1
|
Xu X, Hu J, Xue H, Hu Y, Liu YN, Lin G, Liu L, Xu RA. Applications of human and bovine serum albumins in biomedical engineering: A review. Int J Biol Macromol 2023; 253:126914. [PMID: 37716666 DOI: 10.1016/j.ijbiomac.2023.126914] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Serum albumin, commonly recognized as a predominant major plasma protein, is ubiquitously distributed among vertebrates, demonstrating versatility and widespread accessibility. Numerous studies have discussed the composition and attributes of human and bovine serum albumin; nonetheless, few systematic and comprehensive summaries on human and bovine serum albumin exist. This paper reviews the applications of human and bovine serum albumin in biomedical engineering. First, we introduce the differences in the structure of human and bovine serum albumin. Next, we describe the extraction methods for human and bovine serum albumin (fractionation process separation, magnetic adsorption, reverse micellar (RM) extraction, and genetic engineering) and the advantages and disadvantages of recently developed extraction methods. The characteristics of different processing forms of human and bovine serum albumin are also discussed, concomitantly elucidating their intrinsic properties, functions, and applications in biomedicine. Notably, their pivotal functions as carriers for drugs and tissue-engineered scaffolds, as well as their contributions to cell reproduction and bioimaging, are critically examined. Finally, to provide guidance for researchers in their future work, this review summarizes the current state of human and bovine serum albumin research and outlines potential future research topics.
Collapse
Affiliation(s)
- Xinhao Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jinyu Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yingying Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ya-Nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guanyang Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
2
|
Jevtovic V, Alhar MSO, Milenković D, Marković Z, Dimitrić Marković J, Dimić D. Synthesis, Structural Characterization, Cytotoxicity, and Protein/DNA Binding Properties of Pyridoxylidene-Aminoguanidine-Metal (Fe, Co, Zn, Cu) Complexes. Int J Mol Sci 2023; 24:14745. [PMID: 37834192 PMCID: PMC10573062 DOI: 10.3390/ijms241914745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Pyridoxylidene-aminoguanidine (PLAG) and its transition metal complexes are biologically active compounds with interesting properties. In this contribution, three new metal-PLAG complexes, Zn(PLAG)(SO4)(H2O)].∙H2O (Zn-PLAG), [Co(PLAG)2]SO4∙2H2O (Co-PLAG), and [Fe(PLAG)2]SO4∙2H2O) (Fe-PLAG), were synthetized and characterized by the X-ray crystallography. The intermolecular interactions governing the stability of crystal structure were compared to those of Cu(PLAG)(NCS)2 (Cu-PLAG) within Hirshfeld surface analysis. The structures were optimized at B3LYP/6-31+G(d,p)(H,C,N,O,S)/LanL2DZ (Fe,Co,Zn,Cu), and stability was assessed through Natural Bond Orbital Theory and Quantum Theory of Atoms in Molecules. Special emphasis was put on investigating the ligand's stability and reactivity. The binding of these compounds to Bovine and Human serum albumin was investigated by spectrofluorometric titration. The importance of complex geometry and various ligands for protein binding was shown. These results were complemented by the molecular docking study to elucidate the most important interactions. The thermodynamic parameters of the binding process were determined. The binding to DNA, as one of the main pathways in the cell death cycle, was analyzed by molecular docking. The cytotoxicity was determined towards HCT116, A375, MCF-7, and A2780 cell lines. The most active compound was Cu-PLAG due to the presence of PLAG and two thiocyanate ligands.
