1
|
Yu W, Wu Y, Li D. Oxidative cleavage of cellulose by fungi in the termite gut. Int J Biol Macromol 2025; 284:138222. [PMID: 39622373 DOI: 10.1016/j.ijbiomac.2024.138222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) of auxiliary activity family 9 (AA9) oxidatively degrade cellulose. Cellulose is degraded by cellulases via hydrolysis in the termite gut. However, it remains uncertain whether oxidative cleavage of cellulose occurs within the termite gut. In this study, we report for the first time experimental support for the oxidative cleavage of cellulose in the termite (Cryptotermes declivis) gut. We identified the varieties of fungi in the termite gut through extensive analysis of the isolated fungi and sequencing of the internal transcribed spacer region. Most of the fungi were Ascomycetes. Genome sequencing revealed the presence of an AA9 LPMO (TfAA9A) in one of the isolated species, Talaromyces funiculosus. The expression of TfAA9A in the termite gut was detected using reverse transcription-polymerase chain reaction, and its ability to oxidize cellulose was confirmed in vitro through heterologous gene expression in Pichia pastoris and cellulose degradation experiments with the purified enzyme. Further transcriptome and proteomics analyses showed mRNA and protein expression of fungal AA9 LPMOs in the termite gut. These experimental data support the oxidative cleavage of cellulose in the termite gut. This study offers a new direction for understanding the mechanism of cellulose degradation in termites.
Collapse
Affiliation(s)
- Weishuai Yu
- Department of Mycology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yueming Wu
- Department of Mycology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Duochuan Li
- Department of Mycology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
2
|
Kong L, Hu H, Li P, Qu M. Tissue-specific alternative splicing and the functional differentiation of LmLPMO15-1 in Locusta migratoria. INSECT SCIENCE 2024. [PMID: 39543942 DOI: 10.1111/1744-7917.13469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Insect lytic polysaccharide monooxygenases (LPMO15s) are newly discovered copper-dependent enzymes that promote chitin degradation in insect through oxidative cleavage of glycosidic bonds. They are potential pesticide targets due to their critical role for chitin turnover in the integument, trachea, and peritrophic matrix of the midgut during insect molting. However, the knowledge about whether and how LPMO15s participate in chitin turnover in other tissues is still insufficient. Here, using the orthopteran pest Locusta migratoria as a model, a novel alternative splicing site of LmLPMO15-1 was discovered and it produces 2 variants, LmLPMO15-1a and LmLPMO15-1b. The transcripts of LmLPMO15-1a and LmLPMO15-1b were specifically expressed in the trachea and foregut, respectively. RNA interference targeting LmLPMO15-1 (a common fragment shared by both LmLPMO15-1a and LmLPMO15-1b), a specific region of LmLPMO15-1a or LmLPMO15-1b all significantly reduced survival rate of nymphs and induced lethal phenotypes with developmental stasis or molt failure. Ultrastructure analysis demonstrated that LmLPMO15-1b was specifically involved in foregut old cuticle degradation, while LmLPMO15-1a was exclusively responsible for the degradation of the tracheal old cuticle. This study revealed LmLPMO15-1 achieved tissue-specific functional differentiation through alternative splicing, and proved the significance of the spliced variants during insect growth and development. It provides new strategies for pest control targeting LPMO15-1.
