1
|
Alajroush DR, Smith CB, Anderson BF, Oyeyemi IT, Beebe SJ, Holder AA. A Comparison of In Vitro Studies between Cobalt(III) and Copper(II) Complexes with Thiosemicarbazone Ligands to Treat Triple Negative Breast Cancer. Inorganica Chim Acta 2024; 562:121898. [PMID: 38282819 PMCID: PMC10810091 DOI: 10.1016/j.ica.2023.121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Metal complexes have gained significant attention as potential anti-cancer agents. The anti-cancer activity of [Co(phen)2(MeATSC)](NO3)3•1.5H2O•C2H5OH 1 (where phen = 1,10-phenanthroline and MeATSC = 9-anthraldehyde-N(4)-methylthiosemicarbazone) and [Cu(acetylethTSC)Cl]Cl•0.25C2H5OH 2 (where acetylethTSC = (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide) was investigated by analyzing DNA cleavage activity. The cytotoxic effect was analyzed using CCK-8 viability assay. The activities of caspase 3/7, 9, and 1, reactive oxygen species (ROS) production, cell cycle arrest, and mitochondrial function were further analyzed to study the cell death mechanisms. Complex 2 induced a significant increase in nicked DNA. The IC50 values of complex 1 were 17.59 μM and 61.26 μM in cancer and non-cancer cells, respectively. The IC50 values of complex 2 were 5.63 and 12.19 μM for cancer and non-cancer cells, respectively. Complex 1 induced an increase in ROS levels, mitochondrial dysfunction, and activated caspases 3/7, 9, and 1, which indicated the induction of intrinsic apoptotic pathway and pyroptosis. Complex 2 induced cell cycle arrest in the S phase, ROS generation, and caspase 3/7 activation. Thus, complex 1 induced cell death in the breast cancer cell line via activation of oxidative stress which induced apoptosis and pyroptosis while complex 2 induced cell cycle arrest through the induction of DNA cleavage.
Collapse
Affiliation(s)
- Duaa R. Alajroush
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| | - Chloe B. Smith
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| | - Brittney F. Anderson
- Department of Biological Sciences, University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, U.S.A
| | - Ifeoluwa T. Oyeyemi
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
- Department of Biological Sciences, University of Medical Sciences, Ondo City, Nigeria
| | - Stephen J. Beebe
- Frank Reidy Research center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, U.S.A
| | - Alvin A. Holder
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| |
Collapse
|
2
|
Tumakuru Nagarajappa L, Ravi Singh K, Kabuyaya Isamura B, Vinay Kumar KS, Mandayam Anandalwar S, Sadashiva MP. SARS-CoV-2 Mpro binding profile and drug-likeness of two novel thiazole derivatives: structural elucidation, DFT studies, ADME-T and molecular docking simulations. J Biomol Struct Dyn 2023; 41:11122-11136. [PMID: 36576177 DOI: 10.1080/07391102.2022.2159880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Two novel thiazole derivatives, ethyl 5-((4-fluorophenyl)carbamoyl)-thiazole-4-carboxylate (2b) and ethyl 5-(p-tolylcarbamoyl)thiazole-4-carboxylate (6b) have been synthesized, and their crystal structures determined by X-ray diffraction. To rationalize their structure, reactivity and druggability, we have performed a series of separate, but complementary studies. Hirshfeld surface and 2D-fingerprint plots were first scrutinized to qualitatively unveil all the intermolecular interactions that ensure their crystal packing. Moreover, topological electron density parameters established from the quantum theory of atoms-in-molecules (QTAIM) and Reduced Density Gradient (RDG) were later relied on to characterize the chemical bonding of these species, in terms of the nature and magnitude of noncovalent interactions developed within their monomeric and dimeric forms. In both structures, C-H…O hydrogen bonds are found to be stronger than other noncovalent interactions. Furthermore, H…H bonding contacts and non-conventional C-H…O hydrogen bonds both exhibit a closed shell nature, and play in crucial role in the stability of the novel thiazoles. The isosurfaces in the intermolecular region furnished by NCI molecular diagram signifies the existence of weak noncovalent interactions. Finally, the potential inhibitory activity of the titled compounds and their drug-likeness are demonstrated by molecular docking and ADME-T calculations respectively. Both compounds adhere to the Lipinski's rule of five and present encouraging pharmacokinetic properties and safety profiles.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Krishna Ravi Singh
- Department of Studies in Chemistry, University of Mysore, Mysuru, Karnataka, India
| | - Bienfait Kabuyaya Isamura
- Department of Chemistry, The University of Manchester, Manchester, United Kingdom