Collapse
Affiliation(s)
- Violeta Jevtovic
- Department of Chemistry, College of Science, University Ha’il, Ha’il 81451, Saudi Arabia
| | | | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | | | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Tarai SK, Pan A, Biswas P, Bhaduri R, Mandal S, Paul A, Baitalik S, Bhattacharjee A, Moi SC. Anticancer Behavior of Pyrrolidine-Based Palladium(II) Complexes and Biophysical Approach on Their DNA, BSA Binding Activity, Molecular Docking, and DFT Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10947-10964. [PMID: 37501125 DOI: 10.1021/acs.langmuir.3c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A series of pyrrolidine-based Pd(II) complexes, [Pd(AEP)Cl2] (C-1), [Pd(AEP)(OH2)2]2+(C-2), [Pd(AEP)(L-cys)]+ (C-3), [Pd(AEP)(N-ac-L-cys)] (C-4), [Pd(AEP)(GSH)] (C-5), and [Pd(AEP)(DL-meth)]2+ (C-6) (where, AEP = 1-(2-aminoethyl)pyrrolidine, L-cys = l-cysteine, N-ac-L-cys = N-acetyl-l-cysteine, GSH = glutathione, and DL-meth = dl-methionine), as anticancer drug candidates have been synthesized and characterized. The DNA binding property of the complexes was executed by gel electrophoresis and spectrophotometric and viscometric methods, and their interaction with BSA was also investigated by various spectroscopic methodologies. The binding activity of the Pd(II) complexes with DNA and BSA were assessed to evaluate their binding mode and binding constants. Molecular docking was performed to correlate with the experimental results on the interaction of the complexes with DNA and BSA. The changes in the microenvironmental and structural properties of BSA are monitored by a synchronous and 3D fluorescence study. The structural properties were evaluated by DFT and TD-DFT studies. The anticarcinogenic activity of the Pd(II) complexes was assessed by PASS prediction software to corroborate with the experimental results of the anticancer activity of the complexes. The ROS generation in cancer cell lines has been investigated, and the cell death mechanism through apoptosis was confirmed by measuring the protein expression. All these complexes have excellent anticancer activity compared to ancillary ligands. The cancer cell line (HCT116) shows almost similar or better cell inhibition activity when treated with the Pd(II) complexes compared to cisplatin, whereas the adverse effect is minimum on a normal cell (NKE). Both the Pd(II) and Pt(II) complexes carrying the same ligands reveal almost similar antiproliferative activity.
Collapse
Affiliation(s)
- Swarup Kumar Tarai
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Angana Pan
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Pritam Biswas
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Rituparna Bhaduri
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Saikat Mandal
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Animesh Paul
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Sankar Ch Moi
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| |
Collapse
|
4
|
Bresciani G, Boni S, Funaioli T, Zacchini S, Pampaloni G, Busto N, Biver T, Marchetti F. Adding Diversity to a Diruthenium Biscyclopentadienyl Scaffold via Alkyne Incorporation: Synthesis and Biological Studies. Inorg Chem 2023; 62:12453-12467. [PMID: 37478132 PMCID: PMC10410612 DOI: 10.1021/acs.inorgchem.3c01644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 07/23/2023]
Abstract
We report the synthesis and the assessment of the anticancer potential of two series of diruthenium biscyclopentadienyl carbonyl complexes. Novel dimetallacyclopentenone compounds (2-4) were obtained (45-92% yields) from the thermal reaction (PhCCPh exchange) of [Ru2Cp2(CO)(μ-CO){μ-η1:η3-C(Ph)═C(Ph)C(═O)}], 1, with alkynes HCCR [R = C5H4FeCp (Fc), 3-C6H4(Asp), 2-naphthyl; Cp = η5-C5H5, Asp = OC(O)-2-C6H4C(O)Me]. Protonation of 1-3 by HBF4 afforded the corresponding μ-alkenyl derivatives 5-7, in 40-86% yields. All products were characterized by IR and NMR spectroscopy; moreover, cyclic voltammetry (1, 2, 5, 7) and single-crystal X-ray diffraction (5, 7) analyses were performed on representative compounds. Complexes 5-7 revealed a cytotoxic activity comparable to that of cisplatin in A549 (lung adenocarcinoma), SW480 (colon adenocarcinoma), and ovarian (A2780) cancer cell lines, and 2, 5, 6, and 7 overcame cisplatin resistance in A2780cis cells. Complexes 2, 5, and 7 (but not the aspirin derivative 6) induced an increase in intracellular ROS levels. Otherwise, 6 strongly stabilizes and elongates natural DNA (from calf thymus, CT-DNA), suggesting a possible intercalation binding mode, whereas 5 is less effective in binding CT-DNA, and 7 is ineffective. This trend is reversed concerning RNA, and in particular, 7 is able to bind poly(rA)poly(rU) showing selectivity for this nucleic acid. Complexes 5-7 can interact with the albumin protein with a thermodynamic signature dominated by hydrophobic interactions. Overall, we show that organometallic species based on the Ru2Cp2(CO)x scaffold (x = 2, 3) are active against cancer cells, with different incorporated fragments influencing the interactions with nucleic acids and the production of ROS.
