1
|
Chen K, Dou X, Eum JH, Harrison RE, Brown MR, Strand MR. Insulin-like peptides and ovary ecdysteroidogenic hormone differentially stimulate physiological processes regulating egg formation in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 163:104028. [PMID: 37913852 PMCID: PMC10842226 DOI: 10.1016/j.ibmb.2023.104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Mosquitoes including Aedes aegypti are human disease vectors because females must blood feed to produce and lay eggs. Blood feeding triggers insulin-insulin growth factor signaling (IIS) which regulates several physiological processes required for egg development. A. aegypti encodes 8 insulin-like peptides (ILPs) and one insulin-like receptor (IR) plus ovary ecdysteroidogenic hormone (OEH) that also activates IIS through the OEH receptor (OEHR). In this study, we assessed the expression of A. aegypti ILPs and OEH during a gonadotrophic cycle and produced each that were functionally characterized to further understand their roles in regulating egg formation. All A. aegypti ILPs and OEH were expressed during a gonadotrophic cycle. Five ILPs (1, 3, 4, 7, 8) and OEH were specifically expressed in the head, while antibodies to ILP3 and OEH indicated each was released after blood feeding from ventricular axons that terminate on the anterior midgut. A subset of ILP family members and OEH stimulated nutrient storage in previtellogenic females before blood feeding, whereas most IIS-dependent processes after blood feeding were activated by one or more of the brain-specific ILPs and/or OEH. ILPs and OEH with different biological activities also exhibited differences in IIS as measured by phosphorylation of the IR, phosphoinositide 3-kinase/Akt kinase (AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK). Altogether, our results provide the first results that compare the functional activities of all ILP family members and OEH produced by an insect.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Jai Hoon Eum
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Ruby E Harrison
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA, USA.
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Dou X, Chen K, Brown MR, Strand MR. Multiple endocrine factors regulate nutrient mobilization and storage in Aedes aegypti during a gonadotrophic cycle. INSECT SCIENCE 2023; 30:425-442. [PMID: 36056560 DOI: 10.1111/1744-7917.13110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Anautogenous mosquitoes must blood feed on a vertebrate host to produce eggs. Each gonadotrophic cycle is subdivided into a sugar-feeding previtellogenic phase that produces primary follicles and a blood meal-activated vitellogenic phase in which large numbers of eggs synchronously mature and are laid. Multiple endocrine factors including juvenile hormone (JH), insulin-like peptides (ILPs), ovary ecdysteroidogenic hormone (OEH), and 20-hydroxyecdysone (20E) coordinate each gonadotrophic cycle. Egg formation also requires nutrients from feeding that are stored in the fat body. Regulation of egg formation is best understood in Aedes aegypti but the role different endocrine factors play in regulating nutrient mobilization and storage remains unclear. In this study, we report that adult female Ae. aegypti maintained triacylglycerol (TAG) stores during the previtellogenic phase of the first gonadotrophic cycle while glycogen stores declined. In contrast, TAG and glycogen stores were rapidly mobilized during the vitellogenic phase and then replenishment. Several genes encoding enzymes with functions in TAG and glycogen metabolism were differentially expressed in the fat body, which suggested regulation was mediated in part at the transcriptional level. Gain of function assays indicated that stored nutrients were primarily mobilized by adipokinetic hormone (AKH) while juvenoids and OEH regulated replenishment. ILP3 further showed evidence of negatively regulating certain lipolytic enzymes. Loss of function assays indicated AKH depends on the AKH receptor (AKHR) for function. Altogether, our results indicate that the opposing activities of different hormones regulate nutrient stores during a gonadotrophic cycle in Ae. aegypti.
Collapse
Affiliation(s)
- Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
| | - Kangkang Chen
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
| |
Collapse
|
3
|
Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc Natl Acad Sci U S A 2021; 118:2109381118. [PMID: 34697248 DOI: 10.1073/pnas.2109381118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
Methyl farnesoate (MF) plays hormonal regulatory roles in crustaceans. An epoxidated form of MF, known as juvenile hormone (JH), controls metamorphosis and stimulates reproduction in insects. To address the evolutionary significance of MF epoxidation, we generated mosquitoes completely lacking either of the two enzymes that catalyze the last steps of MF/JH biosynthesis and epoxidation, respectively: the JH acid methyltransferase (JHAMT) and the P450 epoxidase CYP15 (EPOX). jhamt -/- larvae lacking both MF and JH died at the onset of metamorphosis. Strikingly, epox -/- mutants, which synthesized MF but no JH, completed the entire life cycle. While epox -/- adults were fertile, the reproductive performance of both sexes was dramatically reduced. Our results suggest that although MF can substitute for the absence of JH in mosquitoes, it is with a significant fitness cost. We propose that MF can fulfill most roles of JH, but its epoxidation to JH was a key innovation providing insects with a reproductive advantage.
Collapse
|
4
|
Hasebe M, Shiga S. Immunoreactive Response of Plast-MIPs to Fasting and Their Functional Role in the Reduction of Hemolymph Reducing Sugars in the Brown-Winged Green Bug, Plautia stali. Zoolog Sci 2021; 38:332-342. [PMID: 34342954 DOI: 10.2108/zs200162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
Animals survive nutrient deficiency by controlling their physiology, such as sugar metabolism and energy-consuming developmental events. Although research on the insect neural mechanisms of the starvation-induced modulation has progressed, the mechanisms have not been fully understood due to their complexity. Myoinhibitory peptides are known to be neuropeptides involved in various physiological activities, development, and behavior. Here, we analyzed the responsiveness of Plautia stali myoinhibitory peptides (Plast-MIPs) to starvation and their physiological role in the brown-winged green bug, P. stali. First, we performed immunohistochemical analyses to investigate the response of Plast-MIP neurons in the cephalic ganglion to fasting under long day conditions. Fasting significantly enhanced the immunoreactivity to Plast-MIPs in the pars intercerebralis (PI), which is known to be a brain region related to various endocrine regulations. Next, to analyze the physiological role of Plast-MIPs, we performed RNA interference-mediated knockdown of Plast-Mip and injection of synthetic Plast-MIP in normally fed and fasted females. The knockdown of Plast-Mip did not have significant effects on the body weight or proportions of ovarian development in each feeding condition. On the other hand, the knockdown of Plast-Mip increased the gonadosomatic index of normally fed females whereas it did not have a significant effect on food intake. Notably, the knockdown of Plast-Mip diminished the fasting-induced reduction of hemolymph reducing sugar levels. Additionally, injection of synthetic Plast-MIP acutely decreased the hemolymph reducing sugar level. Our results suggested responsiveness of Plast-MIPs in the PI to fasting and their functional role in reduction of the hemolymph reducing sugar level.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka 560-0043, Japan,
| | - Sakiko Shiga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka 560-0043, Japan
| |
Collapse
|
5
|
HuangFu N, Zhu X, Chang G, Wang L, Li D, Zhang K, Gao X, Ji J, Luo J, Cui J. Dynamic transcriptome analysis and Methoprene-tolerant gene knockdown reveal that juvenile hormone regulates oogenesis and vitellogenin synthesis in Propylea Japonica. Genomics 2021; 113:2877-2889. [PMID: 34116170 DOI: 10.1016/j.ygeno.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/22/2021] [Accepted: 06/01/2021] [Indexed: 11/30/2022]
Abstract
Propylea japonica has been regarded as one of the most remarkable natural enemies against aphid in China. However, the mechanism of juvenile hormone (JH) regulation of reproduction in P. japonica is still unclear. In this study, we investigated the JH titers of P. japonica and the development of the ovaries. We selected the six different developmental stages of ladybeetle females for transcriptome sequencing. We identified 583 genes involved in insect reproduction regulation, including 107 insect hormone synthesis signaling pathway-related genes and 476 nutrition-sensing signaling pathway-related genes. Transcriptome analysis indicated that a large number JH synthesis- and metabolism-related enzyme genes and some potential nutrient signal sensing- and transduction-related genes were significantly differentially expressed during P. japonica development. We investigated the effects of Met gene silencing on the reproduction of female adults and found that the ovarian maturation, vitellogenesis, and follicular epithelium development in the dsMet treatment group were significantly inhibited.