Collapse
Affiliation(s)
- Lin Kong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Huiying Hu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Pengfei Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Mingbo Qu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning Province, China
| |
Collapse
|
3
|
Salgado JFM, Hervé V, Vera MAG, Tokuda G, Brune A. Unveiling lignocellulolytic potential: a genomic exploration of bacterial lineages within the termite gut. MICROBIOME 2024; 12:201. [PMID: 39407345 PMCID: PMC11481507 DOI: 10.1186/s40168-024-01917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The microbial landscape within termite guts varies across termite families. The gut microbiota of lower termites (LT) is dominated by cellulolytic flagellates that sequester wood particles in their digestive vacuoles, whereas in the flagellate-free higher termites (HT), cellulolytic activity has been attributed to fiber-associated bacteria. However, little is known about the role of individual lineages in fiber digestion, particularly in LT. RESULTS We investigated the lignocellulolytic potential of 2223 metagenome-assembled genomes (MAGs) recovered from the gut metagenomes of 51 termite species. In the flagellate-dependent LT, cellulolytic enzymes are restricted to MAGs of Bacteroidota (Dysgonomonadaceae, Tannerellaceae, Bacteroidaceae, Azobacteroidaceae) and Spirochaetota (Breznakiellaceae) and reflect a specialization on cellodextrins, whereas their hemicellulolytic arsenal features activities on xylans and diverse heteropolymers. By contrast, the MAGs derived from flagellate-free HT possess a comprehensive arsenal of exo- and endoglucanases that resembles that of termite gut flagellates, underlining that Fibrobacterota and Spirochaetota occupy the cellulolytic niche that became vacant after the loss of the flagellates. Furthermore, we detected directly or indirectly oxygen-dependent enzymes that oxidize cellulose or modify lignin in MAGs of Pseudomonadota (Burkholderiales, Pseudomonadales) and Actinomycetota (Actinomycetales, Mycobacteriales), representing lineages located at the hindgut wall. CONCLUSIONS The results of this study refine our concept of symbiotic digestion of lignocellulose in termite guts, emphasizing the differential roles of specific bacterial lineages in both flagellate-dependent and flagellate-independent breakdown of cellulose and hemicelluloses, as well as a so far unappreciated role of oxygen in the depolymerization of plant fiber and lignin in the microoxic periphery during gut passage in HT. Video Abstract.
Collapse
Affiliation(s)
- João Felipe M Salgado
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Vincent Hervé
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Manuel A G Vera
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Gaku Tokuda
- Tropical Biosphere Research Center, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Andreas Brune
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
| |
Collapse
|
4
|
Franco Cairo JPL, Almeida DV, Andrade VB, Terrasan CRF, Telfer A, Gonçalves TA, Diaz DE, Figueiredo FL, Brenelli LB, Walton PH, Damasio A, Garcia W, Squina FM. Biochemical and structural insights of a recombinant AA16 LPMO from the marine and sponge-symbiont Peniophora sp. Int J Biol Macromol 2024; 280:135596. [PMID: 39276894 DOI: 10.1016/j.ijbiomac.2024.135596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that oxidize polysaccharides, leading to their cleavage. LPMOs are classified into eight CAZy families (AA9-11, AA13-17), with the functionality of AA16 being poorly characterized. This study presents biochemical and structural data for an AA16 LPMO (PnAA16) from the marine sponge symbiont Peniophora sp. Phylogenetic analysis revealed that PnAA16 clusters separately from previously characterized AA16s. However, the structural modelling of PnAA16 showed the characteristic immunoglobulin-like fold of LPMOs, with a conserved his-brace motif coordinating a copper ion. The copper-bound PnAA16 showed greater thermal stability than its apo-form, highlighting copper's role in enzyme stability. Functionally, PnAA16 demonstrated oxidase activity, producing 5 μM H₂O₂ after 30 min, but showed 20 times lower peroxidase activity (0.27 U/g) compared to a fungal AA9. Specific activity assays indicated that PnAA16 acts only on cellohexaose, generating native celloligosaccharides (C3 to C5) and oxidized products with regioselective oxidation at C1 and C4 positions. Finally, PnAA16 boosted the activity of a cellulolytic cocktail for cellulose saccharification in the presence of ascorbic acid, hydrogen peroxide, or both. In conclusion, the present work provides insights into the AA16 family, expanding the understanding of their structural and functional relationships and biotechnological potential.
Collapse
Affiliation(s)
- João Paulo L Franco Cairo
- Laboratório de Ciências Moleculares (LACIMO), Universidade de Sorocaba (UNISO), Sorocaba, Brazil; Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Chemistry, University of York, York, United Kingdom
| | - Dnane V Almeida
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Viviane B Andrade
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - César R F Terrasan
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Abbey Telfer
- Department of Chemistry, University of York, York, United Kingdom
| | - Thiago A Gonçalves
- Laboratório de Ciências Moleculares (LACIMO), Universidade de Sorocaba (UNISO), Sorocaba, Brazil
| | - Daniel E Diaz
- Department of Chemistry, University of York, York, United Kingdom
| | - Fernanda L Figueiredo
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Livia B Brenelli
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Paul H Walton
- Department of Chemistry, University of York, York, United Kingdom
| | - André Damasio
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Fabio M Squina
- Laboratório de Ciências Moleculares (LACIMO), Universidade de Sorocaba (UNISO), Sorocaba, Brazil.