Collapse
Affiliation(s)
- Giulio Bresciani
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Serena Boni
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Tiziana Funaioli
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University
of Bologna, Dipartimento di
Chimica Industriale “Toso Montanari”, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Guido Pampaloni
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Natalia Busto
- University
of Burgos, Departamento de
Química, Plaza
Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Tarita Biver
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Fabio Marchetti
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
5
|
Bourouai MA, Si Larbi K, Bouchoucha A, Terrachet-Bouaziz S, Djebbar S. New Ni(II) and Pd(II) complexes bearing derived sulfa drug ligands: synthesis, characterization, DFT calculations, and in silico and in vitro biological activity studies. Biometals 2023; 36:153-188. [PMID: 36427181 DOI: 10.1007/s10534-022-00469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
In the present study, the synthesis of six new Ni(II) and Pd(II) complexes with three derived sulfamethoxazole drug ligands is reported. The coordination mode, geometry, and chemical formula of all the synthesized compounds have been determined by elemental analysis, mass spectrometry, emission atomic spectroscopy, conductivity measurements, magnetic susceptibility, FTIR, TGA, 1H-NMR, electronic absorption spectroscopy, SEM-EDX along with DFT calculations. The Schiff Base ligands were found to be bidentate and coordinated to the metal ions through sulfonamidic nitrogen and oxazolic nitrogen atoms leading to a square planar geometry for palladium (II) while a distorted octahedral geometry around Nickel (II) ion was suggested. Biological applications of the new complexes including in vitro antimicrobial, antioxidant and anticancer properties were investigated. The results showed that the new metal (II) compounds exhibit remarkable antibacterial inhibition activity against both Gram-positive and Gram-negative bacteria, in addition to noticeable DPPH free radical scavenging activity. The in vitro cytotoxicity assay of the complexes against cell lines of chronic myelogenous leukaemia (K562) showed promising potential for the application of the coordination compounds in antitumor therapy. Subsequently, to evaluate the pharmaceutical potential of the metal-containing compounds, pharmacokinetics and toxicity were studied by ADMET simulations while interactions between the complexes and bacterial proteins were evaluated by molecular docking.
Collapse
Affiliation(s)
- Mohamed Amine Bourouai
- Hydrometallurgy and Molecular Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Science and Technology Houari Boumediene, BP 32 El Alia, 16111, Algiers, Algeria
| | - Karima Si Larbi
- Hydrometallurgy and Molecular Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Science and Technology Houari Boumediene, BP 32 El Alia, 16111, Algiers, Algeria
| | - Afaf Bouchoucha
- Hydrometallurgy and Molecular Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Science and Technology Houari Boumediene, BP 32 El Alia, 16111, Algiers, Algeria.
| | | | - Safia Djebbar
- Hydrometallurgy and Molecular Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Science and Technology Houari Boumediene, BP 32 El Alia, 16111, Algiers, Algeria
| |
Collapse
|
6
|
Yang J, Liao G, Liu X, Zhao S, Yang Z. Three water-soluble acylhydrazone tetranuclear transition metal complexes: Crystal structures, DNA/BSA interactions and cytotoxicity studies. J Inorg Biochem 2022; 236:111941. [PMID: 35940040 DOI: 10.1016/j.jinorgbio.2022.111941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/14/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022]
Abstract
2-acetylpyridine-4-chloropyridine-2‑carbonyl hydrazone (C13H11ClN4O, HL) and its three water-soluble tetranuclear complexes [Cu4(NO3)2(L)4]·(NO3)2 (1), [Co4(NO3)2(H2O)(C2H5OH)(L)4]·(NO3)2 (2) and [Zn4(NO3)2(H2O)(C2H5OH)(L)4]·(NO3)2 (3) were synthesized and characterized showing that 1-3 were all tetranuclear complexes. The interactions of HL, 1-3 with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) were explored using ultraviolet-visible (UV-Vis) titration, fluorescence spectroscopy, microcalorimetry and molecular docking techniques. The UV-Vis spectroscopy measurements showed that complexes 1-3 could strongly bind to CT-DNA by the intercalation mode, while HL interacted with CT-DNA through groove binding. From the fluorescence spectroscopy results, the interaction between HL, 1-3 and BSA was a static quenching procedure, in which complexes 1-3 had two binding sites near Trp residues of BSA while HL only had one. The microcalorimetric studies revealed that the interactions of HL and 1-3 to CT-DNA/BSA were all endothermic and the duration of each interaction was all less than 30 min. The in silico molecular docking illustrated intermolecular interactions of 1-3 binding with DNA/BSA included hydrogen bond, halogen bond, hydrophobic and electrostatic interactions. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that complex 1 possessed better cytotoxicity against HeLa, A549, MCF7 and HCT-116 than cisplatin and could be used as an alternative anticancer drug.