Collapse
Affiliation(s)
- Ningbo HuangFu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Guofeng Chang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xueke Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jichao Ji
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Zha YP, Wu XL, Zhang ZY, Chen JY, Chen QC. Influence of ultrasound on juvenile hormone titers in Monochamus alternatus Hope (Coleoptera: Cerambycidae). Sci Rep 2021; 11:1450. [PMID: 33446862 PMCID: PMC7809024 DOI: 10.1038/s41598-021-81227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/28/2020] [Indexed: 11/09/2022] Open
Abstract
Abiotic stress factors can significantly affect insects. In particular, the stressful effects of exposure to ultrasound on insects are considered important. In the present study, we investigated the effects of ultrasound on the important global pest Monochamus alternatus (Coleoptera: Cerambycidae), which is the main vector of the pinewood nematode. We exposed M. alternatus adults (aged 1 day, 3 days, and 5 days) to ultrasound at different frequencies (using two ultrasonic devices, i.e., LHC20 with a mixture of frequencies at 35 kHz, 70 kHz, and 105 kHz; and GFG-8016G at two separate frequencies of 30 kHz and 60 kHz) for different periods of time (1 h, 12 h, and 24 h), before evaluating the juvenile hormone III (JHIII) titers. All of the ultrasound treatments significantly decreased the JHIII titers in M. alternatus adults. The decreases in the JHIII titers due to ultrasound exposure did not differ according to sex, but the effects on beetles of different ages differed significantly depending on the duration of exposure. The decreases in the JHIII titers were highest in male and female beetles after exposure to ultrasound for 12 h. Following exposure to ultrasound for any time period, the decreases in the JHIII titers were lower in adults aged 3 days than those aged 1 day and 5 days. The different ultrasonic frequencies led to variable decreases in the JHIII titers in M. alternatus adults, where the greatest decreases occurred in beetles exposed to ultrasound at 60 kHz. Our results indicate that ultrasound can negatively affect the normal JHIII levels and it may further disrupt sexual maturation by M. alternatus adults.
Collapse
Affiliation(s)
- Yu-Ping Zha
- Hubei Academy of Forestry, Wuhan, 430075, People's Republic of China.
| | - Xiao-Ling Wu
- College of Life Sciences and Hubei Key Lab of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Zi-Yi Zhang
- Hubei Academy of Forestry, Wuhan, 430075, People's Republic of China
| | - Jing-Yuan Chen
- Hubei Academy of Forestry, Wuhan, 430075, People's Republic of China
| | - Qi-Cai Chen
- College of Life Sciences and Hubei Key Lab of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| |
Collapse
|
7
|
Dittmer J, Gabrieli P. Transstadial metabolic priming mediated by larval nutrition in female Aedes albopictus mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104053. [PMID: 32251651 DOI: 10.1016/j.jinsphys.2020.104053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Mosquitoes are important vectors of human pathogens, which are transmitted by female mosquitoes via blood-feeding. Larval nutrition can have an important impact on the number of blood meals taken by adult females shortly after emergence, as nutritional deficiencies during the larval stage may result in pre-vitellogenic blood meals, which are not invested into egg development but into the endogenous nutrient reserves of the female. Here, we investigated the impact of nutrient deprivation during the larval stage on adult nutrient metabolism, longevity and blood-seeking behaviour in females of the invasive Asian tiger mosquito Aedes albopictus. We demonstrate that Ae. albopictus females are able to compensate for nutrient deprivation during the larval stage by increasing their development time until sufficient nutrients are acquired. Nonetheless, nutrient-poor larval conditions had a long-lasting priming effect on adult female metabolism, since these females accumulated lower nutrient reserves from carbohydrates and survived longer compared to females reared in nutrient-rich larval conditions. Moreover, nutrient and ATP levels of females from nutrient-poor larval conditions remained stable over a longer timespan without access to additional carbohydrates. This suggests differences in adult female metabolism in response to larval nutrition, with potential impact on the vectorial capacity of female mosquitoes.
Collapse
Affiliation(s)
- Jessica Dittmer
- Department of Biology & Biotechnology, Università degli Studi di Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| | - Paolo Gabrieli
- Department of Biology & Biotechnology, Università degli Studi di Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
8
|
Alzugaray ME, Bruno MC, Villalobos Sambucaro MJ, Ronderos JR. The Evolutionary History of The Orexin/Allatotropin GPCR Family: from Placozoa and Cnidaria to Vertebrata. Sci Rep 2019; 9:10217. [PMID: 31308431 PMCID: PMC6629687 DOI: 10.1038/s41598-019-46712-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
Peptidic messengers constitute a highly diversified group of intercellular messengers widely distributed in nature that regulate a great number of physiological processes in Metazoa. Being crucial for life, it seem that they have appeared in the ancestral group from which Metazoa evolved, and were highly conserved along the evolutionary process. Peptides act mainly through G-protein coupled receptors (GPCRs), a family of transmembrane molecules. GPCRs are also widely distributed in nature being present in metazoan, but also in Choanoflagellata and Fungi. Among GPCRs, the Allatotropin/Orexin (AT/Ox) family is particularly characterized by the presence of the DRW motif in the second intracellular loop (IC Loop 2), and seems to be present in Cnidaria, Placozoa and in Bilateria, suggesting that it was present in the common ancestor of Metazoa. Looking for the evolutionary history of this GPCRs we searched for corresponding sequences in public databases. Our results suggest that AT/Ox receptors were highly conserved along evolutionary process, and that they are characterized by the presence of the E/DRWYAI motif at the IC Loop 2. Phylogenetic analyses show that AT/Ox family of receptors reflects evolutionary relationships that agree with current phylogenetic understanding in Actinopterygii and Sauropsida, including also the largely discussed position of Testudines.
Collapse
Affiliation(s)
- María Eugenia Alzugaray
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM-UNLP), La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Bruno
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM-UNLP), La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María José Villalobos Sambucaro
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM-UNLP), La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge Rafael Ronderos
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM-UNLP), La Plata, Argentina.
| |
Collapse
|
9
|
Valzania L, Mattee MT, Strand MR, Brown MR. Blood feeding activates the vitellogenic stage of oogenesis in the mosquito Aedes aegypti through inhibition of glycogen synthase kinase 3 by the insulin and TOR pathways. Dev Biol 2019; 454:85-95. [PMID: 31153832 DOI: 10.1016/j.ydbio.2019.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Most mosquitoes, including Aedes aegypti, only produce eggs after blood feeding on a vertebrate host. Oogenesis in A. aegypti consists of a pre-vitellogenic stage before blood feeding and a vitellogenic stage after blood feeding. Primary egg chambers remain developmentally arrested during the pre-vitellogenic stage but complete oogenesis to form mature eggs during the vitellogenic stage. In contrast, the signaling factors that maintain primary egg chambers in pre-vitellogenic arrest or that activate vitellogenic growth are largely unclear. Prior studies showed that A. aegypti females release insulin-like peptide 3 (ILP3) and ovary ecdysteroidogenic hormone (OEH) from brain neurosecretory cells after blood feeding. Here, we report that primary egg chambers exit pre-vitellogenic arrest by 8 h post-blood meal as evidenced by proliferation of follicle cells, endoreplication of nurse cells, and formation of cytoophidia. Ex vivo assays showed that ILP3 and OEH stimulate primary egg chambers to exit pre-vitellogenic arrest in the presence of nutrients but not in their absence. Characterization of associated pathways indicated that activation of insulin/insulin growth factor signaling (IIS) by ILP3 or OEH inactivated glycogen synthase kinase 3 (GSK3) via phosphorylation by phosphorylated Akt. GSK3 inactivation correlated with accumulation of the basic helix-loop-helix transcription factor Max and primary egg chambers exiting pre-vitellogenic arrest. Direct inhibition of GSK3 by CHIR-99021 also stimulated Myc/Max accumulation and primary egg chambers exiting pre-vitellogenic arrest. Collectively, our results identify GSK3 as a key factor in regulating the pre- and vitellogenic stages of oogenesis in A. aegypti.
