1
|
Sajadi F, Vergara-Martínez MF, Paluzzi JPV. The V-type H +-ATPase is targeted in antidiuretic hormone control of the Malpighian "renal" tubules. Proc Natl Acad Sci U S A 2023; 120:e2308602120. [PMID: 38096413 PMCID: PMC10743368 DOI: 10.1073/pnas.2308602120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Like other insects, secretion by mosquito Malpighian tubules (MTs) is driven by the V-type H+-ATPase (VA) localized in the apical membrane of principal cells. In Aedes aegypti, the antidiuretic neurohormone CAPA inhibits secretion by MTs stimulated by select diuretic hormones; however, the cellular effectors of this inhibitory signaling cascade remain unclear. Herein, we demonstrate that the VA inhibitor bafilomycin selectively inhibits serotonin (5HT)- and calcitonin-related diuretic hormone (DH31)-stimulated secretion. VA activity increases in DH31-treated MTs, whereas CAPA abolishes this increase through a NOS/cGMP/PKG signaling pathway. A critical feature of VA activation involves the reversible association of the cytosolic (V1) and membrane (Vo) complexes. Indeed, higher V1 protein abundance was found in membrane fractions of DH31-treated MTs, whereas CAPA significantly decreased V1 abundance in membrane fractions while increasing it in cytosolic fractions. V1 immunolocalization was observed strictly in the apical membrane of DH31-treated MTs, whereas immunoreactivity was dispersed following CAPA treatment. VA complexes colocalized apically in female MTs shortly after a blood meal consistent with the peak and postpeak phases of diuresis. Comparatively, V1 immunoreactivity in MTs was more dispersed and did not colocalize with the Vo complex in the apical membrane at 3 h post blood meal, representing a time point after the late phase of diuresis has concluded. Therefore, CAPA inhibition of MTs involves reducing VA activity and promotes complex dissociation hindering secretion. Collectively, these findings reveal a key target in hormone-mediated inhibition of MTs countering diuresis that provides a deeper understanding of this critical physiological process necessary for hydromineral balance.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, Toronto, ONM3J 1P3, Canada
| | - María Fernanda Vergara-Martínez
- Department of Biology, York University, Toronto, ONM3J 1P3, Canada
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, 04510, México
| | | |
Collapse
|
2
|
Cerri F, Araujo MDS, Aguirre ADAR, Evaristo GPC, Evaristo JAM, Nogueira FCS, de Medeiros JF, Dias QM. Crude saliva of Amblyomma cajennense sensu stricto (Acari: Ixodidae) reduces locomotor activity and increases the hemocyte number in the females of Aedes aegypti (Diptera: Culicidae). Exp Parasitol 2023:108570. [PMID: 37330106 DOI: 10.1016/j.exppara.2023.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Aedes aegypti are vector insects of arboviruses such as dengue, Zika, and chikungunya. All available vector control methods have limited efficacy, highlighting the urgent need to find alternative ones. Evidence shows that arachnids like ticks are sources of biologically active compounds. Moreover, chemical modulation of the locomotor and immune systems of vector insects can be used to control arbovirus transmission. The present study evaluated the effectiveness of crude saliva of female Amblyomma cajennense sensu stricto (s.s.) ticks in reducing locomotor activity and inducing an immune response in Ae. aegypti females. Additionally, the study evaluated the protein constitution of tick saliva. For this purpose, the crude saliva obtained from several semi-engorged A. cajennense females was used. A volume of 0.2 nL of crude tick saliva was administered to mosquitoes by direct intrathoracic microinjection. The effect of the tick's saliva on the locomotor activity of the mosquito was observed using Flybox, a video-automated monitoring system, and the hemolymph hemocyte levels were quantified by reading slides under a light microscope. The protein concentration of the crude tick saliva was 1.27 μg/μL, and its electrophoretic profile indicates the presence of proteins with a molecular weight ranging between ∼17 and 95 kDa. Microplusins, ixodegrins, cystatin, actins, beta-actin, calponin, albumin, alpha-globulins, and hemoglobin were the main proteins identified by proteomics in the saliva of A. cajennense. The microinjected saliva had low toxicity for Ae. aegypti females and significantly reduced their locomotor activity, especially in the transition between the light and dark phases. The crude tick saliva did not change the period and rhythmicity of the circadian cycle. The tick saliva significantly increased the number of hemocytes two days after injection and reduced it after five days. These results suggest that further evaluation of the biological properties of tick saliva proteins against Ae. aegypti would be of interest.
