1
|
López-Guzmán C, Herrera J, Zapata J, Pabón A, Weis UK, Vásquez AM. Natural hemozoin and β-hematin induce tissue damage and apoptosis in human placental explants. Toxicol Rep 2025; 14:101857. [PMID: 39758805 PMCID: PMC11697793 DOI: 10.1016/j.toxrep.2024.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
Hemozoin (HZ) is a waste product of hemoglobin digestion by Plasmodium and has been implicated in several pathological processes, including inflammation, oxidative stress, endothelial dysfunction, and immune dysregulation. Studying the effects of HZ on the human placenta is essential to understanding the impact of malaria infection during pregnancy. The present study explored the impact of HZ produced by Plasmodium and β-hematin, referred to here as natural HZ (nHZ) and synthetic HZ (sHZ), respectively, on human placental explants exposed in vitro. Methodology nHZ was derived from Plasmodium falciparum cultures and isolated using magnetic MACS® Separation Columns (Miltenyi Biotec, Auburn, CA) [1]. sHZ was synthesized from hemin closure in an aqueous solution. Both nHZ and sHZ were characterized by infrared spectroscopy and scanning electron microscopy. Human placental explants (HPE) were exposed to 5 and 10 μg/mL of nHZ and sHZ for 24 h, and tissue integrity was studied using histological and immunohistochemical techniques. Results The studies have demonstrated that the exposition of both the nHZ and sHZ to placental tissue are comparable and cause effects in increased STB detachment, dysregulation of collagen distribution in the villous stroma, and increase in the frequency of cell apoptosis. This contributes to the understanding of the pathophysiology of malaria in pregnancy using synthetic products such as β-hematin.
Collapse
Affiliation(s)
| | - Julieth Herrera
- Grupo Malaria, Universidad de Antioquia, Colombia
- Grupo de Estado Sólido, Universidad de Antioquia, Colombia
- Laboratorio Análisis de Residuos, Universidad de Antioquia, Colombia
| | - Julián Zapata
- Laboratorio Análisis de Residuos, Universidad de Antioquia, Colombia
| | | | | | - Ana María Vásquez
- Grupo Malaria, Universidad de Antioquia, Colombia
- Escuela de Microbiología, Universidad de Antioquia, Colombia
| |
Collapse
|
2
|
Herrera J, García KE, Perez V, Marco JF, Barrero Meneses C. Distinct Physical Properties of β-Hematin in Two Synthetic Media: Compelling Evidence. ACS OMEGA 2025; 10:11770-11785. [PMID: 40191343 PMCID: PMC11966314 DOI: 10.1021/acsomega.4c06694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 04/09/2025]
Abstract
It is now widely accepted that detailed knowledge of the physicochemical characteristics of the β-hematin crystals, i.e., the synthetic versions of the natural hemozoin crystals, is important for understanding their formation, the design of antimalarial medicines, and malarial diagnosis. We report that the overall physical properties exhibited by β-hematins greatly depend on the synthetic media. Here, we synthesize β-hematin from hemin in aqueous-acetate and in aqueous-oily media and characterize their properties by several techniques. Infrared spectra clearly demonstrate the formation of β-hematin in both media. The β-hematin crystals prepared in aqueous-acetate are composed by needle-like particles with average lengths around 760-770 nm; their lattice parameters and unit cell volumes are larger than those reported in the literature. They are paramagnetic at 300 K and antiferromagnetic at very low temperatures. Their Mössbauer spectra at 298 K, 77 K, and 10 K are consistent with the presence of high-spin Fe (III) and are less asymmetric as a result of the occurrence of fast spin-spin relaxation time, and their surface composition is complex, showing the presence of a multiplicity of iron oxidation and spin states (although with a majority of high-spin Fe3+ ions). In comparison, the β-hematin crystals prepared in aqueous-oily medium have significantly smaller lengths (ca. 560 nm) and slightly larger unit cell volume in comparison to the previous sample. The magnetic measurements show that they are affected by superparamagnetism and paramagnetism at 298 K and the coexistence of weakly ferromagnetic or possibly ferrimagnetic and paramagnetic phases at 80 K. Their Mössbauer spectra at 298 K, 77 K, and 10 K, also consistent with the presence of high-spin Fe (III), show longer spin-spin relaxation times, and their surface composition is also complex containing less surface OH- groups and higher amounts of Fe (II) ions in low- and high-spin states. The observed differences are discussed in relation to the specific formation conditions present in the synthesis medium. The results reported here are of outmost importance for understanding how the physicochemical properties of β-hematins depend on the synthesis conditions.