Collapse
Affiliation(s)
- Luca Valzania
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Melissa T Mattee
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
10
|
Martínez-Lendech N, Osorio-Beristain M, Franco B, Pedraza-Reyes M, Obregón A, Contreras-Garduño J. Does juvenile hormone prompt oxidative stress in male damselflies? ACTA ACUST UNITED AC 2019; 222:jeb.194530. [PMID: 30718372 DOI: 10.1242/jeb.194530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/29/2019] [Indexed: 12/28/2022]
Abstract
In invertebrates, it has recently been reported that secondary sexual characteristics (SSCs) reflect the antioxidant defense of their bearers, but it is not known what physiological link maintains the honesty of those signals. Here, we used the damselfly Hetaerina americana to test whether juvenile hormone plays such a role. First, we analyzed whether oxidative damage is a real threat in natural damselfly populations by examining the accumulation of oxidized guanines as a function of age in males. Then, we injected paraquat (a pro-oxidant agent) and added the juvenile hormone analog methoprene (JHa) to the experimental group and the JHa vehicle (acetone) to the control group, to determine whether JHa increases the levels of pro-oxidants and antioxidants. We found that DNA oxidation increased with age, and that levels of hydrogen peroxide and superoxide dismutase, but not catalase or glutathione, were elevated in the JHa group compared with the control group. We propose that juvenile hormone is a mediator of the relationship between SSCs and antioxidant capacity and, based on the literature, we know that JHa suppresses the immune response. We therefore suggest that juvenile hormone is a molecular mediator of the general health of males, which is reflected in their SSCs.
Collapse
Affiliation(s)
- Norma Martínez-Lendech
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos Avenida Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | - Marcela Osorio-Beristain
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos Avenida Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | - Bernardo Franco
- Division de Ciencias Naturales y Exacatas, Departamento de Biología, Universidad de Guanajuato, Lascuráin de Retana 5, Col. Centro C.P. 36000 Guanajuato, Guanajuato, Mexico
| | - Mario Pedraza-Reyes
- Division de Ciencias Naturales y Exacatas, Departamento de Biología, Universidad de Guanajuato, Lascuráin de Retana 5, Col. Centro C.P. 36000 Guanajuato, Guanajuato, Mexico
| | - Armando Obregón
- Division de Ciencias Naturales y Exacatas, Departamento de Biología, Universidad de Guanajuato, Lascuráin de Retana 5, Col. Centro C.P. 36000 Guanajuato, Guanajuato, Mexico
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Unidad Morelia, UNAM, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de La Huerta, 58190 Morelia, Michoacán, Mexico
| |
Collapse
|
11
|
Hernández-Martínez S, Cardoso-Jaime V, Nouzova M, Michalkova V, Ramirez CE, Fernandez-Lima F, Noriega FG. Juvenile hormone controls ovarian development in female Anopheles albimanus mosquitoes. Sci Rep 2019. [PMID: 30765796 DOI: 10.1038/s41598-019-38631-61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Anophelinae mosquitoes are vectors of human malaria, a disease that infects hundreds of millions of people and causes almost 600,000 fatalities annually. Despite their medical importance, laboratory studies on key aspects of Anophelinae reproductive biology have been limited, and in particular, relatively little is known about the role of juvenile hormone (JH) in the control of female reproduction. The study presented here attempts to fill a gap of knowledge in our understanding of the JH control of ovarian development in female Anophelinae mosquitoes, using Anopheles albimanus as a model. Our studies revealed that JH controls the tempo of maturation of primary follicles in An. albimanus in a similar manner to that previously described in Aedes aegypti. At adult eclosion JH hemolymph titer was low, increased in 1-day old sugar-fed insects, and decreased in blood fed individuals. JH titers decreased if An. albimanus females were starved, and were reduced if insects emerged with low teneral reserves, precluding previtellogenic ovarian development. However, absolute hemolymph titers were lower than Ae. aegypti. Decapitation experiments suggested that if teneral reserves are sufficient, factors from the head activate JH synthesis by the corpora allata (CA) during the first 9-12 h after adult emergence. In conclusion, our studies support the hypothesis that JH controls previtellogenic ovarian development in female An. albimanus mosquitoes, in a similar manner that have been described in Culicinae.
Collapse
Affiliation(s)
- Salvador Hernández-Martínez
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Víctor Cardoso-Jaime
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Marcela Nouzova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA
- Institute of Parasitology, Biology Centre CAS, Ceske, Budejovice, Czech Republic
| | - Veronika Michalkova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA
| | - Cesar E Ramirez
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA
| | | | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
12
|
Hernández-Martínez S, Cardoso-Jaime V, Nouzova M, Michalkova V, Ramirez CE, Fernandez-Lima F, Noriega FG. Juvenile hormone controls ovarian development in female Anopheles albimanus mosquitoes. Sci Rep 2019; 9:2127. [PMID: 30765796 PMCID: PMC6375968 DOI: 10.1038/s41598-019-38631-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/04/2019] [Indexed: 12/04/2022] Open
Abstract
Anophelinae mosquitoes are vectors of human malaria, a disease that infects hundreds of millions of people and causes almost 600,000 fatalities annually. Despite their medical importance, laboratory studies on key aspects of Anophelinae reproductive biology have been limited, and in particular, relatively little is known about the role of juvenile hormone (JH) in the control of female reproduction. The study presented here attempts to fill a gap of knowledge in our understanding of the JH control of ovarian development in female Anophelinae mosquitoes, using Anopheles albimanus as a model. Our studies revealed that JH controls the tempo of maturation of primary follicles in An. albimanus in a similar manner to that previously described in Aedes aegypti. At adult eclosion JH hemolymph titer was low, increased in 1-day old sugar-fed insects, and decreased in blood fed individuals. JH titers decreased if An. albimanus females were starved, and were reduced if insects emerged with low teneral reserves, precluding previtellogenic ovarian development. However, absolute hemolymph titers were lower than Ae. aegypti. Decapitation experiments suggested that if teneral reserves are sufficient, factors from the head activate JH synthesis by the corpora allata (CA) during the first 9–12 h after adult emergence. In conclusion, our studies support the hypothesis that JH controls previtellogenic ovarian development in female An. albimanus mosquitoes, in a similar manner that have been described in Culicinae.
Collapse
Affiliation(s)
- Salvador Hernández-Martínez
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Víctor Cardoso-Jaime
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Marcela Nouzova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA.,Institute of Parasitology, Biology Centre CAS, Ceske, Budejovice, Czech Republic
| | - Veronika Michalkova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA
| | - Cesar E Ramirez
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA
| | | | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
13
|
Hernández-Martínez S, Sánchez-Zavaleta M, Brito K, Herrera-Ortiz A, Ons S, Noriega FG. Allatotropin: A pleiotropic neuropeptide that elicits mosquito immune responses. PLoS One 2017; 12:e0175759. [PMID: 28426765 PMCID: PMC5398552 DOI: 10.1371/journal.pone.0175759] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
Allatotropins (AT) are neuropeptides with pleotropic functions on a variety of insect tissues. They affect processes such as juvenile hormone biosynthesis, cardiac rhythm, oviduct and hindgut contractions, nutrient absorption and circadian cycle. The present work provides experimental evidence that AT elicits immune responses in two important mosquito disease vectors, Anopheles albimanus and Aedes aegypti. Hemocytes and an immune-competent mosquito cell line responded to AT by showing strong morphological changes and increasing bacterial phagocytic activity. Phenoloxidase activity in hemolymph was also increased in Ae. aegypti mosquitoes treated with AT but not in An. albimanus, suggesting differences in the AT-dependent immune activation in the two species. In addition, two important insect immune markers, nitric oxide levels and expression of antimicrobial peptide genes, were increased in An. albimanus guts after AT treatment. AT conjugated to quantum dot nanocrystals (QDots) specifically labeled hemocytes in vivo in both mosquito species, implying molecular interactions between AT and hemocytes. The results of our studies suggest a new role for AT in the modulation of the immune response in mosquitoes.