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
6
|
Ma H, Liao M, Zhong P, Ding J, Wang X, Gong G, Huang L, Liu J, Wang Q. Diversely regio-oxidative degradation of konjac glucomannan by lytic polysaccharide monooxygenase AA10 and generating antibacterial hydrolysate. Int J Biol Macromol 2024; 266:131094. [PMID: 38537852 DOI: 10.1016/j.ijbiomac.2024.131094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Konjac glucomannan (KGM) hydrolysate exhibit various biological activities and health-promoting effects. Lytic polysaccharide monooxygenases (LPMOs) play an important role on enzymatic degradation of recalcitrant polysaccharides to obtain fermentable sugars. It is generally accepted that LPMOs exhibits high substrate specificity and oxidation regioselectivity. Here, a bacteria-derived SmAA10A, with chitin-active with strict C1 oxidation, was used to catalyse KGM degradation. Through ethanol precipitation, two hydrolysed KGM components (4 kDa (KGM-1) and 5 kDa (KGM-2)) were obtained that exhibited antibacterial activity against Staphylococcus aureus. In natural KGM, KGM-1, and KGM-2, the molar ratios of mannose to glucose were 1:2.19, 1:3.05, and 1:2.87, respectively, indicating that SmAA10A preferentially degrades mannose in KGM. Fourier-transform infrared spectroscopy and scanning electron microscopy imaging revealed the breakage of glycosylic bonds during enzymatic catalysis. The regioselectivity of SmAA10A for KGM degradation was determined based on the fragmentation behaviour of the KGM-1 and KGM-2 oligosaccharides and their NaBD4-reduced forms. SmAA10A exhibited diverse oxidation degradation of KGM and generated single C1-, single C4-, and C1/C4-double oxidised oligosaccharide forms. This study provides an alternative method for obtaining KGM degradation components with antibacterial functions and expands the substrate specificity and oxidation regioselectivity of bacterial LPMOs.
Collapse
Affiliation(s)
- Hongjuan Ma
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China; College of Life Science, Northwest University, Xi'an 710069, China
| | - Minghong Liao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Peiyun Zhong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jieqiong Ding
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jianling Liu
- College of Life Science, Northwest University, Xi'an 710069, China.
| | - Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
7
|
Andrade VB, Tomazetto G, Almeida DV, Tramontina R, Squina FM, Garcia W. Enzymatic and biophysical characterization of a novel modular cellulosomal GH5 endoglucanase multifunctional from the anaerobic gut fungus Piromyces finnis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140963. [PMID: 37690538 DOI: 10.1016/j.bbapap.2023.140963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/14/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Cellulases from anaerobic fungi are enzymes less-studied biochemically and structurally than cellulases from bacteria and aerobic fungi. Currently, only thirteen GH5 cellulases from anaerobic fungi were biochemically characterized and two crystal structures were reported. In this context, here, we report the functional and biophysical characterization of a novel multi-modular cellulosomal GH5 endoglucanase from the anaerobic gut fungus Piromyces finnis (named here PfGH5). Multiple sequences alignments indicate that PfGH5 is composed of a GH5 catalytic domain and a CBM1 carbohydrate-binding module connected through a CBM10 dockerin module. Our results showed that PfGH5 is an endoglucanase from anaerobic fungus with a large spectrum of activity. PfGH5 exhibited preference for hydrolysis of oat β-glucan, followed by galactomannan, carboxymethyl cellulose, mannan, lichenan and barley β-glucan, therefore displaying multi-functionality. For oat β-glucan, PfGH5 reaches its optimum enzymatic activity at 40 °C and pH 5.5, with Km of 7.1 μM. Ion exchange chromatography analyzes revealed the production of oligosaccharides with a wide degree of polymerization indicated that PfGH5 has endoglucanase activity. The ability to bind and cleave different types of carbohydrates evidence the potential of PfGH5 for use in biotechnology and provide a useful basis for future investigation and application of new anaerobic fungi enzymes.
