, antiviral, antioxidant and antitubercular agents respectively. The biological properties of the different classes of coumarin-benzimidazole hybrids with their structure-activity relationship studies and the mechanism of action studies were presented in this review, aiming to help the researchers across the globe to generate future hybrid molecules as potential drug candidates.
Collapse
Affiliation(s)
- Arya C G
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India
| | - Ramesh Gondru
- Environmental Monitoring & Exposure Assessment (Air) Laboratory, ICMR-NIREH, Bhopal, 462030, Madhya Pradesh, India
| | - Yupeng Li
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, United States.
| | - Janardhan Banothu
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India.
| |
Collapse
|
14
|
Konkoľová E, Hudáčová M, Hamuľaková S, Jendželovský R, Vargová J, Ševc J, Fedoročko P, Kožurková M. Tacrine-Coumarin Derivatives as Topoisomerase Inhibitors with Antitumor Effects on A549 Human Lung Carcinoma Cancer Cell Lines. Molecules 2021; 26:molecules26041133. [PMID: 33672694 PMCID: PMC7924348 DOI: 10.3390/molecules26041133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
A549 human lung carcinoma cell lines were treated with a series of new drugs with both tacrine and coumarin pharmacophores (derivatives 1a–2c) in order to test the compounds’ ability to inhibit both cancer cell growth and topoisomerase I and II activity. The ability of human topoisomerase I (hTOPI) and II to relax supercoiled plasmid DNA in the presence of various concentrations of the tacrine-coumarin hybrid molecules was studied with agarose gel electrophoresis. The biological activities of the derivatives were studied using MTT assays, clonogenic assays, cell cycle analysis and quantification of cell number and viability. The content and localization of the derivatives in the cells were analysed using flow cytometry and confocal microscopy. All of the studied compounds were found to have inhibited topoisomerase I activity completely. The effect of the tacrine-coumarin hybrid compounds on cancer cells is likely to be dependent on the length of the chain between the tacrine and coumarin moieties (1c, 1d = tacrine-(CH2)8–9-coumarin). The most active of the tested compounds, derivatives 1c and 1d, both display longer chains.
Collapse
Affiliation(s)
- Eva Konkoľová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University in Kosice, 041 80 Košice, Slovakia
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo námestí 2, 160 00 Prague 6, Czech Republic
| | - Monika Hudáčová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University in Kosice, 041 80 Košice, Slovakia
| | - Slávka Hamuľaková
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University in Košice, 041 80 Košice, Slovakia
| | - Rastislav Jendželovský
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 041 80 Košice, Slovakia
| | - Jana Vargová
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 041 80 Košice, Slovakia
| | - Juraj Ševc
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 041 80 Košice, Slovakia
| | - Peter Fedoročko
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 041 80 Košice, Slovakia
| | - Mária Kožurková
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University in Kosice, 041 80 Košice, Slovakia
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
15
|
Mekky AE, Sanad SM. Synthesis and antibacterial evaluation of novel mono- and bis(2H-chromen-2-imine) hybrids linked to heteroarene units. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Salishcheva O, Prosekov A. Antimicrobial activity of mono- and polynuclear platinum and palladium complexes. FOODS AND RAW MATERIALS 2020. [DOI: 10.21603/2308-4057-2020-2-298-311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Introduction. Infectious diseases remain a serious threat to humanity worldwide as bacterial pathogens grow more diverse. Bacteria, fungi, and parasites develop resistance to clinically approved antimicrobials, which reduces the efficacy of available drugs and treatment measures. As a result, there is an ever growing demand for new highly effective pharmaceuticals. This review describes mono- and polynuclear platinum and palladium complexes with antimicrobial properties. We compared several groups of antibacterial agents: antibiotics, antioxidant biologically active substances, antimicrobial nanoparticles, nanocomposite materials, biopolymers, micellar systems, and plant extracts.
Study objects and methods. The review covered relevant articles published in Web of Science, Scopus, and Russian Science Citation Index for the last decade. The list of descriptors included such terms as mononuclear and binuclear complexes of platinum, palladium, and antimicrobial activity.