Collapse
Affiliation(s)
- Salvador Hernández-Martínez
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Minerva Sánchez-Zavaleta
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Kevin Brito
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Antonia Herrera-Ortiz
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos. Centro Regional de Estudios Genómicos. Universidad Nacional de La Plata. La Plata, Argentina
| | - Fernando G. Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University. Miami, FL, United States of America
| |
Collapse
|
14
|
Vogel KJ, Valzania L, Coon KL, Brown MR, Strand MR. Transcriptome Sequencing Reveals Large-Scale Changes in Axenic Aedes aegypti Larvae. PLoS Negl Trop Dis 2017; 11:e0005273. [PMID: 28060822 PMCID: PMC5245907 DOI: 10.1371/journal.pntd.0005273] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/19/2017] [Accepted: 12/20/2016] [Indexed: 01/06/2023] Open
Abstract
Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that Aedes aegypti larvae colonized by a native community of bacteria and gnotobiotic larvae colonized by only Escherichia coli develop very similarly into adults, whereas axenic larvae never molt and die as first instars. In this study, we extended these findings by first comparing the growth and abundance of bacteria in conventional, gnotobiotic, and axenic larvae during the first instar. Results showed that conventional and gnotobiotic larvae exhibited no differences in growth, timing of molting, or number of bacteria in their digestive tract. Axenic larvae in contrast grew minimally and never achieved the critical size associated with molting by conventional and gnotobiotic larvae. In the second part of the study we compared patterns of gene expression in conventional, gnotobiotic and axenic larvae by conducting an RNAseq analysis of gut and nongut tissues (carcass) at 22 h post-hatching. Approximately 12% of Ae. aegypti transcripts were differentially expressed in axenic versus conventional or gnotobiotic larvae. However, this profile consisted primarily of transcripts in seven categories that included the down-regulation of select peptidases in the gut and up-regulation of several genes in the gut and carcass with roles in amino acid transport, hormonal signaling, and metabolism. Overall, our results indicate that axenic larvae exhibit alterations in gene expression consistent with defects in acquisition and assimilation of nutrients required for growth.
Collapse
Affiliation(s)
- Kevin J. Vogel
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
- * E-mail: (KJV); (MRS)
| | - Luca Valzania
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
| | - Kerri L. Coon
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
| | - Mark R. Brown
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
| | - Michael R. Strand
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
- * E-mail: (KJV); (MRS)
| |
Collapse
|
15
|
Strand MR, Brown MR, Vogel KJ. Mosquito Peptide Hormones: Diversity, Production, and Function. ADVANCES IN INSECT PHYSIOLOGY 2016; 51:145-188. [PMID: 30662099 PMCID: PMC6338476 DOI: 10.1016/bs.aiip.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mosquitoes, like other insects, produce a diversity of peptide hormones that are processed from different precursor proteins and have a range of activities. Early studies relied on purification of bioactive peptides for hormone identification, but more recently genomic data have provided the information needed to more comprehensively identify peptide hormone genes and associated receptors. The first part of this chapter summarizes the known or predicted peptide hormones that are produced by mosquitoes. The second part of this chapter discusses the sources of these molecules and their functions.
Collapse
Affiliation(s)
- M R Strand
- University of Georgia, Athens, GA, United States
| | - M R Brown
- University of Georgia, Athens, GA, United States
| | - K J Vogel
- University of Georgia, Athens, GA, United States
| |
Collapse
|
16
|
Márquez-García A, Canales-Lazcano J, Rantala MJ, Contreras-Garduño J. Is Juvenile Hormone a potential mechanism that underlay the "branched Y-model"? Gen Comp Endocrinol 2016; 230-231:170-6. [PMID: 27013379 DOI: 10.1016/j.ygcen.2016.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
Abstract
Trade-offs are a central tenet in the life-history evolution and the simplest model to understand it is the "Y" model: the investment of one arm will affect the investment of the other arm. However, this model is by far more complex, and a "branched Y-model" is proposed: trade-offs could exist within each arm of the Y, but the mechanistic link is unknown. Here we used Tenebrio molitor to test if Juvenile Hormone (JH) could be a mechanistic link behind the "branched Y-model". Larvae were assigned to one of the following experimental groups: (1) low, (2) medium and (3) high doses of methoprene (a Juvenile Hormone analogue, JHa), (4) acetone (methoprene diluents; control one) or (5) näive (handled in the same way as other groups; control two). The JHa lengthened the time of development from larvae to pupae and larvae to adults, resulting in adults with a larger size. Males with medium and long JHa treatment doses were favored with female choice, but had smaller testes and fewer viable sperm. There were no differences between groups in regard to the number of spermatozoa of males, or the number of ovarioles or eggs of females. This results suggest that JH: (i) is a mechanistic link of insects "branched Y model", (ii) is a double ended-sword because it may not only provide benefits on reproduction but could also impose costs, and (iii) has a differential effect on each sex, being males more affected than females.
Collapse
Affiliation(s)
- Armando Márquez-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Noria Alta, 36050 Guanajuato, Mexico
| | | | - Markus J Rantala
- Turku Brain and Mind Center, Department of Biology, University of Turku, FIN-20014 Turku, Finland
| | - Jorge Contreras-Garduño
- ENES, UNAM, unidad Morelia, Antigua Carretera a Pátzcuaro No.8701, Col. Ex-Hacienda San José de la Huerta, Código Postal 58190 Morelia, Michoacán, Mexico.
| |
Collapse
|
17
|
TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål). Int J Mol Sci 2016; 17:438. [PMID: 27043527 PMCID: PMC4848894 DOI: 10.3390/ijms17040438] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 11/17/2022] Open
Abstract
The “target of rapamycin” (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens.
Collapse
|
18
|
Gulia-Nuss M, Elliot A, Brown MR, Strand MR. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti. JOURNAL OF INSECT PHYSIOLOGY 2015; 82:8-16. [PMID: 26255841 PMCID: PMC4630150 DOI: 10.1016/j.jinsphys.2015.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 05/11/2023]
Abstract
Aedes aegypti is an anautogenous mosquito that must blood feed on a vertebrate host to produce and lay a clutch of eggs. The rockpool mosquito, Georgecraigius atropalpus, is related to A. aegypti but is a facultatively autogenous species that produces its first clutch of eggs shortly after emerging without blood feeding. Consumption of a blood meal by A. aegypti triggers the release of ovary ecdysteroidogenic hormone (OEH) and insulin-like peptide 3 (ILP3) from the brain, which stimulate egg formation. OEH and ILP3 also stimulate egg formation in G. atropalpus but are released at eclosion independently of blood feeding. These results collectively suggest that blood meal dependent release of OEH and ILP3 is one factor that prevents A. aegypti from reproducing autogenously. Here, we examined two other factors that potentially inhibit autogeny in A. aegypti: teneral nutrient reserves and the ability of OEH and ILP3 to stimulate egg formation in the absence of blood feeding. Measures of nutrient reserves showed that newly emerged A. aegypti females had similar wet weights but significantly lower protein and glycogen reserves than G. atropalpus females when larvae were reared under identical conditions. OEH stimulated non-blood fed A. aegypti females to produce ecdysteroid hormone and package yolk into oocytes more strongly than ILP3. OEH also reduced host seeking and blood feeding behavior, yet females produced few mature eggs. Overall, our results indicate that multiple factors prevent A. aegypti from reproducing autogenously.
Collapse
Affiliation(s)
- Monika Gulia-Nuss
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Anne Elliot
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
19
|
Areiza M, Nouzova M, Rivera-Perez C, Noriega FG. 20-Hydroxyecdysone stimulation of juvenile hormone biosynthesis by the mosquito corpora allata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:100-5. [PMID: 26255691 PMCID: PMC4558257 DOI: 10.1016/j.ibmb.2015.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/18/2015] [Accepted: 08/02/2015] [Indexed: 05/21/2023]
Abstract
Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. JH titer decreases in the last instar larvae allowing pupation and metamorphosis to progress. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again "competent" to synthesize JH, which plays an essential role orchestrating reproductive maturation. 20-hydroxyecdysone (20E) prepares the pupae for ecdysis, and would be an ideal candidate to direct a developmental program in the CA of the pharate adult mosquito. In this study, we provide evidence that 20E acts as an age-linked hormonal signal, directing CA activation in the mosquito pupae. Stimulation of the inactive brain-corpora allata-corpora cardiaca complex (Br-CA-CC) of the early pupa (24 h before adult eclosion or -24 h) in vitro with 20E resulted in a remarkable increase in JH biosynthesis, as well as increase in the activity of juvenile hormone acid methyltransferase (JHAMT). Addition of methyl farnesoate but not farnesoic acid also stimulated JH synthesis by the Br-CA-CC of the -24 h pupae, proving that epoxidase activity is present, but not JHAMT activity. Separation of the CA-CC complex from the brain (denervation) in the -24 h pupae also activated JH synthesis. Our results suggest that an increase in 20E titer might override an inhibitory effect of the brain on JH synthesis, phenocopying denervation. All together these findings provide compelling evidence that 20E acts as a developmental signal that ensures proper reactivation of JH synthesis in the mosquito pupae.
