1
|
Mollick S, Rai S, Frentzel‐Beyme L, Kachwal V, Donà L, Schürmann D, Civalleri B, Henke S, Tan J. Unlocking Diabetic Acetone Vapor Detection by A Portable Metal-Organic Framework-Based Turn-On Optical Sensor Device. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305070. [PMID: 38032122 PMCID: PMC10811499 DOI: 10.1002/advs.202305070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/21/2023] [Indexed: 12/01/2023]
Abstract
Despite exhaled human breath having enabled noninvasive diabetes diagnosis, selective acetone vapor detection by fluorescence approach in the diabetic range (1.8-3.5 ppm) remains a long-standing challenge. A set of water-resistant luminescent metal-organic framework (MOF)-based composites have been reported for detecting acetone vapor in the diabetic range with a limit of detection of 200 ppb. The luminescent materials possess the ability to selectively detect acetone vapor from a mixture comprising nitrogen, oxygen, carbon dioxide, water vapor, and alcohol vapor, which are prevalent in exhaled breath. It is noteworthy that this is the first luminescent MOF material capable of selectively detecting acetone vapor in the diabetic range via a turn-on mechanism. The material can be reused within a matter of minutes under ambient conditions. Industrially pertinent electrospun luminescent fibers are likewise fabricated alongside various luminescent films for selective detection of ultratrace quantities of acetone vapor present in the air. Ab initio theoretical calculations combined with in situ synchrotron-based dosing studies uncovered the material's remarkable hypersensitivity toward acetone vapor. Finally, a freshly designed prototype fluorescence-based portable optical sensor is utilized as a proof-of-concept for the rapid detection of acetone vapor within the diabetic range.
Collapse
Affiliation(s)
- Samraj Mollick
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1UK
| | - Sujeet Rai
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1UK
| | - Louis Frentzel‐Beyme
- Anorganische ChemieFakultät für Chemie & Chemische BiologieTec‐hnische Universität DortmundOtto‐Hahn Straße 644227DortmundGermany
| | - Vishal Kachwal
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1UK
| | - Lorenzo Donà
- Department of ChemistryUniversity of TurinVia Pietro. Giuria 5Torino10125Italy
| | - Dagmar Schürmann
- Anorganische ChemieFakultät für Chemie & Chemische BiologieTec‐hnische Universität DortmundOtto‐Hahn Straße 644227DortmundGermany
| | | | - Sebastian Henke
- Anorganische ChemieFakultät für Chemie & Chemische BiologieTec‐hnische Universität DortmundOtto‐Hahn Straße 644227DortmundGermany
| | - Jin‐Chong Tan
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1UK
| |
Collapse
|
2
|
Ricart D, Dorado AD, Lao-Luque C, Baeza M. Microflow injection analysis based on modular 3D platforms and colorimetric detection for Fe(III) monitoring in a wide concentration range. Mikrochim Acta 2023; 191:3. [PMID: 38041754 PMCID: PMC10693521 DOI: 10.1007/s00604-023-06029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 12/03/2023]
Abstract
A modular microflow injection analysis (microFIA) system for the determination of Fe(III) in a bioleaching reactor has been designed, developed and validated. The different modules of the analyzer (mixer, diluter, disperser and detector) were 3D-printed. Fe(III) quantification is due by measuring the color intensity of the chelate formed between Fe(III) and salicylic acid at 525 nm. The device has been designed to dilute, disperse and detect high Fe(III) concentrations in the form of an inexpensive multi-step photometric flow cell that uses an light-emitting diode (LED) as a light source and an light-dependent resistor (LDR) as a light intensity detector. This microFIA system has been shown to be suitable for automatic and continuous determination of Fe(III) in the operation of a bioreactor for the oxidation of Fe(II). The device has a good repeatability (less than 5% of coefficient of variation in the whole range of concentrations) and accuracy of around 100%. The analyzer features an exceptional wide linear range, between 25 and 6000 mg·L-1. The device was successfully applied to the determination of Fe(III) in real samples. The obtained results proved that the method is applicable for accurate, precise, rapid, and low-cost colorimetric analysis and didn't show significant differences with a conventional UV-Vis method.