Collapse
Affiliation(s)
- Julieth Herrera
- Institute
of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Street 70 # 52−72, Medellín 050010, Colombia
| | - Karen Edilma García
- Institute
of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Street 70 # 52−72, Medellín 050010, Colombia
| | - Valentina Perez
- Institute
of Physics, Faculty of Natural and Exact Sciences, University of Antioquia, Street 70 # 52−72, Medellín 050010, Colombia
| | - José Francisco Marco
- Instituto
de Química Física Blas Cabrera, CSIC, Serrano 119, Madrid 28006, Spain
| | - César Barrero Meneses
- Institute
of Physics, Faculty of Natural and Exact Sciences, University of Antioquia, Street 70 # 52−72, Medellín 050010, Colombia
| |
Collapse
|
3
|
Duran J, Salinas JE, Wheaton RP, Poolsup S, Allers L, Rosas-Lemus M, Chen L, Cheng Q, Pu J, Salemi M, Phinney B, Ivanov P, Lystad AH, Bhaskar K, Rajaiya J, Perkins DJ, Jia J. Calcium signaling from damaged lysosomes induces cytoprotective stress granules. EMBO J 2024; 43:6410-6443. [PMID: 39533058 PMCID: PMC11649789 DOI: 10.1038/s44318-024-00292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/18/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Lysosomal damage induces stress granule (SG) formation. However, the importance of SGs in determining cell fate and the precise mechanisms that mediate SG formation in response to lysosomal damage remain unclear. Here, we describe a novel calcium-dependent pathway controlling SG formation, which promotes cell survival during lysosomal damage. Mechanistically, the calcium-activated protein ALIX transduces lysosomal damage signals to SG formation by controlling eIF2α phosphorylation after sensing calcium leakage. ALIX enhances eIF2α phosphorylation by promoting the association between PKR and its activator PACT, with galectin-3 inhibiting this interaction; these regulatory events occur on damaged lysosomes. We further find that SG formation plays a crucial role in promoting cell survival upon lysosomal damage caused by factors such as SARS-CoV-2ORF3a, adenovirus, malarial pigment, proteopathic tau, or environmental hazards. Collectively, these data provide insights into the mechanism of SG formation upon lysosomal damage and implicate it in diseases associated with damaged lysosomes and SGs.
Collapse
Affiliation(s)
- Jacob Duran
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Jay E Salinas
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Rui Ping Wheaton
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Suttinee Poolsup
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Monica Rosas-Lemus
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Li Chen
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Qiuying Cheng
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Brett Phinney
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Pavel Ivanov
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; HMS Initiative for RNA Medicine, Boston, MA, 02115, USA
| | - Alf Håkon Lystad
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jaya Rajaiya
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Douglas J Perkins
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jingyue Jia
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA.
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA.
| |
Collapse
|
4
|
Klar PB, Waterman DG, Gruene T, Mullick D, Song Y, Gilchrist JB, Owen CD, Wen W, Biran I, Houben L, Regev-Rudzki N, Dzikowski R, Marom N, Palatinus L, Zhang P, Leiserowitz L, Elbaum M. Cryo-tomography and 3D Electron Diffraction Reveal the Polar Habit and Chiral Structure of the Malaria Pigment Crystal Hemozoin. ACS CENTRAL SCIENCE 2024; 10:1504-1514. [PMID: 39220700 PMCID: PMC11363319 DOI: 10.1021/acscentsci.4c00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
Detoxification of heme in Plasmodium depends on its crystallization into hemozoin. This pathway is a major target of antimalarial drugs. The crystalline structure of hemozoin was established by X-ray powder diffraction using a synthetic analog, β-hematin. Here, we apply emerging methods of in situ cryo-electron tomography and 3D electron diffraction to obtain a definitive structure of hemozoin directly from ruptured parasite cells. Biogenic hemozoin crystals take a striking polar morphology. Like β-hematin, the unit cell contains a heme dimer, which may form four distinct stereoisomers: two centrosymmetric and two chiral enantiomers. Diffraction analysis, supported by density functional theory analysis, reveals a selective mixture in the hemozoin lattice of one centrosymmetric and one chiral dimer. Absolute configuration has been determined by morphological analysis and confirmed by a novel method of exit-wave reconstruction from a focal series. Atomic disorder appears on specific facets asymmetrically, and the polar morphology can be understood in light of water binding. Structural modeling of the heme detoxification protein suggests a function as a chiral agent to bias the dimer formation in favor of rapid growth of a single crystalline phase. The refined structure of hemozoin should serve as a guide to new drug development.