Collapse
Affiliation(s)
- Maria Areiza
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Marcela Nouzova
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
20
|
Hernández-Martínez S, Rivera-Perez C, Nouzova M, Noriega FG. Coordinated changes in JH biosynthesis and JH hemolymph titers in Aedes aegypti mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2015; 72:22-27. [PMID: 25445664 PMCID: PMC4333059 DOI: 10.1016/j.jinsphys.2014.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 05/12/2023]
Abstract
Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. A decrease in JH titer during the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa once again synthesizes JH, which plays an essential role in orchestrating reproductive maturation. In spite of the importance of Aedes aegypti as a vector, a detailed study of the changes of JH hemolymph titers during the gonotrophic cycle has never been performed. In the present studies, using a high performance liquid chromatography coupled to a fluorescent detector (HPLC-FD) method, we measured changes in JH levels in the hemolymph of female mosquitoes during the pupal and adult stages. Our results revealed tightly concomitant changes in JH biosynthesis and JH hemolymph titers during the gonotrophic cycle of female mosquito. Feeding high sugar diets resulted in an increase of JH titers, and mating also modified JH titers in hemolymph. In addition these studies confirmed that JH titer in mosquitoes is fundamentally determined by the rate of biosynthesis in the CA.
Collapse
Affiliation(s)
- Salvador Hernández-Martínez
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos 62100, Mexico
| | | | - Marcela Nouzova
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
21
|
Areiza M, Nouzova M, Rivera-Perez C, Noriega FG. Ecdysis triggering hormone ensures proper timing of juvenile hormone biosynthesis in pharate adult mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:98-105. [PMID: 25257939 PMCID: PMC4253852 DOI: 10.1016/j.ibmb.2014.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 09/13/2014] [Indexed: 05/17/2023]
Abstract
Juvenile hormones (JHs) are synthesized by the corpora allata (CA) and play a key role in insect development. A decrease of JH titer in the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again "competent" to synthesize JH, which would play an essential role orchestrating reproductive maturation. In the present study, we provide evidence that ecdysis triggering hormone (ETH), a key endocrine factor involved in ecdysis control, acts as an allatotropic regulator of JH biosynthesis, controlling the exact timing of CA activation in the pharate adult mosquito. Analysis of the expression of Aedes aegypti ETH receptors (AeaETHRs) revealed that they are present in the CA and the corpora cardiaca (CC), and their expression peaks 4 h before eclosion. In vitro stimulation of the pupal CA glands with ETH resulted in an increase in JH synthesis. Consistent with this finding, silencing AeaETHRs by RNA interference (RNAi) in pupa resulted in reduced JH synthesis by the CA of one day-old adult females. Stimulation with ETH resulted in increases in the activity of juvenile hormone acid methyltransferase (JHAMT), a key JH biosynthetic enzyme. Furthermore, inhibition of IP3R-operated mobilization of endoplasmic reticulum Ca(2+) stores prevented the ETH-dependent increases of JH biosynthesis and JHAMT activity. All together these findings provide compelling evidence that ETH acts as a regulatory peptide that ensures proper developmental timing of JH synthesis in pharate adult mosquitoes.
Collapse
Affiliation(s)
- Maria Areiza
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Marcela Nouzova
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
22
|
Juvenile Hormone Biosynthesis in Insects: What Is New, What Do We Know, and What Questions Remain? INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:967361. [PMID: 27382622 PMCID: PMC4897325 DOI: 10.1155/2014/967361] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/26/2014] [Indexed: 12/02/2022]
Abstract
Our understanding of JH biosynthesis has significantly changed in the last years. In this review I would like to discuss the following topics: (1) the progresses in understanding the JH biosynthesis pathway. Access to genome sequences has facilitated the identification of all the genes encoding biosynthetic enzymes and the completion of comprehensive transcriptional studies, as well as the expression and characterization of recombinant enzymes. Now the existence of different flux directionalites, feed-back loops and pathway branching points in the JH biosynthesis pathways can be explored; (2) the new concepts in the modulation of JH synthesis by allatoregulators. The list of putative JH modulators is increasing. I will discuss their possible role during the different physiological states of the CA; (3) the new theoretical and physiological frameworks for JH synthesis analysis. I will discuss the bases of the flux model for JH biosynthesis. JH plays multiple roles in the control of ovary development in female mosquitoes; therefore, the CA presents different physiological states, where JH synthesis is altered by gating the flux at distinctive points in the pathway; (4) in the final section I will identify new challenges and future directions on JH synthesis research.
Collapse
|
23
|
Rivera-Perez C, Nouzova M, Lamboglia I, Noriega FG. Metabolic analysis reveals changes in the mevalonate and juvenile hormone synthesis pathways linked to the mosquito reproductive physiology. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 51:1-9. [PMID: 24833260 PMCID: PMC4107215 DOI: 10.1016/j.ibmb.2014.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 05/13/2023]
Abstract
Juvenile hormone (JH) regulates reproductive maturation in insects; therefore interruption of JH biosynthesis has been considered as a strategy for the development of target-specific insecticides. The corpora allata (CA) from mosquitoes is highly specialized to supply variable levels of JH, which are linked to ovarian developmental stages and influenced by nutritional signals. However, very little is known about how changes in JH synthesis relate to reproductive physiology and how JH synthesis regulation is translated into changes in the CA machinery. With the advent of new methods that facilitate the analysis of transcripts, enzymes and metabolites in the minuscule CA, we were able to provide comprehensive descriptions of the mevalonic (MVA) and JH synthesis pathways by integrating information on changes in the basic components of those pathways. Our results revealed remarkable dynamic changes in JH synthesis and exposed part of a complex mechanism that regulates CA activity. Principal component (PC) analyses validated that both pathways (MVAP and JH-branch) are transcriptionally co-regulated as a single unit, and catalytic activities for the enzymes of the MVAP and JH-branch also changed in a coordinate fashion. Metabolite studies showed that global fluctuations in the intermediate pool sizes in the MVAP and JH-branch were often inversely related. PC analyses suggest that in female mosquitoes, there are at least 4 developmental switches that alter JH synthesis by modulating the flux at distinctive points in both pathways.
Collapse
Affiliation(s)
| | - Marcela Nouzova
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Ivanna Lamboglia
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
24
|
Kang DS, Denlinger DL, Sim C. Suppression of allatotropin simulates reproductive diapause in the mosquito Culex pipiens. JOURNAL OF INSECT PHYSIOLOGY 2014; 64:48-53. [PMID: 24657669 PMCID: PMC4150688 DOI: 10.1016/j.jinsphys.2014.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 05/31/2023]
Abstract
The cessation of juvenile hormone (JH) production is a key endocrine event that halts ovarian development and hence initiates diapause in females of the mosquito, Culex pipiens. The shutdown in endocrine activity of the corpora allata (CA), the source of JH, was manifested in the smaller size of CA in females reared under short daylengths (diapause) compared to those reared under long daylengths (nondiapause), as well as in low expression of the mRNA encoding allatotropin, the neuropeptide that promotes JH biosynthesis in the CA. Genes encoding both allatotropin and allatostatin were identified in C. pipiens, but only expression levels of allatotropin differed in the two types of females. Knockdown of allatotropin mRNA using RNA interference in females programmed for nondiapause resulted in a cessation of ovarian development akin to diapause. This arrest in development could be reversed with an application of JH. Our results thus suggest that suppression of allatotropin is a critical link in regulating the shutdown of the CA during diapause.
Collapse
Affiliation(s)
- David S Kang
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - David L Denlinger
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA; Department of Entomology, Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA.
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
25
|
Clifton ME, Correa S, Rivera-Perez C, Nouzova M, Noriega FG. Male Aedes aegypti mosquitoes use JH III transferred during copulation to influence previtellogenic ovary physiology and affect the reproductive output of female mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2014; 64:40-7. [PMID: 24657670 PMCID: PMC4018731 DOI: 10.1016/j.jinsphys.2014.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/05/2014] [Accepted: 03/12/2014] [Indexed: 05/12/2023]
Abstract
The effect of male accessory gland substances on female reproductive physiology has been previously described as "activating" egg development. However, no mechanism has been described that can explain how male mosquitoes are able to influence egg development in female mosquitoes. To investigate how male mosquitoes are able to influence ovarian physiology and reproductive output we explored three main questions: (1) Do mating and male accessory gland substances affect ovarian physiology and alter markers of oocyte quality during the previtellogenic resting stage? (2) Does the male accessory gland contain JH III and is JH III transferred to the female during copulation? (3) Finally, does the nutritional history of the male affect the amount of JH III transferred to the female and alter reproductive output? By answering these questions it is clear that male mosquitoes are able to alter the female's resource allocation priorities towards reproduction by transferring JH III during copulation; reducing the rate of previtellogenic resorption and increasing the amount of stored ovarian lipids. These changes improve an individual follicle's likelihood of development after a blood meal. In addition, males maintained under better nutritional conditions make and transfer more JH III, prevent more follicular resorption and realize higher fecundities than other males. Together these results illustrate one mechanism behind the "activating" effect of mating described as well as the role sugar feeding plays in male mosquitoes.