Collapse
Affiliation(s)
- Jie Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Genghui Liao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China.
| | - Shunsheng Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Zaiwen Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| |
Collapse
|
7
|
Villa-Pérez C, Cadavid-Vargas JF, Medina JJM, Echeverría GA, Camí GE, Virgilio ALD, Soria DB. Physicochemical and biological studies of Ni(II), Cu(II) and Zn(II) ternary complexes of sulfaquinoxaline and 2,2’-bipyrimidine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Mandal S, Tarai SK, Pan A, Bhaduri R, Biswas P, Moi SC. Cytotoxic effects of Pd(II) complexes on cancer and normal cells: Their DNA & BSA adduct formation and theoretical approaches. Bioorg Chem 2022; 128:106093. [PMID: 35985157 DOI: 10.1016/j.bioorg.2022.106093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 12/12/2022]
Abstract
Herein, we report the synthesis and characterisation of a series of Pd(II) complexes: Pd(TEEDA)Cl2, C-1; [Pd(TEEDA)(OH2)2](NO3)2, C-2; [Pd(TEEDA)(l-cys)](NO3)2, C-3; [Pd(TEEDA)(NALC)], C-4; [Pd(TEEDA)(Meth)](NO3)2, C-5; and [Pd(TEEDA)(GSH)], C-6 (where TEEDA = N,N,N'-Triethylenediamine, l-cys = l-cysteine, NALC = N-acetyl-l-cysteine, Meth = dl-methionine and GSH = glutathione). UV-Vis spectroscopic characterisation was supported by TD-DFT theoretical simulation using Gaussian09 software. Different reactivity parameters were calculated from the energy difference between HOMO and LUMO of the complexes by DFT. The bonding mode of the labile ligands was confirmed by NBO analysis. Interaction of the complexes with DNA has been observed by gel electrophoresis experiment. DNA binding nature as well as binding constants of the complexes were measured with UV-Vis and fluorescence spectroscopic method. The binding nature of the complexes with DNA was confirmed by viscometric titration. Interaction of the complexes with BSA was investigated by UV-Vis and fluorescence titration method. Cytotoxic activity of the Pd(II) complexes was evaluated on A549 (lung carcinoma epithelial cells), HCT116(Colorectal Carcinoma) and HEK293 (Human embryonic kidney cells) cell lines. The ROS generation in the presence of the complexes was tested both on cancer cell lines A549 and HCT116 as well as human normal cell HEK293.
Collapse
Affiliation(s)
- Saikat Mandal
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur- 713209, West Bengal, India
| | - Swarup Kumar Tarai
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur- 713209, West Bengal, India
| | - Angana Pan
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur- 713209, West Bengal, India
| | - Rituparna Bhaduri
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur- 713209, West Bengal, India
| | - Pritam Biswas
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur- 713209, West Bengal, India
| | - Sankar Chandra Moi
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur- 713209, West Bengal, India.
| |
Collapse
|
9
|
Keshavarzian E, Asadi Z, Poupon M, Dusek M, Rastegari B. A New Heterotrimetallic Sandwich‐like Cu
II
‐La
III
‐Cu
II
(3d‐4f‐3d) Cluster as a Model Anticancer Drug in Interaction with FS‐DNA & BSA and as a New Artificial Catalyst for Catecholase Activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elahe Keshavarzian
- Department of Chemistry, School of Sciences Shiraz University Shiraz Iran
| | - Zahra Asadi
- Department of Chemistry, School of Sciences Shiraz University Shiraz Iran
| | | | | | - Banafsheh Rastegari
- Diagnostic laboratory sciences and technology research center, paramedical School Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
10
|
Unravelling the role of [Ru(bpy) 2(OH 2) 2] 2+ complexes in photo-activated chemotherapy. J Inorg Biochem 2022; 235:111930. [PMID: 35841722 DOI: 10.1016/j.jinorgbio.2022.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/18/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022]
Abstract
Photoactivated chemotherapy (PACT) has emerged as a promising strategy to selectively target cancer cells by using light irradiation to generate cytotoxic complexes in situ through a mechanism involving ligand-loss. Due to their rich optical properties and excited state chemistry, Ru polypyridyl complexes have attracted significant attention for PACT. However, studying PACT is complicated by the fact that many of these Ru complexes can also undergo excited-state electron transfer to generate 1O2 species. In order to deconvolute the biological roles of possible photo-decomposition products without the added complication of excited-state electron transfer chemistry, we have developed a methodology to systematically investigate each product individually, and assess the structure-function relationship. Here, we synthesized a series of eight distinct Ru polypyridyl complexes: Ru-Xa ([Ru(NN)3]2+), Ru-Xb ([Ru(NN)2py2]2+), and Ru-Xc ([Ru(NN)(OH2)2]2+) where NN = 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, or dimethyl 2,2'-bipyridine-4,4'-dicarboxylate and py = pyridine. The cytotoxicity of these complexes was investigated in two cell lines amenable to PACT: H23 (breast cancer) and T47D (lung cancer). We confirmed that light irradiation of Ru-Xa and Ru-Xb complexes generate Ru-Xc complexes through UV-visible spectroscopy, and observed that the Ru-Xc complexes are the most toxic against the cancer cell lines. In addition, we have shown that ligand release and biological activity including bovine serum albumin (BSA) binding, lipophilicity, and DNA interaction are altered when different groups are appended to the bipyridine ligands. We believe that the methodology presented here will enhance the development of more potent and selective PACT agents moving forward.