Collapse
Affiliation(s)
- David Ricart
- Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - Antonio David Dorado
- Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - Conxita Lao-Luque
- Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - Mireia Baeza
- GENOCOV Research Group, Department of Chemistry, Faculty of Science, Edifici C-Nord, Universitat Autònoma de Barcelona, Carrer dels Til·Lers, 08193, Bellaterra, Spain.
| |
Collapse
|
3
|
Hills OJ, Noble IO, Heyam A, Scott AJ, Smith J, Chappell HF. Atomistic modelling and NMR studies reveal that gallium can target the ferric PQS uptake system in P. aeruginosa biofilms. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001422. [PMID: 38117289 PMCID: PMC10765035 DOI: 10.1099/mic.0.001422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Intravenous gallium nitrate therapy is a novel therapeutic strategy deployed to combat chronic Pseudomonas aeruginosa biofilm infections in the lungs of cystic fibrosis (CF) patients by interfering with iron (Fe3+) uptake. The therapy is a source of Ga3+, which competes with Fe3+ for siderophore binding, subsequently disrupting iron metabolism and inhibiting biofilm proliferation in vivo. It was recently demonstrated that the Pseudomonas quinolone signal (PQS) can chelate Fe3+ to assist in bacterial iron uptake. However, it is unknown whether exogenous gallium also targets [Fe(PQS)3] uptake, which, in turn, would extend the mechanism of gallium therapy beyond siderophore competition, potentially supporting use of the therapy against P. aeruginosa mutants deficient in siderophore uptake proteins. To that end, the thermodynamic feasibility of iron-for-gallium cation exchange into [Fe(PQS)3] was evaluated using quantum chemical density functional theory (DFT) modelling and verified experimentally using 1H nuclear magnetic resonance (NMR). We demonstrate here that Ga3+ can strongly bind to three PQS molecules and, furthermore, displace and substitute Fe3+ from the native chelate pocket within PQS complexes, through a Trojan horse mechanism, retaining the key structural features present within the native ferric complex. As such, [Fe(PQS)3] complexes, in addition to ferric-siderophore complexes, represent another target for gallium therapy.
Collapse
Affiliation(s)
- Oliver J. Hills
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Isaac O.K. Noble
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Alex Heyam
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Andrew J. Scott
- School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - James Smith
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Helen F. Chappell
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Guan W, Fang Z, Chen Y, Li Y, Peng Z, Sun L, Deng Q, Gooneratne R. Cadmium-chelating ability of the siderophore DHBS secreted by Leclercia adecarboxylata FCH-CR2 and its action mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165850. [PMID: 37516178 DOI: 10.1016/j.scitotenv.2023.165850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
As one of the most accumulative toxic heavy metals, cadmium (Cd) poses a major threat to human health. Bacterial siderophores, as small molecules with metal-absorbing ability, have great potential activity for Cd-reduction. In this study, the siderophore-producing bacterialstrain FCH-CR2 was isolated from a high-Cd contaminated soil using the CAS method. Leclercia adecarboxylata was identified through 16S rRNA sequence, homology analysis, colony morphology, physiological and biochemical tests. A siderophore, catechol type 2,3-dihydroxy-N-benzoyl-l-serine (DHBS) secreted by FCH-CR2, was purified using RP-HPLC and identified by LC-MS/MS. Intraperitoneal injection of DHBS significantly increased fecal Cd levels, and reduced Cd accumulation in organs. In density flooding theory (DFT) analysis, DHBS may bind to Cd via the hydroxyl site on the benzene ring. Besides, the isothermal titration calorimetry (ITC) assay revealed that the formation of Cd-DHBS is a spontaneous and endothermic reaction with ΔG = -21.4 kJ/mol and ΔH = 1.51 ± 0.142 kJ/mol.
Collapse
Affiliation(s)
- Wenhao Guan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yinyan Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongbin Li
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhilan Peng
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury 7647, New Zealand
| |
Collapse
|
5
|
Youness F, Jaafar A, Tehrani A, Bilbeisi RA. Functionalised electrospun membranes (TETA-PVC) for the removal of lead(ii) from water. RSC Adv 2022; 12:24607-24613. [PMID: 36128362 PMCID: PMC9426649 DOI: 10.1039/d2ra02946d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022] Open
Abstract
Driven by the need for delivering sustainable water purification solutions for the removal of heavy metals from water, electrospun PVC membranes were functionalised with triethylenetetramine (TETA) and were used to remove lead(ii) ions selectively from water. The membranes were characterised and their adsorption behavior towards the removal of lead from water was investigated. The incorporation of TETA on the membrane's surface significantly improved the removal efficiency of lead(ii) up to 99.8% in 30 minutes and under ambient conditions, with the lowest concentration of 50 ppm. The adsorption mechanism was investigated and kinetic data showed a better correlation with the pseudo-second-order model. Similarly, the equilibrium data best fitted with the Langmuir adsorption isotherm model with a relatively high maximum adsorption capacity of 1250 mg g-1 for lead(ii) ions, larger than recently reported adsorption capacities for similar membranes. The functionalised membrane also showed high selectivity to lead(ii) in a mixed solution containing lead(ii), mercury(ii), cadmium(ii), arsenic(iii), copper(ii), and zinc(ii). The functionalised membrane was regenerated, where desorption of lead(ii) was achieved, under mildly acidic conditions. The removal efficiency of the regenerated membrane after six cycles of adsorption/desorption was maintained at a high level of 98%. The proposed design offers a simple yet effective, sustainable, and environmentally friendly solution for water treatment.