Collapse
Affiliation(s)
- Mark E Clifton
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Stefano Correa
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | | - Marcela Nouzova
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
26
|
Harburguer L, Zerba E, Licastro S. Sublethal effect of pyriproxyfen released from a fumigant formulation on fecundity, fertility, and ovicidal action in Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:436-443. [PMID: 24724294 DOI: 10.1603/me13137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dengue and dengue hemorrhagic fever are mosquito-borne viral diseases that coincide with the distribution of Aedes aegypti (L.), the primary vector in the tropical and semitropical world. With no available vaccine, controlling the dengue vector is essential to prevent epidemics. The effects of the insect growth regulator pyriproxyfen on Ae. aegypti adults that survived a treatment with a sublethal dose were investigated in the laboratory, including effects on their reproductive potential. Pyriproxyfen was released from a fumigant formulation at a dose causing 20 or 40% emergence inhibition (%EI). Females were dissected before and after blood feeding and the basal follicle number was counted. There were no differences between the control and treated group on the basal follicle number for both doses used. Fertility and fecundity were reduced at a concentration of EI40 but no at EI20. There was no ovicidal effect of pyriproxyfen by immersion of eggs in treated water neither when the females laid their eggs on a pyriproxyfen-treated surface. This work shows that sublethal doses of pyriproxyfen can have effects on fertility and fecundity ofAe. aegypti females, which together with its larvicidal activity could contribute to an overall decrease in a given population.
Collapse
|
27
|
Perez-Hedo M, Rivera-Perez C, Noriega FG. Starvation increases insulin sensitivity and reduces juvenile hormone synthesis in mosquitoes. PLoS One 2014; 9:e86183. [PMID: 24489697 PMCID: PMC3906049 DOI: 10.1371/journal.pone.0086183] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/05/2013] [Indexed: 12/11/2022] Open
Abstract
Background The interactions between the insulin signaling pathway (ISP) and juvenile hormone (JH) controlling reproductive trade-offs are well documented in insects. JH and insulin regulate reproductive output in mosquitoes; both hormones are involved in a complex regulatory network, in which they influence each other and in which the mosquito's nutritional status is a crucial determinant of the network's output. Previous studies reported that the insulin-TOR (target of rapamacyn) signaling pathway is involved in the nutritional regulation of JH synthesis in female mosquitoes. The present studies further investigate the regulatory circuitry that controls both JH synthesis and reproductive output in response to nutrient availability. Methods We used a combination of diet restriction, RNA interference (RNAi) and insulin treatments to modify insulin signaling and study the cross-talk between insulin and JH in response to starvation. JH synthesis was analyzed using a newly developed assay utilizing fluorescent tags. Conclusions Our results reveal that starvation decreased JH synthesis via a decrease in insulin signaling in the corpora allata (CA). Paradoxically, starvation-induced up regulation of insulin receptor transcripts and therefore “primed” the gland to respond rapidly to increases in insulin levels. During this response to starvation the synthetic potential of the CA remained unaffected, and the gland rapidly and efficiently responded to insulin stimulation by increasing JH synthesis to rates similar to those of CA from non-starved females.
Collapse
Affiliation(s)
- Meritxell Perez-Hedo
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Crisalejandra Rivera-Perez
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Fernando G. Noriega
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
28
|
Badisco L, Van Wielendaele P, Vanden Broeck J. Eat to reproduce: a key role for the insulin signaling pathway in adult insects. Front Physiol 2013; 4:202. [PMID: 23966944 PMCID: PMC3735985 DOI: 10.3389/fphys.2013.00202] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/17/2013] [Indexed: 01/25/2023] Open
Abstract
Insects, like all heterotrophic organisms, acquire from their food the nutrients that are essential for anabolic processes that lead to growth (larval stages) or reproduction (adult stage). In adult females, this nutritional input is processed and results in a very specific output, i.e., the production of fully developed eggs ready for fertilization and deposition. An important role in this input-output transition is attributed to the insulin signaling pathway (ISP). The ISP is considered to act as a sensor of the organism's nutritional status and to stimulate the progression of anabolic events when the status is positive. In several insect species belonging to different orders, the ISP has been demonstrated to positively control vitellogenesis and oocyte growth. Whether or not ISP acts herein via a mediator action of lipophilic insect hormones (ecdysteroids and juvenile hormone) remains debatable and might be differently controlled in different insect orders. Most likely, insulin-related peptides, ecdysteroids and juvenile hormone are involved in a complex regulatory network, in which they mutually influence each other and in which the insect's nutritional status is a crucial determinant of the network's output. The current review will present an overview of the regulatory role of the ISP in female insect reproduction and its interaction with other pathways involving nutrients, lipophilic hormones and neuropeptides.
Collapse
Affiliation(s)
- Liesbeth Badisco
- Department of Animal Physiology and Neurobiology, Research Group of Molecular Developmental Physiology and Signal Transduction KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
29
|
Rivera-Perez C, Nouzova M, Clifton ME, Garcia EM, LeBlanc E, Noriega FG. Aldehyde dehydrogenase 3 converts farnesal into farnesoic acid in the corpora allata of mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:675-82. [PMID: 23639754 PMCID: PMC3713117 DOI: 10.1016/j.ibmb.2013.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/08/2013] [Accepted: 04/12/2013] [Indexed: 05/17/2023]
Abstract
The juvenile hormones (JHs) play a central role in insect reproduction, development and behavior. Interrupting JH biosynthesis has long been considered a promising strategy for the development of target-specific insecticides. Using a combination of RNAi, in vivo and in vitro studies we characterized the last unknown biosynthetic enzyme of the JH pathway, a fatty aldehyde dehydrogenase (AaALDH3) that oxidizes farnesal into farnesoic acid (FA) in the corpora allata (CA) of mosquitoes. The AaALDH3 is structurally and functionally a NAD(+)-dependent class 3 ALDH showing tissue- and developmental-stage-specific splice variants. Members of the ALDH3 family play critical roles in the development of cancer and Sjögren-Larsson syndrome in humans, but have not been studies in groups other than mammals. Using a newly developed assay utilizing fluorescent tags, we demonstrated that AaALDH3 activity, as well as the concentrations of farnesol, farnesal and FA were different in CA of sugar and blood-fed females. In CA of blood-fed females the low catalytic activity of AaALDH3 limited the flux of precursors and caused a remarkable increase in the pool of farnesal with a decrease in FA and JH synthesis. The accumulation of the potentially toxic farnesal stimulated the activity of a reductase that converted farnesal back into farnesol, resulting in farnesol leaking out of the CA. Our studies indicated AaALDH3 plays a key role in the regulation of JH synthesis in blood-fed females and mosquitoes seem to have developed a "trade-off" system to balance the key role of farnesal as a JH precursor with its potential toxicity.
Collapse
|
30
|
Van Wielendaele P, Badisco L, Vanden Broeck J. Neuropeptidergic regulation of reproduction in insects. Gen Comp Endocrinol 2013; 188:23-34. [PMID: 23454669 DOI: 10.1016/j.ygcen.2013.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/01/2013] [Accepted: 02/10/2013] [Indexed: 12/17/2022]
Abstract
Successful animal reproduction depends on multiple physiological and behavioral processes that take place in a timely and orderly manner in both mating partners. It is not only necessary that all relevant processes are well coordinated, they also need to be adjusted to external factors of abiotic and biotic nature (e.g. population density, mating partner availability). Therefore, it is not surprising that several hormonal factors play a crucial role in the regulation of animal reproductive physiology. In insects (the largest class of animals on planet Earth), lipophilic hormones, such as ecdysteroids and juvenile hormones, as well as several neuropeptides take part in this complex regulation. While some peptides can affect reproduction via an indirect action (e.g. by influencing secretion of juvenile hormone), others exert their regulatory activity by directly targeting the reproductive system. In addition to insect peptides with proven activities, several others were suggested to also play a role in the regulation of reproductive physiology. Because of the long evolutionary history of many insect orders, it is not always clear to what extent functional data obtained in a given species can be extrapolated to other insect taxa. In this paper, we will review the current knowledge concerning the neuropeptidergic regulation of insect reproduction and situate it in a more general physiological context.