Collapse
Affiliation(s)
- Paul Benjamin Klar
- Faculty
of Geosciences and MAPEX Center for Materials and Processes, University of Bremen, Klagenfurter Str. 2, 28359 Bremen, Germany
- Institute
of Physics of the Czech Academy of Sciences, Na Slovance 2, 182
21 Prague 8, Czechia
| | - David Geoffrey Waterman
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, U.K.
- CCP4,
Research Complex at Harwell, Rutherford
Appleton Laboratory, Didcot OX11 0FA, U.K.
| | - Tim Gruene
- Department
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Debakshi Mullick
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 76100 Rehovot, Israel
| | - Yun Song
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | | | - C. David Owen
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Wen Wen
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Idan Biran
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lothar Houben
- Department
of Chemical Research Support, Weizmann Institute
of Science, 76100 Rehovot, Israel
| | - Neta Regev-Rudzki
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 76100 Rehovot, Israel
| | - Ron Dzikowski
- Department
of Microbiology and Molecular Genetics, Institute for Medical Research
Israel-Canada, and The Kuvin Center for the Study of Infectious and
Tropical Diseases, The Hebrew University-Hadassah
Medical School, Jerusalem 9112010, Israel
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lukas Palatinus
- Institute
of Physics of the Czech Academy of Sciences, Na Slovance 2, 182
21 Prague 8, Czechia
| | - Peijun Zhang
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
- Division
of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| | - Leslie Leiserowitz
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michael Elbaum
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
5
|
Franco A, Flores-Garcia Y, Venezia J, Daoud A, Scott AL, Zavala F, Sullivan DJ. Hemozoin-induced IFN-γ production mediates innate immune protection against sporozoite infection. Microbes Infect 2024; 26:105343. [PMID: 38670216 DOI: 10.1016/j.micinf.2024.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Hemozoin is a crystal synthesized by Plasmodium parasites during hemoglobin digestion in the erythrocytic stage. The hemozoin released when the parasites egress from the red blood cell, which is complexed with parasite DNA, is cleared from the circulation by circulating and tissue-resident monocytes and macrophages, respectively. Recently, we reported that intravenous administration of purified hemozoin complexed with Plasmodium berghei DNA (HzPbDNA) resulted in an innate immune response that blocked liver stage development of sporozoites that was dose-dependent and time-limited. Here, we further characterize the organismal, cellular, and molecular events associated with this protective innate response in the liver and report that a large proportion of the IV administered HzPbDNA localized to F4/80+ cells in the liver and that the rapid and strong protection against liver-stage development waned quickly such that by 1 week post-HzPbDNA treatment animals were fully susceptible to infection. RNAseq of the liver after IV administration of HzPbDNA demonstrated that the rapid and robust induction of genes associated with the acute phase response, innate immune activation, cellular recruitment, and IFN-γ signaling observed at day 1 was largely absent at day 7. RNAseq analysis implicated NK cells as the major cellular source of IFN-γ. In vivo cell depletion and IFN-γ neutralization experiments supported the hypothesis that tissue-resident macrophages and NK cells are major contributors to the protective response and the NK cell-derived IFN-γ is key to induction of the mechanisms that block sporozoite development in the liver. These findings advance our understanding of the innate immune responses that prevent liver stage malaria infection.
Collapse
Affiliation(s)
- Adriano Franco
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Jarrett Venezia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Abdel Daoud
- Department of Pathology, Johns Hopkins School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Alan L Scott
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Duran J, Poolsup S, Allers L, Lemus MR, Cheng Q, Pu J, Salemi M, Phinney B, Jia J. A mechanism that transduces lysosomal damage signals to stress granule formation for cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587368. [PMID: 38617306 PMCID: PMC11014484 DOI: 10.1101/2024.03.29.587368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Lysosomal damage poses a significant threat to cell survival. Our previous work has reported that lysosomal damage induces stress granule (SG) formation. However, the importance of SG formation in determining cell fate and the precise mechanisms through which lysosomal damage triggers SG formation remains unclear. Here, we show that SG formation is initiated via a novel calcium-dependent pathway and plays a protective role in promoting cell survival in response to lysosomal damage. Mechanistically, we demonstrate that during lysosomal damage, ALIX, a calcium-activated protein, transduces lysosomal damage signals by sensing calcium leakage to induce SG formation by controlling the phosphorylation of eIF2α. ALIX modulates eIF2α phosphorylation by regulating the association between PKR and its activator PACT, with galectin-3 exerting a negative effect on this process. We also found this regulatory event of SG formation occur on damaged lysosomes. Collectively, these investigations reveal novel insights into the precise regulation of SG formation triggered by lysosomal damage, and shed light on the interaction between damaged lysosomes and SGs. Importantly, SG formation is significant for promoting cell survival in the physiological context of lysosomal damage inflicted by SARS-CoV-2 ORF3a, adenovirus infection, Malaria hemozoin, proteopathic tau as well as environmental hazard silica.