Collapse
Affiliation(s)
- Viviane Brito Andrade
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Geizecler Tomazetto
- Department of Biological and Chemical Engineering (BCE), Aarhus University, 8200 Aarhus, Denmark
| | - Dnane Vieira Almeida
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Robson Tramontina
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Fabio Marcio Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
8
|
Yu X, Zhao Y, Yu J, Wang L. Recent advances in the efficient degradation of lignocellulosic metabolic networks by lytic polysaccharide monooxygenase. Acta Biochim Biophys Sin (Shanghai) 2023; 55:529-539. [PMID: 37036250 DOI: 10.3724/abbs.2023059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
Along with long-term evolution, the plant cell wall generates lignocellulose and other anti-degradation barriers to confront hydrolysis by fungi. Lytic polysaccharide monooxygenase (LPMO) is a newly defined oxidase in lignocellulosic degradation systems that significantly fuels hydrolysis. LPMO accepts electrons from wide sources, such as cellobiose dehydrogenase (CDH), glucose-methanol-choline (GMC) oxidoreductases, and small phenols. In addition, the extracellular cometabolic network formed by cosubstrates improves the degradation efficiency, forming a stable and efficient lignocellulose degradation system. In recent years, using structural proteomics to explore the internal structure and the complex redox system of LPMOs has become a research hotspot. In this review, the diversity of LPMOs, catalytic domains, carbohydrate binding modules, direct electron transfer with CDH, cosubstrates, and degradation networks of LPMOs are explored, which can provide a systematic reference for the application of lignocellulosic degradation systems in industrial approaches.
Collapse
Affiliation(s)
- Xinran Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 266035, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
9
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
10
|
Structural and functional insights of the catalytic GH5 and Calx-β domains from the metagenome-derived endoglucanase CelE2. Enzyme Microb Technol 2023; 165:110206. [PMID: 36758494 DOI: 10.1016/j.enzmictec.2023.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Cellulose is the most abundant natural polymer on Earth, representing an attractive feedstock for bioproducts and biofuel production. Cellulases promote the depolymerization of cellulose, generating short oligosaccharides and glucose, which are useful in biotechnological applications. Among the classical cellulases, those from glycoside hydrolase family 5 (GH5) are one of the most abundant in Nature, displaying several modular architectures with other accessory domains attached to its catalytic core, such as carbohydrate-binding modules (CBMs), Ig-like, FN3-like, and Calx-β domains, which can influence the enzyme activity. The metagenome-derived endoglucanase CelE2 has in its modular architecture an N-terminal domain belonging to the GH5 family and a C-terminal domain with a high identity to the Calx-β domain. In this study, the GH5 and the Calx-β domains were subcloned and heterologously expressed in E. coli, to evaluate the structural and functional properties of the individualized domains of CelE2. Thermostability analysis by circular dichroism (CD) revealed a decrease in the denaturation temperature values around 4.6 °C for the catalytic domain (CelE21-381) compared to CelE2 full-length. The CD analyses revealed that the Calx-β domain (CelE2382-477) was unfolded, suggesting that this domain requires to be attached to the catalytic core to become structurally stable. The three-dimensional structure of the catalytic domain CelE21-381 was determined at 2.1 Å resolution, showing a typical (α/β)8-barrel fold and a narrow active site compared to other cellulases from the same family. The biochemical characterization showed that the deletion of the Calx-β domain increased more than 3-fold the activity of the catalytic domain CelE21-381 towards the insoluble substrate Avicel. The main functional properties of CelE2, such as substrate specificity, optimal pH and temperature, thermal stability, and activation by CaCl2, were not altered after the deletion of the accessory domain. Furthermore, the Small Angle X-ray Scattering (SAXS) analyses showed that the addition of CaCl2 was beneficial CelE21-381 protein solvency. This work contributed to fundamental concepts about the structure and function of cellulases, which are useful in applications involving lignocellulosic materials degradation into food and feedstuffs and biofuel production.