Collapse
Affiliation(s)
- Pieter Van Wielendaele
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, University of Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
31
|
Pérez-Hedo M, Rivera-Perez C, Noriega FG. The insulin/TOR signal transduction pathway is involved in the nutritional regulation of juvenile hormone synthesis in Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:495-500. [PMID: 23541607 PMCID: PMC3650097 DOI: 10.1016/j.ibmb.2013.03.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/06/2013] [Accepted: 03/12/2013] [Indexed: 05/12/2023]
Abstract
Juvenile hormone (JH) levels must be modulated to permit the normal progress of development and reproductive maturation in mosquitoes. JH is part of a transduction system that assesses nutritional information and controls reproduction in mosquitoes. Adult female Aedes aegypti show nutritionally-dependent dynamic changes in corpora allata (CA) JH biosynthetic activities. A coordinated expression of most JH biosynthetic enzymes has been described in female pupae and adult mosquitoes; increases or decreases in transcript levels for all the enzymes were concurrent with increases or decreases in JH synthesis; suggesting that transcriptional changes are at least partially responsible for the dynamic changes of JH biosynthesis. The goal of the present study is to identify signaling network components responsible for the nutritional-dependent changes of JH synthesis in the CA of mosquitoes. The insulin/TOR signaling network plays a central role in the transduction of nutritional signals that regulate cell growth and metabolism in insects. These pathways have also been suggested as a link between nutritional signals and JH synthesis regulation in the CA of cockroaches and flies. We used a combination of in vitro studies and in vivo genetic knockdown experiments to explore nutritional signaling pathways in the CA. Our results suggest that the insulin/TOR pathway plays a role in the transduction of the nutritional information that regulates JH synthesis in mosquitoes. Transcriptional regulation of the genes encoding JH biosynthetic enzymes is at least partially responsible for these nutritionally modulated changes of JH biosynthesis.
Collapse
Affiliation(s)
- Meritxell Pérez-Hedo
- Department of Biological Sciences, Florida International University, 11200 SW 8th ST, Miami, FL 33199, USA
| | | | | |
Collapse
|
32
|
Villanueva G, Lanz-Mendoza H, Hernández-Martínez S, Zavaleta MS, Manjarrez J, Contreras-Garduño JM, Contreras-Garduño J. In the monarch butterfly the juvenile hormone effect upon immune response depends on the immune marker and is sex dependent. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/oje.2013.31007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Nouzova M, Brockhoff A, Mayoral JG, Goodwin M, Meyerhof W, Noriega FG. Functional characterization of an allatotropin receptor expressed in the corpora allata of mosquitoes. Peptides 2012; 34:201-8. [PMID: 21839791 PMCID: PMC3233642 DOI: 10.1016/j.peptides.2011.07.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/28/2022]
Abstract
Allatotropin is an insect neuropeptide with pleiotropic actions on a variety of different tissues. In the present work we describe the identification, cloning and functional and molecular characterization of an Aedes aegypti allatotropin receptor (AeATr) and provide a detailed quantitative study of the expression of the AeATr gene in the adult mosquito. Analysis of the tissue distribution of AeATr mRNA in adult female revealed high transcript levels in the nervous system (brain, abdominal, thoracic and ventral ganglia), corpora allata-corpora cardiaca complex and ovary. The receptor is also expressed in heart, hindgut and male testis and accessory glands. Separation of the corpora allata (CA) and corpora cardiaca followed by analysis of gene expression in the isolated glands revealed expression of the AeATr primarily in the CA. In the female CA, the AeATr mRNA levels were low in the early pupae, started increasing 6h before adult eclosion and reached a maximum 24h after female emergence. Blood feeding resulted in a decrease in transcript levels. The pattern of changes of AeATr mRNA resembles the changes in JH biosynthesis. Fluorometric Imaging Plate Reader recordings of calcium transients in HEK293 cells expressing the AeATr showed a selective response to A. aegypti allatotropin stimulation in the low nanomolar concentration range. Our studies suggest that the AeATr play a role in the regulation of JH synthesis in mosquitoes.
Collapse
Affiliation(s)
| | - Anne Brockhoff
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | | | | | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | | |
Collapse
|
34
|
Nouzova M, Edwards MJ, Mayoral JG, Noriega FG. A coordinated expression of biosynthetic enzymes controls the flux of juvenile hormone precursors in the corpora allata of mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:660-9. [PMID: 21554954 PMCID: PMC3129432 DOI: 10.1016/j.ibmb.2011.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/18/2011] [Accepted: 04/21/2011] [Indexed: 05/13/2023]
Abstract
Juvenile hormone (JH) is a key regulator of metamorphosis and ovarian development in mosquitoes. Adult female Aedes aegypti mosquitoes show developmental and dynamically regulated changes of JH synthesis. Newly emerged females have corpora allata (CA) with low biosynthetic activity, but they produce high amounts of JH a day later; blood feeding results in a striking decrease in JH synthesis, but the CA returns to a high level of JH synthesis three days later. To understand the molecular bases of these dynamic changes we combined transcriptional studies of 11 of the 13 enzymes of the JH pathway with a functional analysis of JH synthesis. We detected up to a 1000-fold difference in the levels of mRNA in the CA among the JH biosynthetic enzymes studied. There was a coordinated expression of the 11 JH biosynthetic enzymes in female pupae and adult mosquito. Increases or decreases in transcript levels for all the enzymes resulted in increases or decreases of JH synthesis; suggesting that transcript changes are at least partially responsible for the dynamic changes of JH biosynthesis observed. JH synthesis by the CA was progressively increased in vitro by addition of exogenous precursors such as geranyl-diphosphate, farnesyl-diphosphate, farnesol, farnesal and farnesoic acid. These results suggest that the supply of these precursors and not the activity of the last 6 pathway enzymes is rate limiting in these glands. Nutrient reserves play a key role in the regulation of JH synthesis. Nutritionally deficient females had reduced transcript levels for the genes encoding JH biosynthetic enzymes and reduced JH synthesis. Our studies suggest that JH synthesis is controlled by the rate of flux of isoprenoids, which is the outcome of a complex interplay of changes in precursor pools, enzyme levels and external regulators such as nutrients and brain factors. Enzyme levels might need to surpass a minimum threshold to achieve a net flux of precursors through the biosynthetic pathway. In glands with low synthetic activity, the flux of isoprenoids might be limited by the activity of enzymes with low levels of expression.
Collapse
Affiliation(s)
- Marcela Nouzova
- Department of Biological Sciences, Florida International University, Miami, Florida
| | | | - Jaime G. Mayoral
- Department of Biological Sciences, Florida International University, Miami, Florida
| | - Fernando G. Noriega
- Department of Biological Sciences, Florida International University, Miami, Florida
| |
Collapse
|
35
|
Clifton ME, Noriega FG. Nutrient limitation results in juvenile hormone-mediated resorption of previtellogenic ovarian follicles in mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1274-81. [PMID: 21708165 PMCID: PMC3167010 DOI: 10.1016/j.jinsphys.2011.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 05/10/2023]
Abstract
Juvenile hormone (JH) is a central hormonal regulator of previtellogenic development in female Aedes aegypti mosquitoes. JH levels are low at eclosion and increase during the first day after adult emergence. This initial rise in JH is essential for female reproductive maturation. After previtellogenic maturation is complete, the mosquito enters a 'state-of-arrest' during which JH synthesis continues at a slower pace and further ovary development is repressed until a blood meal is taken. By examining the relationships between juvenile hormone, follicular resorption and nutrition in A. aegypti, we were able to define a critical role of JH during the previtellogenic resting stage. The rate of follicular resorption in resting stage mosquitoes is dependent on nutritional quality. Feeding water alone caused the rate of follicular resorption to reach over 20% by day 7 after emergence. Conversely, feeding a 20% sucrose solution caused resorption to remain below 5% during the entire experimental period. Mosquitoes fed 3% sucrose show rates of resorption intermediate between water and 20% sucrose and only reached 10% by day 7 after emergence. Follicular resorption is related to JH levels. Ligated abdomens separated from a source of JH (the corpora allata) showed an increase in resorption comparable to similarly aged starved mosquitoes (16%). Resorption in ligated abdomens was reduced to 6% by application of methoprene. The application of methoprene was also sufficient to prevent resorption in intact mosquitoes starved for 48 h (14% starved vs. 4% starved with methoprene). Additionally, active caspases were localized to resorbing follicles indicating that an apoptotic cell-death mechanism is responsible for follicular resorption during the previtellogenic resting stage. Taken together, these results indicate that JH mediates reproductive trade-offs in resting stage mosquitoes in response to nutrition.