Collapse
Affiliation(s)
- Jacob Duran
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
| | - Suttinee Poolsup
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Monica Rosas Lemus
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Qiuying Cheng
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Brett Phinney
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Jingyue Jia
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Lead Contact
| |
Collapse
|
7
|
Plasmodium berghei Purified Hemozoin Associated with DNA Strongly Inhibits P. berghei Liver-Stage Development in BALB/c Mice after Intravenous Inoculation. Infect Immun 2023; 91:e0030422. [PMID: 36622216 PMCID: PMC9872621 DOI: 10.1128/iai.00304-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the acidic lysosome-like digestive vacuole, Plasmodium parasites crystallize heme from hemoglobin into hemozoin, or malaria pigment. Upon release of progeny merozoites, the residual hemozoin is phagocytized by macrophages principally in the liver and spleen where the heme crystals can persist for months to years, as heme oxygenase does not readily degrade the crystal. Previous studies demonstrated hemozoin modulation of monocytes and macrophages. Hemozoin modulates immune function activity of monocytes/macrophages. Here, we used purified/washed hemozoin (W-Hz) isolated from murine Plasmodium berghei infections and intravenously (i.v.) injected it back into naive mice. We characterized the modulating effect of W-Hz on liver-stage replication. Purified washed hemozoin decreases P. berghei liver levels both at 1 week and 1 month after i.v. injection in a dose and time dependent fashion. The injected hemozoin fully protected in nine out of 10 mice given a 50 sporozoite inoculum, and in 10 out of 10 mice against 2,000 sporozoites when they were infected an hour or a day after hemozoin inoculation. DNase treatment at the hemozoin reversed the observed liver load reduction. The liver load reduction was similar in mature B- and T-cell-deficient RAG-1 knockout (KO) mice suggesting an innate immune protection mechanism. This work indicates a role for residual hemozoin in down modulation of Plasmodium liver stages.
Collapse
|
8
|
Dalapati T, Moore JM. Hemozoin: a Complex Molecule with Complex Activities. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022; 8:87-102. [PMID: 35096512 DOI: 10.1007/s40588-021-00166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose of Review Malaria is a disease caused by parasites that reside in host red blood cells and use hemoglobin as a nutrient source. Heme released by hemoglobin catabolism is modified by the parasite to produce hemozoin (HZ), which has toxic effects on the host. Experimentation aiming to elucidate how HZ contributes to malaria pathogenesis has utilized different preparations of this molecule, complicating interpretation and comparison of findings. We examine natural synthesis and isolation of HZ and highlight studies that have used multiple preparations, including synthetic forms, in a comparative fashion. Recent Findings Recent work utilizing sophisticated imaging and detection techniques reveals important molecular characteristics of HZ synthesis and biochemistry. Other recent studies further refine understanding of contributions of HZ to malaria pathogenesis yet highlight the continuing need to characterize HZ preparations and contextualize experimental conditions in the in vivo infection milieu. Summary This review highlights the necessity of collectively determining what is physiologically relevant HZ. Characterization of isolated natural HZ and use of multiple preparations in each study are recommended with application of in vivo studies whenever possible. Adoption of such practices is expected to improve reproducibility of results and elucidate the myriad of ways that HZ participates in malaria pathogenesis.