Collapse
|
11
|
Qu MB, Guo XX, Kong L, Hou LJ, Yang Q. A midgut-specific lytic polysaccharide monooxygenase of Locusta migratoria is indispensable for the deconstruction of the peritrophic matrix. INSECT SCIENCE 2022; 29:1287-1298. [PMID: 35150068 DOI: 10.1111/1744-7917.13016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are important enzymes that boost the hydrolysis of recalcitrant polysaccharides, such as chitin. They are found extensively in different insect species and are classified as auxiliary activities family 15 (AA15) LPMOs (LPMO15). Some of them were identified from the insect midgut and proven to act on chitin. However, knowledge about their physiological roles during insect growth and development remains limited. Here, we found that midgut-specific LPMO15s are widely distributed in different insect orders, such as the orthopteran Locusta migratoria and the lepidopteran Bombyx mori. Using L. migratoria as a model insect, the function of midgut-specific LmLPMO15-3 during development was investigated. Double-stranded RNA-mediated downregulation of LmLPMO15-3 expression at the 4th or 5th instar nymph stage severely decreased the survival rate and resulted in lethal phenotypes. Hematoxylin and eosin staining results indicated that the deficient individuals exhibited incompletely digested peritrophic matrix (PM), which suggested that LmLPMO15-3 is essential for the deconstruction of the PM during molting. This study provides direct evidence of the physiological importance of a midgut-specific LPMO15 during insect development. As L. migratoria is one of the most destructive agricultural pests, LmLPMO15-3 is a potential target for pest management.
Collapse
Affiliation(s)
- Ming-Bo Qu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Xiao-Xi Guo
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Lin Kong
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Ling-Jie Hou
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning Province, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
12
|
Terrasan CRF, Rubio MV, Gerhardt JA, Cairo JPF, Contesini FJ, Zubieta MP, de Figueiredo FL, Valadares FL, Corrêa TLR, Murakami MT, Franco TT, Davies GJ, Walton PH, Damasio A. Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose. Microbiol Spectr 2022; 10:e0212521. [PMID: 35658600 PMCID: PMC9241910 DOI: 10.1128/spectrum.02125-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are oxidative enzymes found in viruses, archaea, and bacteria as well as eukaryotes, such as fungi, algae and insects, actively contributing to the degradation of different polysaccharides. In Aspergillus nidulans, LPMOs from family AA9 (AnLPMO9s), along with an AA3 cellobiose dehydrogenase (AnCDH1), are cosecreted upon growth on crystalline cellulose and lignocellulosic substrates, indicating their role in the degradation of plant cell wall components. Functional analysis revealed that three target LPMO9s (AnLPMO9C, AnLPMO9F and AnLPMO9G) correspond to cellulose-active enzymes with distinct regioselectivity and activity on cellulose with different proportions of crystalline and amorphous regions. AnLPMO9s deletion and overexpression studies corroborate functional data. The abundantly secreted AnLPMO9F is a major component of the extracellular cellulolytic system, while AnLPMO9G was less abundant and constantly secreted, and acts preferentially on crystalline regions of cellulose, uniquely displaying activity on highly crystalline algae cellulose. Single or double deletion of AnLPMO9s resulted in about 25% reduction in fungal growth on sugarcane straw but not on Avicel, demonstrating the contribution of LPMO9s for the saprophytic fungal lifestyle relies on the degradation of complex lignocellulosic substrates. Although the deletion of AnCDH1 slightly reduced the cellulolytic activity, it did not affect fungal growth indicating the existence of alternative electron donors to LPMOs. Additionally, double or triple knockouts of these enzymes had no accumulative deleterious effect on the cellulolytic activity nor on fungal growth, regardless of the deleted gene. Overexpression of AnLPMO9s in a cellulose-induced secretome background confirmed the importance and applicability of AnLPMO9G to improve lignocellulose saccharification. IMPORTANCE Fungal lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that boost plant biomass degradation in combination with glycoside hydrolases. Secretion of LPMO9s arsenal by Aspergillus nidulans is influenced by the substrate and time of induction. These findings along with the biochemical characterization of novel fungal LPMO9s have implications on our understanding of their concerted action, allowing rational engineering of fungal strains for biotechnological applications such as plant biomass degradation. Additionally, the role of oxidative players in fungal growth on plant biomass was evaluated by deletion and overexpression experiments using a model fungal system.