Collapse
Affiliation(s)
- Fatima Youness
- American University of Beirut (AUB), Department of Civil and Environmental Engineering Riad El Solh Beirut 1107-2020 Lebanon
| | - Amani Jaafar
- American University of Beirut (AUB), Department of Civil and Environmental Engineering Riad El Solh Beirut 1107-2020 Lebanon
| | - Ali Tehrani
- Aalto University, Departments of Bioproducts and Biosystems Espoo Finland
| | - Rana A Bilbeisi
- American University of Beirut (AUB), Department of Civil and Environmental Engineering Riad El Solh Beirut 1107-2020 Lebanon
| |
Collapse
|
6
|
Modified Fluoroquinolones as Antimicrobial Compounds Targeting Chlamydia trachomatis. Int J Mol Sci 2022; 23:ijms23126741. [PMID: 35743189 PMCID: PMC9224431 DOI: 10.3390/ijms23126741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Chlamydia trachomatis causes the most common sexually transmitted bacterial infection and trachoma, an eye infection. Untreated infections can lead to sequelae, such as infertility and ectopic pregnancy in women and blindness. We previously enhanced the antichlamydial activity of the fluoroquinolone ciprofloxacin by grafting a metal chelating moiety onto it. In the present study, we pursued this pharmacomodulation and obtained nanomolar active molecules (EC50) against this pathogen. This gain in activity prompted us to evaluate the antibacterial activity of this family of molecules against other pathogenic bacteria, such as Neisseria gonorrhoeae and bacteria from the ESKAPE group. The results show that the novel molecules have selectively improved activity against C. trachomatis and demonstrate how the antichlamydial effect of fluoroquinolones can be enhanced.
Collapse
|
7
|
Xu T, Qian D, Hu Y, Zhu Y, Zhong Y, Zhang L, Xu H, Mao Z. Assembled hybrid films based on sepiolite, phytic acid, polyaspartic acid and Fe 3+ for flame-retardant cotton fabric. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To impart durable flame retardant property to cotton fabric, a kind of multilayered hybrid film based on environmentally friendly phytic acid, sepiolite, polyaspartic acid, and Fe3+ were deposited on the surface of cotton fabric by layer-by-layer and spraying method to form a dense protective layer. Compared with cotton fabric, hybrid film coated cotton showed excellent flame retardant property and low fire hazard, which can be demonstrated by vertical flame test, limiting oxygen index (LOI) and cone calorimeter test. After-flame time and after-glow time of hybrid film coated cotton is 1 s and 1 s, respectively. LOI value of hybrid film coated cotton increased by 44.4% compared with control sample. Cone calorimeter test revealed a total heat release rate reduction of 52.6% and peak heat release rate reduction of 73.6% for hybrid film coated cotton fabric. This work demonstrates that the hybrid film composed of phytic acid, sepiolite, polyaspartic acid, and Fe3+ could improve the durable flame retardant property of cotton fabric.
Collapse
Affiliation(s)
- Tong Xu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Di Qian
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Yelei Hu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Yuanzhao Zhu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Yi Zhong
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Linping Zhang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Ministry of Education , Tsinghua University , Beijing , 100084 , P. R. China
| | - Hong Xu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Zhiping Mao
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
- National Dyeing and Finishing Engineering Technology Research Center , Donghua University , No. 2999, North Renmin Road, Songjiang District , Shanghai 201620 , P. R. China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology , Taian , Shandong Province , 271000 , P. R. China
| |
Collapse
|
8
|
Structure, UV spectroscopic and electrochemical properties of 2-methyl-8-quinolinolato rhodium (I) complexes, containing carbonyl, triphenylphosphine or triphenylphosphite ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Kaviani S, Shahab S, Sheikhi M, Khaleghian M, Al Saud S. Characterization of the binding affinity between some anti-Parkinson agents and Mn2+, Fe3+ and Zn2+ metal ions: A DFT insight. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|