Collapse
Affiliation(s)
- Fabiano Cerri
- Laboratório de Neuro e Imunofarmacologia (NIMFAR) - Fundação Oswaldo Cruz (FIOCRUZ Rondônia) - Fundação Oswaldo Cruz, Porto Velho, RO, Brazil; Universidade Federal de Rondônia - Programa de Pós-Graduação em Biologia Experimental, (PGBIOEXP), Brazil
| | - Maisa da Silva Araujo
- Laboratório de Entomologia/Plataforma de Produção e Infecção de Vetores da Malária (PIVEM) - Fundação Oswaldo Cruz (FIOCRUZ Rondônia) - Fundação Oswaldo Cruz, Porto Velho, RO, Brazil
| | - André de Abreu Rangel Aguirre
- Laboratório de Entomologia/Plataforma de Produção e Infecção de Vetores da Malária (PIVEM) - Fundação Oswaldo Cruz (FIOCRUZ Rondônia) - Fundação Oswaldo Cruz, Porto Velho, RO, Brazil
| | | | - Joseph Albert Medeiros Evaristo
- Laboratório de Proteômica, LADETEC, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fábio César Sousa Nogueira
- Laboratório de Proteômica, LADETEC, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jansen Fernandes de Medeiros
- Universidade Federal de Rondônia - Programa de Pós-Graduação em Biologia Experimental, (PGBIOEXP), Brazil; Laboratório de Entomologia/Plataforma de Produção e Infecção de Vetores da Malária (PIVEM) - Fundação Oswaldo Cruz (FIOCRUZ Rondônia) - Fundação Oswaldo Cruz, Porto Velho, RO, Brazil
| | - Quintino Moura Dias
- Laboratório de Neuro e Imunofarmacologia (NIMFAR) - Fundação Oswaldo Cruz (FIOCRUZ Rondônia) - Fundação Oswaldo Cruz, Porto Velho, RO, Brazil; Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT - NIM), Rio de Janeiro, RJ, Brazil; Universidade Federal de Rondônia - Programa de Pós-Graduação em Biologia Experimental, (PGBIOEXP), Brazil.
| |
Collapse
|
3
|
Kandel Y, Pinch M, Lamsal M, Martinez N, Hansen IA. Exploratory phosphoproteomics profiling of Aedes aegypti Malpighian tubules during blood meal processing reveals dramatic transition in function. PLoS One 2022; 17:e0271248. [PMID: 35802606 PMCID: PMC9269769 DOI: 10.1371/journal.pone.0271248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Malpighian tubules, the renal organs of mosquitoes, facilitate the rapid dehydration of blood meals through aquaporin-mediated osmosis. We performed phosphoproteomics analysis of three Malpighian tubule protein-libraries (1000 tubules/sample) from unfed female mosquitoes as well as one and 24 hours after a blood meal. We identified 4663 putative phosphorylation sites in 1955 different proteins. Our exploratory dataset reveals blood meal-induced changes in phosphorylation patterns in many subunits of V-ATPase, proteins of the target of rapamycin signaling pathway, vesicle-mediated protein transport proteins, proteins involved in monocarboxylate transport, and aquaporins. Our phosphoproteomics data suggest the involvement of a variety of new pathways including nutrient-signaling, membrane protein shuttling, and paracellular water flow in the regulation of urine excretion. Our results support a model in which aquaporin channels translocate from intracellular vesicles to the cell membrane of stellate cells and the brush border membrane of principal cells upon blood feeding.