- Research Center for Theoretical Chemistry and Physics, Faculty of Science, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | | | | |
Collapse
|
3
|
Sakthikumar K, Kabuyaya Isamura B, Krause RWM. Exploring the antioxidant, antimicrobial, cytotoxic and biothermodynamic properties of novel morpholine derivative bioactive Mn(ii), Co(ii) and Ni(ii) complexes - combined experimental and theoretical measurements towards DNA/BSA/SARS-CoV-2 3CL Pro. RSC Med Chem 2023; 14:1667-1697. [PMID: 37731703 PMCID: PMC10508264 DOI: 10.1039/d2md00394e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 09/22/2023] Open
Abstract
A novel class of bioactive complexes (1-3) [MII(L)2(bpy)], where, L = 2-(4-morpholinobenzylideneamino)phenol, bpy = 2,2'-bipyridine, MII = Mn (1), Co (2) or Ni (3), were assigned to octahedral geometry based on analytical and spectral measurements. Gel electrophoresis showed that complex (2) demonstrated significant DNA cleavage activity compared to the other complexes under the action of oxidation agent (H2O2). The DNA binding constant properties measured by various techniques were in the following sequence: (2) > (3) > (1) > (HL), which suggests that the complexes might intercalate DNA, a possibility that is also supported by their biothermodynamic characteristics. The binding constant results for BSA from electronic absorption and fluorometric titrations demonstrate that complex (2) exhibits the highest binding effectiveness among them all, which means that all the compounds could interact with BSA through a static approach, additionally supported by FRET measurements. DFT and docking calculations were employed to realize the electronic structure, reactivity, and interaction capability of all substances with DNA, BSA, and the SARS-CoV-2 main protease. These binding energies fell within the ranges -7.7 to -8.5, -8.2 to -10.1 and -6.7 to -9.3 kcal mol-1, respectively. The higher reactivity of the complexes than the ligand is supported by FMO theory. The in vitro antibacterial, cytotoxicity, and radical scavenging characteristics revealed that complexes (2-3) have better biological efficacy than the others. The cytotoxicity and binding properties also show good correlation with the partition coefficient (log P), which is encouraging because all of the experimental findings are closely correlated with the theoretical measurements.
Collapse
Affiliation(s)
- Karunganathan Sakthikumar
- Organic & Medicinal Chemistry, Department of Chemistry, Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University Grahamstown 6140 Eastern Cape South Africa
| | - Bienfait Kabuyaya Isamura
- Organic & Medicinal Chemistry, Department of Chemistry, Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University Grahamstown 6140 Eastern Cape South Africa
- Department of Chemistry, The University of Manchester Manchester M13 9PL UK
| | - Rui Werner Maçedo Krause
- Organic & Medicinal Chemistry, Department of Chemistry, Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University Grahamstown 6140 Eastern Cape South Africa
- Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University Grahamstown 6140 Eastern Cape South Africa +27 741622674 +27 46 603 7030
| |
Collapse
|
4
|
Zygouri E, Bekiari V, Malis G, Karamanos NK, Koutsakis C, Psomas G, Tangoulis V. pH-Sensitive Gold Nanorods for Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Delivery and DNA-Binding Studies. Molecules 2023; 28:molecules28093780. [PMID: 37175189 PMCID: PMC10179929 DOI: 10.3390/molecules28093780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
A facile experimental protocol for the synthesis of poly(ethylene glycol)-modified (PEGylated) gold nanorods (AuNRs@PEG) is presented as well as an effective drug loading procedure using the non-steroidal anti-inflammatory drug (NSAID) naproxen (NAP). The interaction of AuNRs@PEG and drug-loaded AuNRs (AuNRs@PEG@NAP) with calf-thymus DNA was studied at a diverse temperature revealing different interaction modes; AuNRs@PEG may interact via groove-binding and AuNRs@PEG@NAP may intercalate to DNA-bases. The cleavage activity of the gold nanoparticles for supercoiled circular pBR322 plasmid DNA was studied by gel electrophoresis while their affinity for human and bovine serum albumins was also evaluated. Drug-release studies revealed a pH-sensitive behavior with a release up to a maximum of 24% and 33% NAP within the first 180 min at pH = 4.2 and 6.8, respectively. The cytotoxicity of AuNRs@PEG and AuNRs@PEG@NAP was evaluated against MCF-7 and MDA-MB-231 breast cancer cell lines. The development of AuNRs as an efficient non-steroidal anti-inflammatory drugs (NSAIDs) delivery system for chemotherapy is still in its infancy. The present work can shed light and inspire other research groups to work in this direction.