Collapse
|
11
|
Sulfonamides differing in the alkylamino substituent length – Synthesis, electrochemical characteristic, acid-base profile and complexation properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Mohebbi Jahromi Z, Asadi Z, Eigner V, Dusek M, Rastegari B. A new phenoxo-bridged dicopper Schiff base Complex: Synthesis, Crystal Structure, DNA/BSA Interaction, Cytotoxicity Assay and Catecholase Activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Karumban KS, Raut R, Gupta P, Muley A, Giri B, Kumbhakar S, Misra A, Maji S. Mononuclear cobalt(II) complexes with polypyridyl ligands: Synthesis, characterization, DNA interactions and in vitro cytotoxicity towards human cancer cells. J Inorg Biochem 2022; 233:111866. [DOI: 10.1016/j.jinorgbio.2022.111866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 02/02/2023]
|
14
|
Multifunctional novel rosin derivatives based on dehydroabietylamine with metal ion sensing and DNA/BSA binding activities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Chand K, Chu YC, Wang TW, Kao CL, Lin YF, Tsai ML, Hsu SC. Nitric oxide generation study of unsymmetrical β-diketiminato copper(II) nitrite complexes. Dalton Trans 2022; 51:3485-3496. [DOI: 10.1039/d1dt03711k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The β-diketiminato copper(II) L1CuCl−L4CuCl and their nitrite complexes L1Cu(O2N) and L2Cu(O2N) has been synthesized and characterized. The X-ray structure of the L1CuCl−L4CuCl complexes clearly indicates towards the mononuclear structure with...
Collapse
|
16
|
Siddiqui WA, Khalid M, Ashraf A, Shafiq I, Parvez M, Imran M, Irfan A, Hanif M, Khan MU, Sher F, Ali A. Antibacterial metal complexes of
o
‐sulfamoylbenzoic acid: Synthesis, characterization, and DFT study. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Muhammad Khalid
- Department of Chemistry Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan Pakistan
| | - Adnan Ashraf
- Department of Chemistry The University of Lahore Lahore Pakistan
| | - Iqra Shafiq
- Department of Chemistry Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan Pakistan
| | - Masood Parvez
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta Canada
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science King Khalid University Abha Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, Faculty of Science King Khalid University Abha Saudi Arabia
| | - Muhammad Hanif
- School of Chemical Sciences University of Auckland Auckland New Zealand
| | | | - Falak Sher
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore Pakistan
| | - Akbar Ali
- Department of Chemistry Government College University Faisalabad Faisalabad Pakistan
| |
Collapse
|
17
|
Schoch S, Hadiji M, Pereira SAP, Saraiva MLMFS, Braccini S, Chiellini F, Biver T, Zacchini S, Pampaloni G, Dyson PJ, Marchetti F. A Strategy to Conjugate Bioactive Fragments to Cytotoxic Diiron Bis(cyclopentadienyl) Complexes. Organometallics 2021; 40:2516-2528. [PMID: 34475610 PMCID: PMC8397425 DOI: 10.1021/acs.organomet.1c00270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/19/2022]
Abstract
![]()
A series of bioactive
molecules were synthesized from the condensation
of aspirin or chlorambucil with terminal alkynes bearing alcohol or
amine substituents. Insertion of the resulting alkynes into the iron–carbyne
bond of readily accessible diiron bis(cyclopentadienyl) μ-aminocarbyne
complexes, [1a,b]CF3SO3, afforded novel diiron complexes with a bridging vinyliminium ligand,
[2–10]CF3SO3, functionalized with a bioactive moiety. All compounds were characterized
by elemental analysis and IR and multinuclear NMR spectroscopy and
in three cases by single-crystal X-ray diffraction. Moreover, the
D2O solubility, stability in D2O and cell culture
media, and octanol–water partition coefficients of diiron complexes
were determined spectroscopically. The cytotoxicity of the complexes
was assessed in the tumorigenic A2780 and A2780cisR and the nontumorigenic
HEK 293T cell lines. Some complexes exhibit high potency and the ability
to overcome resistance in A2780cisR cells (aspirin complexes) or high
selectivity relative to HEK 293T cells (chlorambucil complexes). Further
studies indicate that the complexes significantly trigger intracellular
ROS production, irrespective of the nature of the bioactive fragment.