Collapse
Affiliation(s)
- Yashoda Kandel
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Matthew Pinch
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Mahesh Lamsal
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Nathan Martinez
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Immo A. Hansen
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
4
|
Sajadi F, Paluzzi JPV. Hormonal regulation and functional role of the "renal" tubules in the disease vector, Aedes aegypti. VITAMINS AND HORMONES 2021; 117:189-225. [PMID: 34420581 DOI: 10.1016/bs.vh.2021.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Aedes aegypti mosquito is a vector responsible for transmitting various arboviruses including dengue and yellow fever. Their ability to regulate the ionic and water composition of their hemolymph is a major physiological phenomenon, allowing the mosquito to adapt to a range of ecological niches. Hematophagus insects, including the female A. aegypti, face the challenge of excess salt and water intake after a blood meal. Post-prandial diuresis is under rigorous control by neuroendocrine factors, acting on the Malpighian "renal" tubules (MTs), to regulate primary urine production. The MTs are made up of two cell types; mitochondria-rich principal cells, which facilitate active transport of Na+ and K+ cations across the membrane, and thin stellate cells, which allows for transepithelial Cl- secretion. The active driving force responsible for ion transport is the apical V-type H+ ATPase, which creates a proton gradient allowing for Na+ and/or K+ cation exchange through cation/H+ antiporters. Additionally, the basolaterally localized Na+-K+-2Cl- cotransporter (NKCC) is responsible for the transport of these ions from the hemolymph into the principal cells. Numerous studies have examined hormonal regulation of the mosquito MTs and identified several diuretics including serotonin (5HT), a calcitonin-related diuretic hormone 31 (DH31), a corticotropin-related factor like diuretic peptide (DH44), a kinin-related diuretic peptide, as well as anti-diuretic factors including CAPA peptides, all of which are known to regulate fluid and ion transport by the MTs. This review therefore focuses on the control of ionic homeostasis in A. aegypti mosquitoes, emphasizing the importance of the MTs, the channels and transporters involved in maintaining hydromineral balance, and the neuroendocrine regulation of both diuresis and anti-diuresis.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, Toronto, ON, Canada
| | | |
Collapse
|
5
|
Esquivel CJ, Cassone BJ, Piermarini PM. Transcriptomic evidence for a dramatic functional transition of the malpighian tubules after a blood meal in the Asian tiger mosquito Aedes albopictus. PLoS Negl Trop Dis 2014; 8:e2929. [PMID: 24901705 PMCID: PMC4046972 DOI: 10.1371/journal.pntd.0002929] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/21/2014] [Indexed: 01/02/2023] Open
Abstract
Background The consumption of a vertebrate blood meal by adult female mosquitoes is necessary for their reproduction, but it also presents significant physiological challenges to mosquito osmoregulation and metabolism. The renal (Malpighian) tubules of mosquitoes play critical roles in the initial processing of the blood meal by excreting excess water and salts that are ingested. However, it is unclear how the tubules contribute to the metabolism and excretion of wastes (e.g., heme, ammonia) produced during the digestion of blood. Methodology/Principal Findings Here we used RNA-Seq to examine global changes in transcript expression in the Malpighian tubules of the highly-invasive Asian tiger mosquito Aedes albopictus during the first 24 h after consuming a blood meal. We found progressive, global changes in the transcriptome of the Malpighian tubules isolated from mosquitoes at 3 h, 12 h, and 24 h after a blood meal. Notably, a DAVID functional cluster analysis of the differentially-expressed transcripts revealed 1) a down-regulation of transcripts associated with oxidative metabolism, active transport, and mRNA translation, and 2) an up-regulation of transcripts associated with antioxidants and detoxification, proteolytic activity, amino-acid metabolism, and cytoskeletal dynamics. Conclusions/Significance The results suggest that blood feeding elicits a functional transition of the epithelium from one specializing in active transepithelial fluid secretion (e.g., diuresis) to one specializing in detoxification and metabolic waste excretion. Our findings provide the first insights into the putative roles of mosquito Malpighian tubules in the chronic processing of blood meals. The Asian tiger mosquito Aedes albopictus is a vector of several medically-important arboviruses and one of the most invasive mosquito species in the world. Existing control measures for mosquitoes are presently being challenged by the emergence of resistance to insecticides that target the nervous system. Thus, it is necessary to identify novel physiological targets to guide the development of new insecticides. We recently demonstrated that the ‘kidneys’ (Malpighian tubules) of mosquitoes offer a valuable, new physiological target for insecticides. However, our understanding of how this tissue contributes to the chronic metabolic processing of blood meals by mosquitoes is limited. Here we characterize the changes in transcript expression that occur in the Malpighian tubules of adult female A. albopictus with the goal of identifying key molecular pathways that may reveal valuable targets for insecticide development. We find dramatic changes in transcript accumulation in Malpighian tubules, which 1) provide new insights into the potential functional roles of Malpighian tubules after a blood meal, and 2) reveal new potential molecular pathways and targets to guide the development of new insecticides that would disrupt the renal functions of mosquitoes.