Collapse
Affiliation(s)
- Trisha Dalapati
- Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Julie M Moore
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Thissera B, Hallyburton I, Ngwa CJ, Cherif-Silini H, Hassane ASI, Anderson M, Campbell LA, Mutter N, Eshelli M, Abdelmohsen UR, Yaseen M, Pradel G, Belbahri L, Elgendy B, Hegazy L, Rateb ME. Potent antiplasmodial alkaloids from the rhizobacterium Pantoea agglomerans as hemozoin modulators. Bioorg Chem 2021; 115:105215. [PMID: 34358799 DOI: 10.1016/j.bioorg.2021.105215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022]
Abstract
Global health concern regarding malaria has increased since the first report of artemisinin-resistant Plasmodium falciparum (Pf) two decades ago. The current therapies suffer various drawbacks such as low efficacy and significant side effects, alarming for an urgent need of more effective and less toxic drugs with higher patient compliance. Chemical entities with natural origins become progressively attractive as new drug leads due to their structural diversity and bio-compatibility. This study initially aimed at the targeted isolation of hydroxyquinoline derivatives following our published genomics and metabolomics study of Pantoea agglomerans (Pa). Fermentation of Pa on a pre-selected medium followed by chromatographic isolation, NMR and HRMS analyses led to the characterisation of one new hydroxyquinoline alkaloid together with another six known congeners and two known hydroxyquinolone derivatives. When screened for their antimalarial activity by high throughput screening against asexual blood-stage parasites, almost all compounds showed potent and selective sub-micromolar activities. Computational investigation was performed to identify the antiplasmodial potential targets. Ligand-based similarity search predicted the tested compounds to act as hemozoin inhibitors. Computational target identification results were further validated by competitive hemozoin inhibitory properties of hydroxyquinoline and hydroxyquinolone derivatives in vitro. The overall results suggest this natural scaffold is of potential to be developed as antimalarial drug lead.
Collapse
Affiliation(s)
- Bathini Thissera
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK
| | - Irene Hallyburton
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52074 Aachen, Germany
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif 19000, Algeria
| | - Ahmed S I Hassane
- Aberdeen Royal Infirmary, Foresterhill Health Campus, Foresterhill Road, Aberdeen AB25 2ZN, Scotland, UK
| | - Mark Anderson
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lorna A Campbell
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Nicole Mutter
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Manal Eshelli
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK; Food Science and Technology Department, Faculty of Agriculture, University of Tripoli, Tripoli 13275, Libya
| | - Usama R Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt
| | - Mohammed Yaseen
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52074 Aachen, Germany
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Lamees Hegazy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA.
| | - Mostafa E Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK.
| |
Collapse
|
10
|
Bailly C. Pyronaridine: An update of its pharmacological activities and mechanisms of action. Biopolymers 2020; 112:e23398. [PMID: 33280083 DOI: 10.1002/bip.23398] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Pyronaridine (PYR) is an erythrocytic schizonticide with a potent antimalarial activity against multidrug-resistant Plasmodium. The drug is used in combination with artesunate for the treatment of uncomplicated P. falciparum malaria, in adults and children. The present review briefly retraces the discovery of PYR and recent antimalarial studies which has led to the approval of PYR/artesunate combination (Pyramax) by the European Medicines Agency to treat uncomplicated malaria worldwide. PYR also presents a marked antitumor activity and has revealed efficacy for the treatment of other parasitic diseases (notably Babesia and Trypanosoma infections) and to mitigate the Ebola virus propagation. On the one hand, PYR functions has an inhibitor of hemozoin (biomineral malaria pigment, by-product of hemoglobin digestion) formation, blocking the biopolymerization of β-hematin and thus facilitating the accumulation of toxic hematin into the digestive vacuole of the parasite. On the other hand, PYR is a bona fide DNA-intercalating agent and an inhibitor of DNA topoisomerase 2, leading to DNA damages and cell death. Inhibition of hematin polymerization represents the prime mechanism at the origin of the antimalarial activity, whereas anticancer effects relies essentially on the interference with DNA metabolism, as with structurally related anticancer drugs like amsacrine and quinacrine. In addition, recent studies point to an immune modulatory activity of PYR and the implication of a mitochondrial oxidative pathway. An analogy with the mechanism of action of artemisinin drugs is underlined. In brief, the biological actions of pyronaridine are recapitulated to shed light on the diverse health benefits of this unsung drug.
Collapse
|
11
|
Upadhyay C, Chaudhary M, De Oliveira RN, Borbas A, Kempaiah P, Singh P, Rathi B. Fluorinated scaffolds for antimalarial drug discovery. Expert Opin Drug Discov 2020; 15:705-718. [PMID: 32202162 DOI: 10.1080/17460441.2020.1740203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The unique physicochemical properties and chemical diversity of organofluorine compounds have remarkably contributed for their wide utility in the area of pharmaceuticals, materials and agrochemicals. The noteworthy characteristics of fluorine include high electron affinity, lipophilicity and bioavailability, extending the half-life of the drugs. The incorporation of fluorine substituents, particularly trifluoromethyl groups, into organic molecules has led to their high potency against various diseases, including malaria. Hence, organofluorinated molecules offer valuable avenues for the design of new drug candidates against malaria. AREAS COVERED In this review, the authors discuss the importance of fluorine substituents present in the chemical compounds, and their potential applications for antimalarial drug discovery. EXPERT OPINION Fluorinated molecules represent a reliable strategy to develop new antimalarial drugs. Fluorine or fluorinated groups have been identified as a promising precursor, and their presence in approximately twenty-five percent of approved drugs is notable. Selective fluorination of chemical entities has the potential to be applied not only to improve the activity profile against the malaria parasite, but could be extrapolated for favorable pharmacological applications. Hazardous reagents such as HF, F2 and SF4 used for fluorination, are not considered as safe, and therefore, this process remains challenging, particularly for the pharmaceutical industry.