DNA alkylation and protein binding studies were also undertaken.
Collapse
Affiliation(s)
- Silvia Schoch
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Mouna Hadiji
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sarah A P Pereira
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia, da Universidade do Porto, Porto, Portugal
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia, da Universidade do Porto, Porto, Portugal
| | - Simona Braccini
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Federica Chiellini
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Tarita Biver
- University of Pisa, Dipartimento di Farmacia, 56126 Pisa, Italy.,University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Stefano Zacchini
- University of Bologna, Dipartimento di Chimica Industriale "Toso Montanari", 40136 Bologna, Italy
| | - Guido Pampaloni
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fabio Marchetti
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| |
Collapse
|
18
|
Braccini S, Rizzi G, Biancalana L, Pratesi A, Zacchini S, Pampaloni G, Chiellini F, Marchetti F. Anticancer Diiron Vinyliminium Complexes: A Structure-Activity Relationship Study. Pharmaceutics 2021; 13:1158. [PMID: 34452119 PMCID: PMC8398472 DOI: 10.3390/pharmaceutics13081158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022] Open
Abstract
A series of 16 novel diiron complexes of general formula [Fe2Cp2(CO)(μ-CO){μ-η1:η3-C(R')C(R″)CN(R)(Y)}]CF3SO3 (2-7), bearing different substituents on the bridging vinyliminium ligand, was synthesized in 69-95% yields from the reactions of diiron μ-aminocarbyne precursors with various alkynes. The products were characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy; moreover the X-ray structures of 2c (R = Y = CH2Ph, R' = R″ = Me) and 3a (R = CH2CH=CH2, Y = R' = Me, R″ = H) were ascertained by single-crystal X-ray diffraction studies. NMR and UV-Vis methods were used to assess the D2O solubility, the stability in aqueous solution at 37 °C and the octanol-water partition coefficients of the complexes. A screening study evidenced a potent cytotoxicity of 2-7 against the A2780 cancer cell line, with a remarkable selectivity compared to the nontumoral Balb/3T3 cell line; complex 4c (R = Cy, Y = R' = R″ = Me) revealed as the most performant of the series. The antiproliferative activity of a selection of complexes was also assessed on the cisplatin-resistant A2780cisR cancer cell line, and these complexes were capable of inducing a significant ROS production. Moreover, ESI-MS experiments indicated the absence of interaction of selected complexes with cytochrome c and the potentiality to inhibit the thioredoxin reductase enzyme (TrxR).
Collapse
Affiliation(s)
- Simona Braccini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Giorgia Rizzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Stefano Zacchini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy;
| | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| |
Collapse
|
19
|
Akhtar A, Danish M, Asif A, Arshad MN, Asiri AM. Docking assisted DNA-binding, biological screening, and nuclease activity of copper complexes derived from sulfonamides. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1931687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Arusa Akhtar
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Danish
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Awais Asif
- Department of Biochemistry, Nawaz Sharif Medical College, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Zhang Y, Li YH, Jiang SB, Wang SL, Qian SS, Qin J, Ma JP, Li J. Syntheses, structures, and bioactivities evaluation of three transition metal complexes with 1,2,4-triazole carboxylic derivative. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1900832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People’s Republic of China
| | - Yong-Hang Li
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People’s Republic of China
| | - Shi-Bin Jiang
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People’s Republic of China
| | - Shi-Ling Wang
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People’s Republic of China
| | - Shao-Song Qian
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People’s Republic of China
| | - Jie Qin
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People’s Republic of China
| | - Jian-Ping Ma
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, People’s Republic of China
| | - Juan Li
- School of Medical, Pingdingshan University, Pingdingshan, People’s Republic of China
| |
Collapse
|
21
|
Kakoulidou C, Kosmas VR, Hatzidimitriou AG, Fylaktakidou KC, Psomas G. Structure and biological profile of transition metal complexes with (E)-4-(2-(pyridin-2-ylmethylene)hydrazinyl)quinazoline. J Inorg Biochem 2021; 219:111448. [PMID: 33853005 DOI: 10.1016/j.jinorgbio.2021.111448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