Collapse
Affiliation(s)
- Carlos J. Esquivel
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Bryan J. Cassone
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Peter M. Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail:
| |
Collapse
|
6
|
Miyauchi JT, Piermarini PM, Yang JD, Gilligan DM, Beyenbach KW. Roles of PKC and phospho-adducin in transepithelial fluid secretion by Malpighian tubules of the yellow fever mosquito. Tissue Barriers 2013; 1. [PMID: 24062972 PMCID: PMC3779481 DOI: 10.4161/tisb.23120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The diuretic hormone aedeskinin-III is known to increase the paracellular Cl- conductance in Malpighian (renal) tubules of the mosquito Aedes aegypti via a G protein-coupled receptor. The increase serves the blood-meal-initiated diuresis and is associated with elevated levels of Ca2+ and phosphorylated adducin in the cytosol of tubule. In the present study we have cloned adducin in Aedes Malpighian tubules and investigated its physiological roles. Immunolabeling experiments are consistent with the association of adducin with the cortical cytoskeleton, especially near the apical brush border of the tubule. An antibody against phosphorylated adducin revealed the transient phosphorylation of adducin 2 min after stimulating tubules with aedeskinin-III. The PKC inhibitor bisindolylmaleimide-I blocked the phosphorylation of adducin as well as the electrophysiological and diuretic effects of aedeskinin-III. Bisindolylmaleimide-I also inhibited fluid secretion in control tubules. Phorbol 12-myristate 13-acetate increased phosphorylated adducin levels in Malpighian tubules, but it inhibited fluid secretion. Thus, the phosphorylation of adducin by PKC alone is insufficient to trigger diuretic rates of fluid secretion; elevated levels of intracellular Ca2+ may also be required. The above results suggest that the phosphorylation of adducin, which is known to destabilize the cytoskeleton, may (1) facilitate the traffic of transporters into the apical brush border supporting diuretic rates of cation secretion and (2) destabilize proteins in the septate junction thereby enabling paracellular anion (Cl-) secretion at diuretic rates. Moreover, PKC and the phosphorylation of adducin play a central role in control and diuretic tubules, consistent with the dynamic behavior of both transcellular and paracellular transport pathways.
Collapse
Affiliation(s)
- Jeremy T Miyauchi
- Department of Biomedical Sciences; College of Veterinary Medicine; Cornell University; Ithaca, NY USA
| | | | | | | | | |
Collapse
|
7
|
Kwon H, Lu HL, Longnecker MT, Pietrantonio PV. Role in diuresis of a calcitonin receptor (GPRCAL1) expressed in a distal-proximal gradient in renal organs of the mosquito Aedes aegypti (L.). PLoS One 2012; 7:e50374. [PMID: 23209727 PMCID: PMC3510207 DOI: 10.1371/journal.pone.0050374] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/19/2012] [Indexed: 11/18/2022] Open
Abstract
Evolution of anthropophilic hematophagy in insects resulted in the coordination of various physiological processes for survival. In female mosquitoes, a large blood meal provides proteins for egg production and as a trade-off, rapid elimination of the excess water and solutes (Na(+), Cl(-)) is critical for maintaining homeostasis and removing excess weight to resume flight and avoid predation. This post-prandial excretion is achieved by the concerted action of multiple hormones. Diuresis and natriuresis elicited by the calcitonin-like diuretic hormone 31 (DH(31)) are believed to be mediated by a yet uncharacterized calcitonin receptor (GPRCAL) in the mosquito Malpighian tubules (MTs), the renal organs. To contribute knowledge on endocrinology of mosquito diuresis we cloned GPRCAL1 from MT cDNA. This receptor is the ortholog of the DH(31) receptor from Drosophila melanogaster that is expressed in principal cells of the fruit fly MT. Immunofluorescence similarly showed AaegGPRCAL1 is present in MT principal cells in A. aegypti, however, exhibiting an overall gradient-like pattern along the tubule novel for a GPCR in insects. Variegated, cell-specific receptor expression revealed a subpopulation of otherwise phenotypically similar principal cells. To investigate the receptor contribution to fluid elimination, RNAi was followed by urine measurement assays. In vitro, MTs from females that underwent AaegGPRcal1 knock-down exhibited up to 57% decrease in the rate of fluid secretion in response to DH(31). Live females treated with AaegGPRcal1 dsRNA exhibited 30% reduction in fluid excreted after a blood meal. The RNAi-induced phenotype demonstrates the critical contribution of this single secretin-like family B GPCR to fluid excretion in invertebrates and highlights its relevance for the blood feeding adaptation. Our results with the mosquito AaegGPRCAL1 imply that the regulatory function of calcitonin-like receptors for ion and fluid transport in renal organs arose early in evolution.