Collapse
Affiliation(s)
- Mark E Clifton
- Department of Biological Sciences, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| | | |
Collapse
|
36
|
Contreras-Garduño J, Córdoba-Aguilar A, Azpilicueta-Amorín M, Cordero-Rivera A. Juvenile hormone favors sexually-selected traits but impairs fat reserves and abdomen mass in males and females. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9438-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Parthasarathy R, Sheng Z, Sun Z, Palli SR. Ecdysteroid regulation of ovarian growth and oocyte maturation in the red flour beetle, Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:429-39. [PMID: 20385235 PMCID: PMC2916939 DOI: 10.1016/j.ibmb.2010.04.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 05/12/2023]
Abstract
Previous studies from our laboratory showed the involvement of juvenile hormone (JH) and ecdysteroid signaling in the regulation of female reproduction in the red flour beetle, Tribolium castaneum. JH regulates vitellogenin (Vg) synthesis in the fat body but the role of ecdysteroid signaling is not known. Here, we report on ecdysteroid regulation of ovarian growth and oocyte maturation. Microarray analysis of RNA isolated from ovaries showed the up-regulation of several genes coding for proteins involved in ecdysteroid signaling on the 4th day after female adult eclosion. The functional analyses of genes coding for proteins involved in ecdysteroid and JH signaling pathways by RNA interference (RNAi) revealed that ecdysteroids but not JH regulate ovarian growth and primary oocyte maturation. Ultrastructural studies showed the temporal sequences of key events in oogenesis including the development of primary oocytes, the differentiation and development of follicle epithelial cells, and the formation of intercellular spaces to facilitate uptake of Vg protein. RNAi studies showed that ecdysone receptor (EcR) and ultraspiracle (USP) are required for the ovarian growth, primary oocyte maturation and the growth and migration of the follicle cells. These studies suggest important roles for ecdysteroids in the regulation of oocyte maturation in the beetle ovaries.
Collapse
Affiliation(s)
| | | | | | - Subba R. Palli
- Corresponding Author, Phone: 859 257 4962, Fax: 859 323 1120,
| |
Collapse
|
38
|
Cardioacceleratory and myostimulatory activity of allatotropin in Triatoma infestans. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:371-7. [DOI: 10.1016/j.cbpa.2009.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/10/2009] [Accepted: 12/03/2009] [Indexed: 11/23/2022]
|
39
|
Navare A, Nouzova M, Noriega FG, Hernández-Martínez S, Menzel C, Fernández FM. On-chip solid-phase extraction pre-concentration/focusing substrates coupled to atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry for high sensitivity biomolecule analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:477-86. [PMID: 19140128 PMCID: PMC2735028 DOI: 10.1002/rcm.3890] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) has proven a convenient and rapid method for ion production in the mass spectrometric (MS) analysis of biomolecules. AP-MALDI and electrospray ionization (ESI) sources are easily interchangeable in most mass spectrometers. However, AP-MALDI suffers from less-than-optimal sensitivity due to ion losses during transport from the atmosphere into the vacuum of the mass spectrometer. Here, we study the signal-to-noise ratio (S/N) gains observed when an on-chip dynamic pre-concentration/focusing approach is coupled to AP-MALDI for the MS analysis of neuropeptides and protein digests. It was found that, in comparison with conventional AP-MALDI targets, focusing targets showed (1) a sensitivity enhancement of approximately two orders of magnitude with S/N gains of 200-900 for hydrophobic substrates, and 150-400 for weak cation-exchange (WCX) substrates; (2) improved detection limits as low as 5 fmol/microL for standard peptides; (3) significantly reduced matrix background; and (4) higher inter-day reproducibility. The improved sensitivity allowed successful tandem mass spectrometric (MS/MS) sequencing of dilute solutions of a derivatized tryptic digest of a protein standard, and enabled the first reported AP-MALDI MS detection of neuropeptides from Aedes aegypti mosquito heads.
Collapse
Affiliation(s)
- Arti Navare
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA 30332 (USA)
| | - Marcela Nouzova
- Department of Biological Sciences, Florida International University, Miami FL, 33199 (USA)
| | - Fernando G. Noriega
- Department of Biological Sciences, Florida International University, Miami FL, 33199 (USA)
| | | | | | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA 30332 (USA)
| |
Collapse
|
40
|
Contreras-Garduño J, Córdoba-Aguilar A, Lanz-Mendoza H, Cordero Rivera A. Territorial behaviour and immunity are mediated by juvenile hormone: the physiological basis of honest signalling? Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2008.01485.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Mayoral JG, Nouzova M, Yoshiyama M, Shinoda T, Hernandez-Martinez S, Dolghih E, Turjanski AG, Roitberg AE, Priestap H, Perez M, Mackenzie L, Li Y, Noriega FG. Molecular and functional characterization of a juvenile hormone acid methyltransferase expressed in the corpora allata of mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:31-7. [PMID: 18984053 PMCID: PMC2727726 DOI: 10.1016/j.ibmb.2008.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 05/09/2023]
Abstract
A juvenile hormone acid methyltransferase (JHAMT) was isolated as an abundant EST in a library of the corpora allata of the adult female mosquito Aedes aegypti. Its full length cDNA encodes a 278-aa protein that has 43% amino acid identity with BmJHAMT, a juvenile hormone acid methyltransferase previously cloned from Bombyx mori. Heterologous expression produced a recombinant protein that metabolizes farnesoic acid (FA) into methyl farnesoate, as well as juvenile hormone acid into juvenile hormone III (JH III) with exquisite stereo specificity. Real time PCR experiments showed that JHAMT mRNA levels are not an unequivocal indicator of JH III synthesis rates; the A. aegypti JHAMT gene, silent in female pupae, was transcriptionally activated just 4-6h before adult eclosion. Radiochemical methyltransferase assays using active and inactive corpora allata glands (CA) dissected from sugar and blood-fed females respectively, clearly indicated that significant levels of JHAMT enzymatic activity are present when the CA shows very low spontaneous rates of JH III synthesis. Having the last enzymes of the JH synthetic pathway readily available all the time might be critical for the adult female mosquito to sustain rapid dynamic changes in JH III synthesis in response to nutritional changes or peripheral influences, such as mating or feeding. These results suggest that this gene has different roles in the regulation of JH synthesis in pupal and adult female mosquitoes, and support the hypothesis that the rate-limiting steps in JH III synthesis in adult female mosquitoes are located before entrance of FA into the synthetic pathway.
Collapse
Affiliation(s)
- Jaime G. Mayoral
- Department of Biological Sciences, Florida International University, Miami, FL
| | - Marcela Nouzova
- Department of Biological Sciences, Florida International University, Miami, FL
| | | | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Tsukuba, Japan
| | | | - Elena Dolghih
- Department of Chemistry Quantum Theory Project, University of Florida, Gainesville, FL
| | - Adrian G. Turjanski
- Departamento de Química Biológica y Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adrian E. Roitberg
- Department of Chemistry Quantum Theory Project, University of Florida, Gainesville, FL
| | - Horacio Priestap
- Department of Biological Sciences, Florida International University, Miami, FL
| | - Mario Perez
- Department of Biological Sciences, Florida International University, Miami, FL
| | - Lucy Mackenzie
- Department of Biological Sciences, Florida International University, Miami, FL
| | - Yiping Li
- Department of Biological Sciences, Florida International University, Miami, FL
| | - Fernando G. Noriega
- Department of Biological Sciences, Florida International University, Miami, FL
| |
Collapse
|