The interaction of the recently reported quinazoline derivative (E)-4-(2-(pyridin-2-ylmethylene)hydrazinyl)quinazoline (L) with a series of metal(II) (= copper(II), nickel(II), cobalt(II) and cadmium(II)) chlorides or nitrates resulted in the formation of mononuclear complexes which were characterized by spectroscopic techniques and single-crystal X-ray crystallography, i.e. [Cu(L)2]Cl2·4H2O (1·4H2O), [Ni(L)2]Cl2·4H2O (2·4H2O), [Ni(L)2](NO3)2·MeOH (3·MeOH), [Co(L)2]Cl2·4H2O (4·4H2O), [Co(L)2](NO3)2·H2O (5·H2O), [Co(L)2](NO3)3·2.5H2O (6·2.5H2O), [Cd(L)(Cl)2]·H2O (7·H2O) and [Cd(L)(CH3OH)(H2O)(NO3)](NO3) (8). The biological profile of the complexes was further assessed in regard to their binding affinity with calf-thymus DNA, their cleavage ability towards pBluescript II KS plasmid DNA in the absence or presence of irradiation of various wavelengths, their interaction with bovine serum albumin and finally, their ability to scavenge 1,1-diphenyl-picrylhydrazyl and 2,2΄-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radicals and to reduce H2O2.
Collapse
Affiliation(s)
- Chrisoula Kakoulidou
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Vassilis-Raphael Kosmas
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina C Fylaktakidou
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
22
|
Emami N, Ferdousi R. AptaNet as a deep learning approach for aptamer-protein interaction prediction. Sci Rep 2021; 11:6074. [PMID: 33727685 PMCID: PMC7971039 DOI: 10.1038/s41598-021-85629-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
Aptamers are short oligonucleotides (DNA/RNA) or peptide molecules that can selectively bind to their specific targets with high specificity and affinity. As a powerful new class of amino acid ligands, aptamers have high potentials in biosensing, therapeutic, and diagnostic fields. Here, we present AptaNet-a new deep neural network-to predict the aptamer-protein interaction pairs by integrating features derived from both aptamers and the target proteins. Aptamers were encoded by using two different strategies, including k-mer and reverse complement k-mer frequency. Amino acid composition (AAC) and pseudo amino acid composition (PseAAC) were applied to represent target information using 24 physicochemical and conformational properties of the proteins. To handle the imbalance problem in the data, we applied a neighborhood cleaning algorithm. The predictor was constructed based on a deep neural network, and optimal features were selected using the random forest algorithm. As a result, 99.79% accuracy was achieved for the training dataset, and 91.38% accuracy was obtained for the testing dataset. AptaNet achieved high performance on our constructed aptamer-protein benchmark dataset. The results indicate that AptaNet can help identify novel aptamer-protein interacting pairs and build more-efficient insights into the relationship between aptamers and proteins. Our benchmark dataset and the source codes for AptaNet are available in: https://github.com/nedaemami/AptaNet .
Collapse
Affiliation(s)
- Neda Emami
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Structure and Interaction with CT-DNA of Two Quinolone-Metal Complexes Containing Helical Channels. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Macii F, Biver T. Spectrofluorimetric analysis of the binding of a target molecule to serum albumin: tricky aspects and tips. J Inorg Biochem 2021; 216:111305. [PMID: 33261935 DOI: 10.1016/j.jinorgbio.2020.111305] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
Abstract
Protein binding heavily modulates drug activity. Therefore, the binding features need to be elucidated when chemistry researchers study new molecules (metal complexes) to be used as drugs. This paper concerns the experimental and data treatment aspects of the mechanistic analysis of the binding to a fluorescent protein (the golden standard serum albumin) by using direct fluorescence titrations. Fluorescence data are not rarely only qualitatively used, neglecting further treatments which could offer a precious detailed picture of the behavior of the drug. We aim to spread a mechanistic approach, discussing the critical aspects for correctly designing the experiments and treating the data. The researcher may confirm adduct formation and evaluate binding constants (Stern-Volmer KSV or other types of K). Also, we discuss here, with the help of literature examples, the correct use of temperature dependence of K to extract thermodynamic parameters, comment on enthalpy-entropy compensation, together with the use of synchronous spectra and exchange experiments to gain information on the binding type and site. We think that this tutorial/critical synopsis can be of help for the increasing community dealing with these experiments, which are valuable but often much more tricky than it might appear at first sight.