Collapse
Affiliation(s)
- Hyeogsun Kwon
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Hsiao-Ling Lu
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Michael T. Longnecker
- Department of Statistics, Texas A&M University, College Station, Texas, United States of America
| | - Patricia V. Pietrantonio
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
8
|
Beyenbach KW, Piermarini PM. Transcellular and paracellular pathways of transepithelial fluid secretion in Malpighian (renal) tubules of the yellow fever mosquito Aedes aegypti. Acta Physiol (Oxf) 2011; 202:387-407. [PMID: 20946239 PMCID: PMC3032036 DOI: 10.1111/j.1748-1716.2010.02195.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Isolated Malpighian tubules of the yellow fever mosquito secrete NaCl and KCl from the peritubular bath to the tubule lumen via active transport of Na(+) and K(+) by principal cells. Lumen-positive transepithelial voltages are the result. The counter-ion Cl(-) follows passively by electrodiffusion through the paracellular pathway. Water follows by osmosis, but specific routes for water across the epithelium are unknown. Remarkably, the transepithelial secretion of NaCl, KCl and water is driven by a H(+) V-ATPase located in the apical brush border membrane of principal cells and not the canonical Na(+), K(+) -ATPase. A hypothetical cation/H(+) exchanger moves Na(+) and K(+) from the cytoplasm to the tubule lumen. Also remarkable is the dynamic regulation of the paracellular permeability with switch-like speed which mediates in part the post-blood-meal diuresis in mosquitoes. For example, the blood meal the female mosquito takes to nourish her eggs triggers the release of kinin diuretic peptides that (i) increases the Cl(-) conductance of the paracellular pathway and (ii) assembles V(1) and V(0) complexes to activate the H(+) V-ATPase and cation/H(+) exchange close by. Thus, transcellular and paracellular pathways are both stimulated to quickly rid the mosquito of the unwanted salts and water of the blood meal. Stellate cells of the tubule appear to serve a metabolic support role, exporting the HCO(3)(-) generated during stimulated transport activity. Septate junctions define the properties of the paracellular pathway in Malpighian tubules, but the proteins responsible for the permselectivity and barrier functions of the septate junction are unknown.
Collapse
Affiliation(s)
- K W Beyenbach
- Department of Biomedical Sciences, VRT 8004, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
9
|
Huss M, Vitavska O, Albertmelcher A, Bockelmann S, Nardmann C, Tabke K, Tiburcy F, Wieczorek H. Vacuolar H(+)-ATPases: intra- and intermolecular interactions. Eur J Cell Biol 2011; 90:688-95. [PMID: 21640428 DOI: 10.1016/j.ejcb.2011.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
V-ATPases in eukaryotes are heteromultimeric, H(+)-transporting proteins. They are localized in a multitude of different membranes and energize many different transport processes. Unique features of V-ATPases are, on the one hand, their ability to regulate enzymatic and ion transporting activity by the reversible dissociation of the catalytic V(1) complex from the membrane bound proton translocating V(0) complex and, on the other hand, their high sensitivity to specific macrolides such as bafilomycin and concanamycin from streptomycetes or archazolid and apicularen from myxomycetes. Both features require distinct intramolecular as well as intermolecular interactions. Here we will summarize our own results together with newer developments in both of these research areas.