Collapse
Affiliation(s)
- Eleni Zygouri
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, 26504 Patras, Greece
| | - Vlasoula Bekiari
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece
| | - Georgios Malis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), 26504 Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vassilis Tangoulis
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
5
|
Rajan D, Rajamanikandan R, Ilanchelian M. Investigating the biophysical interaction of serum albumins-gold nanorods using hybrid spectroscopic and computational approaches with the intent of enhancing cytotoxicity efficiency of targeted drug delivery. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
6
|
Vazquez-Rodriguez S, Ramírez-Contreras D, Noriega L, García-García A, Sánchez-Gaytán BL, Melendez FJ, Castro ME, de Azevedo WF, González-Vergara E. Interaction of copper potential metallodrugs with TMPRSS2: A comparative study of docking tools and its implications on COVID-19. Front Chem 2023; 11:1128859. [PMID: 36778030 PMCID: PMC9909424 DOI: 10.3389/fchem.2023.1128859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
SARS-CoV-2 is the virus responsible for the COVID-19 pandemic. For the virus to enter the host cell, its spike (S) protein binds to the ACE2 receptor, and the transmembrane protease serine 2 (TMPRSS2) cleaves the binding for the fusion. As part of the research on COVID-19 treatments, several Casiopeina-analogs presented here were looked at as TMPRSS2 inhibitors. Using the DFT and conceptual-DFT methods, it was found that the global reactivity indices of the optimized molecular structures of the inhibitors could be used to predict their pharmacological activity. In addition, molecular docking programs (AutoDock4, Molegro Virtual Docker, and GOLD) were used to find the best potential inhibitors by looking at how they interact with key amino acid residues (His296, Asp 345, and Ser441) in the catalytic triad. The results show that in many cases, at least one of the amino acids in the triad is involved in the interaction. In the best cases, Asp435 interacts with the terminal nitrogen atoms of the side chains in a similar way to inhibitors such as nafamostat, camostat, and gabexate. Since the copper compounds localize just above the catalytic triad, they could stop substrates from getting into it. The binding energies are in the range of other synthetic drugs already on the market. Because serine protease could be an excellent target to stop the virus from getting inside the cell, the analyzed complexes are an excellent place to start looking for new drugs to treat COVID-19.