Collapse
Affiliation(s)
- Francesca Macii
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy; Department of Pharmacy, University of Pisa, Pisa, Italy.
| |
Collapse
|
25
|
Li LY, Fei BL, Wang P, Kong LY, Long JY. Discovery of novel dehydroabietic acid derivatives as DNA/BSA binding and anticancer agents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118944. [PMID: 33007643 DOI: 10.1016/j.saa.2020.118944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
To explore the biological properties of rosin derivatives, two dehydroabietic acid derivatives N-(5-dehydroabietyl-1,3,4-thiadiazole)-yl-pyridine-2-carboxamide (DTPC) and di-N-(5-dehydroabietyl-1,3,4-thiadiazole)-yl-pyridine-2,6-carboxamide (DDTPC) with 1,3,4-thiadiazole, pyridine and amide moieties were designed and synthesized according to superposition principle of activity group. They interact with calf thymus DNA (CT DNA) via intercalation based on the results of circular dichroism (CD) and fluorescence spectroscopy, DNA denaturation and viscosity studies. Fluorescence and CD spectral experiments indicate that they might be transported and stored by protein like bovine serum albumin (BSA). MTT assay was further carried out to examine their cytotoxicity, they both showed selective cytotoxicity and DTPC exhibited better cytotoxicity. The antiproliferative effect of DTPC toward A431 cell line was stronger than that of clinically used cisplatin and oxaliplatin. In addition, the cytotoxicity of DTPC and DDTPC was closely related with their DNA binding ability.
Collapse
Affiliation(s)
- Lin-Ying Li
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Bao-Li Fei
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Pingping Wang
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ling-Yan Kong
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jian-Ying Long
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
26
|
Mondal SS, Jaiswal N, Bera PS, Tiwari RK, Behera JN, Chanda N, Ghosal S, Saha TK. Cu (II) and Co (II/III) complexes of N,O‐chelated Schiff base ligands: DNA interaction, protein binding, cytotoxicity, cell death mechanism and reactive oxygen species generation studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shyam Sundar Mondal
- Department of Chemistry National Institute of Technology Durgapur 713209 India
| | - Namita Jaiswal
- Department of Chemistry National Institute of Technology Durgapur 713209 India
| | - Partha Sarathi Bera
- Department of Chemistry National Institute of Technology Durgapur 713209 India
| | - Ranjay K. Tiwari
- School of Chemical Sciences National Institute of Science Education and Research Bhubaneswar 752050 India
- Chemical Sciences Homi Bhabha National Institute Mumbai 400094 India
| | - Jogendra Nath Behera
- School of Chemical Sciences National Institute of Science Education and Research Bhubaneswar 752050 India
- Chemical Sciences Homi Bhabha National Institute Mumbai 400094 India
| | - Nripen Chanda
- Department of Materials Processing and Microsystems Laboratory CSIR‐Central Mechanical Engineering Research Institute Durgapur 713209 India
| | - Subhas Ghosal
- Department of Chemistry National Institute of Technology Durgapur 713209 India
| | - Tanmoy Kumar Saha
- Department of Chemistry National Institute of Technology Durgapur 713209 India
| |
Collapse
|
27
|
Synthesis and Characterization of Serendipitous Dioxovanadates and Their DNA/BSA Interaction Studies and In Vitro Cytotoxic activity. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01815-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
28
|
Biswal D, Roy M, Pramanik NR, Paul S, Drew MGB, Chakrabarti S. The vital role of ditopic N– N bridging ligands with different lengths in the formation of new binuclear dioxomolybdenum( vi) complexes: synthesis, crystal structures, supramolecular framework and protein binding studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj03702h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Role of bis-(pyridyl) and bis-(imidazole) auxiliary ligands in the formation of supramolecular architectures and BSA binding with new binuclear dioxomolybdenum(vi) complexes.
Collapse
Affiliation(s)
- Debanjana Biswal
- Department of Chemistry
- University College of Science
- 92, Acharya Prafulla Chandra Road
- Kolkata 700009
- India
| | - Malini Roy
- Department of Chemistry
- University College of Science
- 92, Acharya Prafulla Chandra Road
- Kolkata 700009
- India
| | | | - Suvendu Paul
- Department of Chemistry
- University of Kalyani
- Kalyani
- Nadia
- India
| | - Michael G. B. Drew
- Department of Chemistry
- The University of Reading
- Whiteknights
- Reading RG6 6AD
- UK
| | - Syamal Chakrabarti
- Department of Chemistry
- University College of Science
- 92, Acharya Prafulla Chandra Road
- Kolkata 700009
- India
| |
Collapse
|