Collapse
Affiliation(s)
- Markus Huss
- University of Osnabrück, Faculty of Biology and Chemistry, Department of Animal Physiology, Barbarastrasse 11, 49076 Osnabrück, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wieczorek H, Beyenbach KW, Huss M, Vitavska O. Vacuolar-type proton pumps in insect epithelia. ACTA ACUST UNITED AC 2009; 212:1611-9. [PMID: 19448071 DOI: 10.1242/jeb.030007] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Active transepithelial cation transport in insects was initially discovered in Malpighian tubules, and was subsequently also found in other epithelia such as salivary glands, labial glands, midgut and sensory sensilla. Today it appears to be established that the cation pump is a two-component system of a H(+)-transporting V-ATPase and a cation/nH(+) antiporter. After tracing the discovery of the V-ATPase as the energizer of K(+)/nH(+) antiport in the larval midgut of the tobacco hornworm Manduca sexta we show that research on the tobacco hornworm V-ATPase delivered important findings that emerged to be of general significance for our knowledge of V-ATPases, which are ubiquitous and highly conserved proton pumps. We then discuss the V-ATPase in Malpighian tubules of the fruitfly Drosophila melanogaster where the potential of post-genomic biology has been impressively illustrated. Finally we review an integrated physiological approach in Malpighian tubules of the yellow fever mosquito Aedes aegypti which shows that the V-ATPase delivers the energy for both transcellular and paracellular ion transport.
Collapse
Affiliation(s)
- Helmut Wieczorek
- Department of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| | | | | | | |
Collapse
|
11
|
Piermarini PM, Weihrauch D, Meyer H, Huss M, Beyenbach KW. NHE8 is an intracellular cation/H+ exchanger in renal tubules of the yellow fever mosquito Aedes aegypti. Am J Physiol Renal Physiol 2009; 296:F730-50. [PMID: 19193723 PMCID: PMC2670640 DOI: 10.1152/ajprenal.90564.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/27/2009] [Indexed: 11/22/2022] Open
Abstract
The goal of this study was to identify and characterize the hypothesized apical cation/H(+) exchanger responsible for K(+) and/or Na(+) secretion in the renal (Malpighian) tubules of the yellow fever mosquito Aedes aegypti. From Aedes Malpighian tubules, we cloned "AeNHE8," a full-length cDNA encoding an ortholog of mammalian Na(+)/H(+) exchanger 8 (NHE8). The expression of AeNHE8 transcripts is ubiquitous among mosquito tissues and is not enriched in Malpighian tubules. Western blots of Malpighian tubules suggest that AeNHE8 is expressed primarily as an intracellular protein, which was confirmed by immunohistochemical localizations in Malpighian tubules. AeNHE8 immunoreactivity is expressed in principal cells of the secretory, distal segments, where it localizes to a subapical compartment (e.g., vesicles or endosomes), but not in the apical brush border. Furthermore, feeding mosquitoes a blood meal or treating isolated tubules with dibutyryl-cAMP, both of which stimulate a natriuresis by Malpighian tubules, do not influence the intracellular localization of AeNHE8 in principal cells. When expressed heterologously in Xenopus laevis oocytes, AeNHE8 mediates EIPA-sensitive Na/H exchange, in which Li(+) partially and K(+) poorly replace Na(+). The expression of AeNHE8 in Xenopus oocytes is associated with the development of a conductive pathway that closely resembles the known endogenous nonselective cation conductances of Xenopus oocytes. In conclusion, AeNHE8 does not mediate cation/H(+) exchange in the apical membrane of Aedes Malpighian tubules; it is more likely involved with an intracellular function.
Collapse
Affiliation(s)
- Peter M Piermarini
- Cornell Univ., College of Veterinary Medicine, Dept. of Biomedical Sciences, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
12
|
Smartt CT, Erickson JS. CNAct-1 gene is differentially expressed in the subtropical mosquito Culex nigripalpus (Diptera: Culicidae), the primary West Nile Virus vector in Florida. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:877-884. [PMID: 18826030 DOI: 10.1603/0022-2585(2008)45[877:cgidei]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Analysis of differentially expressed genes is a common molecular biological tool to investigate changes in mosquito genes after a bloodmeal or parasite exposure. We report here the characterization of a differentially expressed actin gene, CNAct-1, from the subtropical mosquito, Culex nigripalpus Theobald (Diptera: Culicidae). The CNAct-1 genomic clone is 1.525 kb, includes one 66-bp intron, and a 328-bp 3'-untranslated region. The 376-amino acid putative translation product shares high similarity with muscle-specific actin proteins from other insects, including Culex pipiens pipiens L., Aedes aegypti (L.), Anopheles gambiae Giles and Drosophila melanogaster (Meigen). CNAct-1 is expressed in second and third instars, late pupae, and adult females and males. Interestingly, Cx. nigripalpus actin was highly expressed in female mosquito midgut tissue isolated 6-12 h after ingestion of a bloodmeal. This expression profile indicates a unique function for CNAct-1 in midgut processes that are initiated after blood ingestion.
