1
|
Jiang M, Yan Q, Fu Y, Meng L, Gai S, Pan X, Qin Y, Jiang C. Development of Cu(II) 4-hydroxybenzoylhydrazone complexes that induce mitochondrial DNA damage and mitochondria-mediated apoptosis in liver cancer. J Inorg Biochem 2024; 256:112550. [PMID: 38599004 DOI: 10.1016/j.jinorgbio.2024.112550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Cisplatin remains the most widely used chemotherapeutic agent in cancer treatment; however, its inherent drawbacks have fueled the development of novel metalloanticancer drugs. In this study, two novel Cu(II) complexes (Cu1 and Cu2) were designed and synthesized. Notably, these Cu(II) complexes showed higher cytotoxicity against HL-7402 cells than cisplatin. Moreover, Cu(II) complexes significantly inhibited liver cancer growth in a xenograft model. A mechanism study revealed that the Cu(II) complexes reduced the mitochondrial membrane potential of cancer cells, produced excessive reactive oxygen species (ROS), induced mitochondrial DNA (mtDNA) damage, and ultimately facilitated cancer cell apoptosis.
Collapse
Affiliation(s)
- Ming Jiang
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China.
| | - Qiwei Yan
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Yuanping Fu
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Lili Meng
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Shuangshuang Gai
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Xiaohui Pan
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Yiming Qin
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Caiyun Jiang
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China.
| |
Collapse
|
2
|
Du LQ, Zeng CJ, Mo DY, Qin QP, Tan MX, Liang H. 8-hydroxyquinoline-N-oxide copper(II)- and zinc(II)-phenanthroline and bipyridine coordination compounds: Design, synthesis, structures, and antitumor evaluation. J Inorg Biochem 2024; 251:112443. [PMID: 38100902 DOI: 10.1016/j.jinorgbio.2023.112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Fourteen novel tumor-targeting copper(II) and zinc(II) complexes, [Cu(ONQ)(QD1)(NO3)]·CH3OH (NQ3), [Cu(ONQ)(QD2)(NO3)] (NQ2), [Cu(NQ)(QD2)Cl] (NQ3), [Cu(ONQ)(QD1)Cl] (NQ4), [Cu(ONQ)(QD3)](NO3) (NQ5), [Cu(ONQ)(QD3)Cl] (NQ6), [Zn(ONQ)(QD4)Cl] (NQ7), [Zn(ONQ)(QD1)Cl] (NQ8), [Zn(ONQ)(QD5)Cl] (NQ9), [Zn(ONQ)(QD2)Cl] (NQ10), [Zn(ONQ)(QD6)Cl] (NQ11), [Zn(ONQ)(QD7)Cl] (NQ12), and [Zn(ONQ)(QD3)Cl] (NQ13) supported on 8-hydroxyquinoline-N-oxide (H-ONQ), 2,2'-dipyridyl (QD1), 5,5'-dimethyl-2,2'-bipyridyl (QD2), 1,10-phenanthroline (QD3), 4,4'-dimethoxy-2,2'-bipyridyl (QD4), 4,4'-dimethyl-2,2'-bipyridyl (QD5), 5-chloro-1,10-phenanthroline (QD6), and bathophenanthroline (QD7), were first synthesized and characterized using various spectroscopic techniques. Furthermore, NQ1-NQ13 exhibited higher antiproliferative activity and selectivity for cisplatin-resistant SK-OV-3/DDP tumor cells (CiSK3) compared to normal HL-7702 cells based on results obtained from the cell counting Kit-8 (CCK-8) assay. The complexation of copper(II) ion with QD2 and ONQ ligands resulted in an evident increase in the antiproliferation of NQ1-NQ6, with NQ6 exhibiting the highest antitumor potency against CiSK3 cells compared to NQ1-NQ5, H-ONQ, QD1-QD7, and NQ7-NQ13 as well as the reference cisplatin drug with an IC50 value of 0.17 ± 0.05 μM. Mechanistic studies revealed that NQ4 and NQ6 induced apoptosis of CiSK3 cells via mitophagy pathway regulation and adenosine triphosphate (ATP) depletion. Further, the differential induction of mitophagy decreased in the order of NQ6 > NQ4, which can be attributed to the major impact of the QD3 ligand with a large planar geometry and the Cl leaving group within the NQ6 complex. In summary, these results confirmed that the newly synthesized H-ONQ copper(II) and zinc(II) coordination metal compounds NQ1-NQ13 exhibit potential as anticancer drugs for cisplatin-resistant ovarian CiSK3 cancer treatment.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Chu-Jie Zeng
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Dong-Yin Mo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|