Results and discussion. Chelates of platinum, palladium, silver, iridium, rhodium, ruthenium, cobalt, and nickel are popular therapeutic agents. Their antimicrobial activity against pathogenic microorganisms can be enhanced by increasing their bioavailability. Metalbased drugs facilitate the transport of organic ligands towards the bacterial cell. The nature of the ligand and its coordination change the thermodynamic stability, kinetic lability, and lipophilic properties of the complex, as well as the reactivity of the central atom. Polynuclear platinum and palladium complexes contain two or more bound metal (coordinate) centers. Covalent bonding with bacterial DNA enables them to form a type of DNA adducts, which is completely different from that of mononuclear complexes.
Conclusion. Metal-based drugs with functional monodentate ligands exhibit a greater antimicrobial effect compared to free ligands. Poly- and heteronuclear complexes can increase the number of active centers that block the action of bacterial cells. When combined with other antibacterial agents, they provide a synergistic effect, which makes them a promising subject of further research.
Collapse
|
17
|
Qin QP, Wang ZF, Huang XL, Tan MX, Zou BQ, Liang H. Strong in vitro and vivo cytotoxicity of novel organoplatinum(II) complexes with quinoline-coumarin derivatives. Eur J Med Chem 2019; 184:111751. [DOI: 10.1016/j.ejmech.2019.111751] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
|
18
|
Two novel platinum(II) complexes with sorafenib and regorafenib: Synthesis, structural characterization, and evaluation of in vitro antitumor activity. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Huang GB, Chen S, Qin QP, Luo JR, Tan MX, Wang ZF, Zou BQ, Liang H. Preparation of platinum(II) complexes with naphthalene imide derivatives and exploration of their in vitro cytotoxic activities. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Raising the bar in anticancer therapy: recent advances in, and perspectives on, telomerase inhibitors. Drug Discov Today 2019; 24:1370-1388. [PMID: 31136800 DOI: 10.1016/j.drudis.2019.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
Telomerase is a ribonucleic reverse transcriptase enzyme that uses an integral RNA component as a template to add tandem telomeric DNA repeats, TTAGGG, at the 3' end of the chromosomes. 85-90% of human tumors and their derived cell lines predominantly express high levels of telomerase, therefore contributing to cancer cell development. However, in normal cells, telomerase activity is almost always absent except in germ cells and stem cells. This differential expression has been exploited to develop highly specific and potent cancer therapeutics. In this review, we outline recent advances in the development of telomerase inhibitors as anticancer agents.
Collapse
|
21
|
Huang GB, Chen S, Qin QP, Luo JR, Tan MX, Wang ZF, Zou BQ, Liang H. In vitro and in vivo activity of novel platinum(ii) complexes with naphthalene imide derivatives inhibiting human non-small cell lung cancer cells. NEW J CHEM 2019. [DOI: 10.1039/c9nj01076a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
3 induced NCI-H460 cell apoptosis via inhibition of the telomerase and dysfunction of mitochondria. Remarkably, 3 obviously inhibited NCI-H460 xenograft tumor growth in vivo.
Collapse
Affiliation(s)
- Guo-Bao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Shan Chen
- College of Physical Science and Technology
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Jin-Rong Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Zhen-Feng Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Bi-Qun Zou
- Department of Chemistry
- Guilin Normal College
- 9 Feihu Road
- Gulin 541001
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
22
|
Liang L, Miao M, Liu C, Zong Z, Zhang J, Fang Q. Antibacterial and aqueous dual-responsive sensing activities of monomeric complexes with uncoordinated imidazole sites. NEW J CHEM 2019. [DOI: 10.1039/c9nj03960k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The butterfly-shaped monomeric complex is stable and slight soluble in water, which shows antibacterial and aqueous dual-responsive sensing activities.
Collapse
Affiliation(s)
- Lili Liang
- Department of Pharmaceutical Engineering
- Bengbu Medical College
- Bengbu
- P. R. China
| | - Maomao Miao
- Department of Pharmaceutical Engineering
- Bengbu Medical College
- Bengbu
- P. R. China
| | - Congsen Liu
- Department of Pharmaceutical Engineering
- Bengbu Medical College
- Bengbu
- P. R. China
| | - Zhihui Zong
- Department of Pharmaceutical Engineering
- Bengbu Medical College
- Bengbu
- P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering
- Anhui Jianzhu University
- Hefei
- P. R. China
| | - Qiang Fang
- Department of Pharmaceutical Engineering
- Bengbu Medical College
- Bengbu
- P. R. China
| |
Collapse
|