Collapse
Affiliation(s)
- Sergio Vazquez-Rodriguez
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Diego Ramírez-Contreras
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Lisset Noriega
- Laboratorio de Química Teórica, Depto. de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico,Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Mexico
| | - Amalia García-García
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico,Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Brenda L. Sánchez-Gaytán
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Francisco J. Melendez
- Laboratorio de Química Teórica, Depto. de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - María Eugenia Castro
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico,*Correspondence: María Eugenia Castro, ; Enrique González-Vergara,
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Enrique González-Vergara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico,*Correspondence: María Eugenia Castro, ; Enrique González-Vergara,
| |
Collapse
|
7
|
An Integrated Analysis of Mechanistic Insights into Biomolecular Interactions and Molecular Dynamics of Bio-Inspired Cu(II) and Zn(II) Complexes towards DNA/BSA/SARS-CoV-2 3CL pro by Molecular Docking-Based Virtual Screening and FRET Detection. Biomolecules 2022; 12:biom12121883. [PMID: 36551312 PMCID: PMC9775322 DOI: 10.3390/biom12121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Novel constructed bioactive mixed-ligand complexes (1b) [CuII(L)2(phen)] and (2b) [ZnII(L)2(phen)] {where, L = 2-(4-morpholinobenzylideneamino)phenol), phen = 1,10-phenanthroline} have been structurally analysed by various analytical and spectroscopic techniques, including, magnetic moments, thermogravimetric analysis, and X-ray crystallography. Various analytical and spectral measurements assigned showed that all complexes appear to have an octahedral geometry. Agar gel electrophoresis's output demonstrated that the Cu(II) complex (1b) had efficient deoxyribonucleic cleavage and complex (2b) demonstrated the partial cleavage accomplished with an oxidation agent, which generates spreadable OH● through the Fenton type mechanism. The DNA binding constants observed from viscosity, UV-Vis spectral, fluorometric, and electrochemical titrations were in the following sequence: (1b) > (2b) > (HL), which suggests that the complexes (1b-2b) might intercalate DNA, a possibility that is supported by the biothermodynamic measurements. In addition, the observed binding constant results of BSA by electronic absorption and fluorometric titrations indicate that complex (1b) revealed the best binding efficacy as compared to complex (2b) and free ligand. Interestingly, all compounds are found to interact with BSA through a static approach, as further attested by FRET detection. The DFT and molecular docking calculations were also performed to realize the electronic structure, reactivity, and binding capability of all test samples with CT-DNA, BSA, and the SARS-CoV-2 3CLPro, which revealed the binding energies were in a range of -8.1 to -8.9, -7.5 to -10.5 and -6.7--8.8 kcal/mol, respectively. The higher reactivity of the complexes than the free ligand is supported by the FMO theory. Among all the observed data for antioxidant properties against DPPH᛫, ᛫OH, O2-• and NO᛫ free radicals, complex (1a) had the best biological efficacy. The antimicrobial and cytotoxic characteristics of all test compounds have been studied by screening against certain selected microorganisms as well as against A549, HepG2, MCF-7, and NHDF cell lines, respectively. The observed findings revealed that the activity enhances coordination as compared to free ligand via Overtone's and Tweedy's chelation mechanisms. This is especially encouraging given that in every case, the experimental findings and theoretical detections were in perfect accord.
Collapse
|
8
|
Comprehensive Assessment of Biomolecular Interactions of Morpholine-Based Mixed Ligand Cu(II) and Zn(II) Complexes of 2,2'-Bipyridine as Potential Anticancer and SARS-CoV-2 Agents: A Synergistic Experimental and Structure-Based Virtual Screening. Bioinorg Chem Appl 2022; 2022:6987806. [PMID: 36545430 PMCID: PMC9763021 DOI: 10.1155/2022/6987806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
A new class of pharmacologically active mixed-ligand complexes (1a-2a) [MII(L)2 (bpy)], where L = 2-(4-morpholinobenzylideneamino)phenol), bpy = 2,2'-bipyridine, MII = Cu (1a), and Zn (2a), were assigned an octahedral geometry by analytical and spectral measurements. Gel electrophoresis showed that complex (1a) demonstrated the complete DNA cleavage mediated by H2O2. The overall DNA-binding constants observed from UV-vis, fluorometric, hydrodynamic, and electrochemical titrations were in the following sequence: (1a) > (2a) > (HL), which suggests that the complexes might intercalate DNA, a possibility that is further supported by the biothermodynamic characteristics. The binding constant results of BSA by electronic absorption and fluorometric titration demonstrate that complex (1a) exhibits the highest binding effectiveness among others, which means that all compounds could interact with BSA through a static approach, additionally supported by FRET measurements. Density FunctionalTheory (DFT) and molecular docking calculations were relied on to unveil the electronic structure, reactivity, and interacting capability of all substances with DNA, BSA, and SARS-CoV-2 main protease (Mpro). These observed binding energies fell within the following ranges: -7.7 to -8.6, -7.2 to -10.2, and -6.7 to -8.2 kcal/mol, respectively. The higher reactivity of the complexes compared to free ligand is supported by the Frontier MolecularOrbital (FMO) theory. The in vitro antibacterial, cytotoxic, and radical scavenging characteristics revealed that complex (1a) has the best biological efficacy compared to others. This is encouraged because all experimental findings are closely correlated with the theoretical measurements.
Collapse
|