Collapse
Affiliation(s)
- Charu Upadhyay
- Department of Chemistry, Miranda House, University of Delhi , Delhi, India
| | - Monika Chaudhary
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi , Delhi, India
| | - Ronaldo N De Oliveira
- Laboratory of Synthesis of Bioactive Compounds, Department of Chemistry, Federal Rural University of Pernambuco , Recife, Brazil
| | - Aniko Borbas
- Department of Pharmaceutical Chemistry, University of Debrecen , Debrecen, Hungary
| | - Prakasha Kempaiah
- Department of Medicine, Loyola University Stritch School of Medicine , Chicago, USA
| | - Poonam Singh
- Department of Chemistry, Miranda House, University of Delhi , Delhi, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi , Delhi, India
| |
Collapse
|
12
|
Guerra ED, Baakdah F, Gourgas O, Tam M, Stevenson MM, Georges E, Bohle DS, Cerruti M. Inorganic ions on hemozoin surface provide a glimpse into Plasmodium biology. J Inorg Biochem 2019; 200:110808. [PMID: 31487576 DOI: 10.1016/j.jinorgbio.2019.110808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 11/30/2022]
Abstract
In malaria, Plasmodium parasites produce hemozoin (Hz) as a route to detoxify free heme released from the catabolism of hemoglobin. Hz isolated from the parasites is encapsulated in an organic layer constituted by parasite and host components. This organic coating may play a role in Hz formation and in the immunomodulatory properties attributed to Hz, and they may influence the mode of action of antimalarials that block Hz formation. In this work, we analyze the organic layer adhered to Hz, and find Na, Cl, Si, Ca and P present, in addition to organic material. Our results suggest that Na, Cl, and P adsorb during Hz release from the red blood cells, while Si and Ca derive from components present during Hz biomineralization within the digestive vacuole of the parasite. Overall, we show that inorganic elements associated with Hz surface provide insights into the biological functions of Plasmodium parasites.
Collapse
Affiliation(s)
- E Danae Guerra
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 2B2, Canada
| | - Fadi Baakdah
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Ophélie Gourgas
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 2B2, Canada
| | - Mifong Tam
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Mary M Stevenson
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Elias Georges
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - D Scott Bohle
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 2B2, Canada.
| |
Collapse
|
13
|
The malaria toxin hemozoin induces apoptosis in human neurons and astrocytes: Potential role in the pathogenesis of cerebral malaria. Brain Res 2019; 1720:146317. [PMID: 31276637 DOI: 10.1016/j.brainres.2019.146317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
Malaria, caused by an intracellular protozoan parasite of the genus Plasmodium, is one of the most important infectious diseases worldwide. In 2017, a total of 219 millions cases were reported with 435,000 deaths related to malaria. A major complication of malaria infection is cerebral malaria (CM), characterized by enhanced blood-brain barrier permeability, leukocyte infiltration and/or activation, and neuronal dropout resulting in coma and death in significant numbers of individuals, especially children. Despite the high incidence and mortality, the pathogenesis of cerebral malaria is not well characterized. Hemozoin (HMZ) or "malaria pigment," a by-product of intraerythrocytic parasite-mediated hemoglobin catabolism, is released into the bloodstream after lysis of the host infected erythrocyte. The effects of HMZ on brain cells has not been studied due to the contamination/adhesion/aggregation of the HMZ with host and toxic parasitic factors. We now demonstrate that extracellular purified HMZ is taken up by human neurons and astrocytes, resulting in cellular dysfunction and toxicity. These findings contribute to a better understanding of the neuropathogenesis of CM and provide evidence that HMZ accumulation in the bloodstream could result in CNS compromise. Thus, alternative approaches to reducing circulating HMZ could serve as a potential treatment.
Collapse
|