Collapse
Affiliation(s)
- César Rafael Fanchini Terrasan
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo Ventura Rubio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jaqueline Aline Gerhardt
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Paulo Franco Cairo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabiano Jares Contesini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mariane Paludetti Zubieta
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Lopes de Figueiredo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Lima Valadares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thamy Lívia Ribeiro Corrêa
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mario Tyago Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Telma Teixeira Franco
- Interdisciplinary Center of Energy Planning, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gideon J. Davies
- Department of Chemistry, University of York, York, United Kingdom
| | - Paul H. Walton
- Department of Chemistry, University of York, York, United Kingdom
| | - Andre Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Qu M, Guo X, Tian S, Yang Q, Kim M, Mun S, Noh MY, Kramer KJ, Muthukrishnan S, Arakane Y. AA15 lytic polysaccharide monooxygenase is required for efficient chitinous cuticle turnover during insect molting. Commun Biol 2022; 5:518. [PMID: 35641660 PMCID: PMC9156745 DOI: 10.1038/s42003-022-03469-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
Microbial lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of crystalline polysaccharides including chitin and cellulose. The discovery of a large assortment of LPMO-like proteins widely distributed in insect genomes suggests that they could be involved in assisting chitin degradation in the exoskeleton, tracheae and peritrophic matrix during development. However, the physiological functions of insect LPMO-like proteins are still undetermined. To investigate the functions of insect LPMO15 subgroup I-like proteins (LPMO15-1s), two evolutionarily distant species, Tribolium castaneum and Locusta migratoria, were chosen. Depletion by RNAi of T. castaneum TcLPMO15-1 caused molting arrest at all developmental stages, whereas depletion of the L. migratoria LmLPMO15-1, prevented only adult eclosion. In both species, LPMO15-1-deficient animals were unable to shed their exuviae and died. TEM analysis revealed failure of turnover of the chitinous cuticle, which is critical for completion of molting. Purified recombinant LPMO15-1-like protein from Ostrinia furnacalis (rOfLPMO15-1) exhibited oxidative cleavage activity and substrate preference for chitin. These results reveal the physiological importance of catalytically active LPMO15-1-like proteins from distant insect species and provide new insight into the enzymatic mechanism of cuticular chitin turnover during molting.
Collapse
Affiliation(s)
- Mingbo Qu
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China
| | - Xiaoxi Guo
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China
| | - Shuang Tian
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| | - Myeongjin Kim
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, South Korea
| | - Seulgi Mun
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, South Korea
| | - Mi Young Noh
- Department of Forest Resources, AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju, 61186, South Korea
| | - Karl J Kramer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
14
|
Theoretical perspective on mononuclear copper-oxygen mediated C–H and O–H activations: A comparison between biological and synthetic systems. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63974-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Rajeswari G, Jacob S, Chandel AK, Kumar V. Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach: a review. Microb Cell Fact 2021; 20:107. [PMID: 34044834 PMCID: PMC8161579 DOI: 10.1186/s12934-021-01597-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Uprising fossil fuel depletion and deterioration of ecological reserves supply have led to the search for alternative renewable and sustainable energy sources and chemicals. Although first generation biorefinery is quite successful commercially in generating bulk of biofuels globally, the food versus fuel debate has necessitated the use of non-edible feedstocks, majorly waste biomass, for second generation production of biofuels and chemicals. A diverse class of microbes and enzymes are being exploited for biofuels production for a series of treatment process, however, the conversion efficiency of wide range of lignocellulosic biomass (LCB) and consolidated way of processing remains challenging. There were lot of research efforts in the past decade to scour for potential microbial candidate. In this context, evolution has developed the gut microbiota of several insects and ruminants that are potential LCB degraders host eco-system to overcome its host nutritional constraints, where LCB processed by microbiomes pretends to be a promising candidate. Synergistic microbial symbionts could make a significant contribution towards recycling the renewable carbon from distinctly abundant recalcitrant LCB. Several studies have assessed the bioprospection of innumerable gut symbionts and their lignocellulolytic enzymes for LCB degradation. Though, some reviews exist on molecular characterization of gut microbes, but none of them has enlightened the microbial community design coupled with various LCB valorization which intensifies the microbial diversity in biofuels application. This review provides a deep insight into the significant breakthroughs attained in enrichment strategy of gut microbial community and its molecular characterization techniques which aids in understanding the holistic microbial community dynamics. Special emphasis is placed on gut microbial role in LCB depolymerization strategies to lignocellulolytic enzymes production and its functional metagenomic data mining eventually generating the sugar platform for biofuels and renewable chemicals production.
Collapse
Affiliation(s)
- Gunasekaran Rajeswari
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist. , Kattankulathur, 603203, Tamil Nadu, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist. , Kattankulathur, 603203, Tamil Nadu, India.
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, 12.602.810, Brazil
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| |
Collapse
|