Collapse
Affiliation(s)
- Chelsea T Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, 200 9th Street S.E., Vero Beach, FL 32962, USA.
| | | |
Collapse
|
13
|
Voss M, Vitavska O, Walz B, Wieczorek H, Baumann O. Stimulus-induced phosphorylation of vacuolar H(+)-ATPase by protein kinase A. J Biol Chem 2007; 282:33735-33742. [PMID: 17872947 DOI: 10.1074/jbc.m703368200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic vacuolar-type H(+)-ATPases (V-ATPases) are regulated by the reversible disassembly of the active V(1)V(0) holoenzyme into a cytosolic V(1) complex and a membrane-bound V(0) complex. The signaling cascades that trigger these events in response to changing cellular conditions are largely unknown. We report that the V(1) subunit C of the tobacco hornworm Manduca sexta interacts with protein kinase A and is the only V-ATPase subunit that is phosphorylated by protein kinase A. Subunit C can be phosphorylated as single polypeptide as well as a part of the V(1) complex but not as a part of the V(1)V(0) holoenzyme. Both the phosphorylated and the unphosphorylated form of subunit C are able to reassociate with the V(1) complex from which subunit C had been removed before. Using salivary glands of the blowfly Calliphora vicina in which V-ATPase reassembly and activity is regulated by the neurohormone serotonin via protein kinase A, we show that the membrane-permeable cAMP analog 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate (8-CPT-cAMP) causes phosphorylation of subunit C in a tissue homogenate and that phosphorylation is reduced by incubation with antibodies against subunit C. Similarly, incubation of intact salivary glands with 8-CPT-cAMP or serotonin leads to the phosphorylation of subunit C, but this is abolished by H-89, an inhibitor of protein kinase A. These data suggest that subunit C binds to and serves as a substrate for protein kinase A and that this phosphorylation may be a regulatory switch for the formation of the active V(1)V(0) holoenzyme.
Collapse
Affiliation(s)
- Martin Voss
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam, Germany
| | - Olga Vitavska
- Fachbereich Biologie und Chemie, Tierphysiologie, Universität Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | - Bernd Walz
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam, Germany
| | - Helmut Wieczorek
- Fachbereich Biologie und Chemie, Tierphysiologie, Universität Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | - Otto Baumann
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam, Germany.
| |
Collapse
|
14
|
Kim M, Robich RM, Rinehart JP, Denlinger DL. Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:1226-33. [PMID: 17078965 PMCID: PMC1839883 DOI: 10.1016/j.jinsphys.2006.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/07/2006] [Accepted: 09/11/2006] [Indexed: 05/11/2023]
Abstract
Two actin genes cloned from Culex pipiens L. are upregulated during adult diapause. Though actins 1 and 2 were expressed throughout diapause, both genes were most highly expressed early in diapause. These changes in gene expression were accompanied by a conspicuous redistribution of polymerized actin that was most pronounced in the midguts of diapausing mosquitoes that were exposed to low temperature. In nondiapausing mosquitoes reared at 25 degrees C and in diapausing mosquitoes reared at 18 degrees C, polymerized actin was clustered at high concentrations at the intersections of the muscle fibers that form the midgut musculature. When adults 7-10 days post-eclosion were exposed to low temperature (-5 degrees C for 12 h), the polymerized actin was evenly distributed along the muscle fibers in both nondiapausing and diapausing mosquitoes. Exposure of older adults (1 month post-eclosion) to low temperature (-5 degrees C for 12 h) elicited an even greater distribution of polymerized actin, an effect that was especially pronounced in diapausing mosquitoes. These changes in gene expression and actin distribution suggest a role for actins in enhancing survival of diapausing adults during the low temperatures of winter by fortification of the cytoskeleton.
Collapse
|