1
|
Macedo-Silva A, Rios T, Ramos I, Majerowicz D. Lipophorin receptor knockdown reduces hatchability of kissing bug Rhodnius prolixus eggs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 176:104221. [PMID: 39586502 DOI: 10.1016/j.ibmb.2024.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Lipophorin is the primary lipoprotein present in the hemolymph of insects, responsible for the lipids' transport between organs. It interacts with specific sites on cell membranes in an essential process for transferring lipids. The lipophorin receptor is the protein responsible for the interaction between lipophorin and cell membranes. In the kissing bug Rhodnius prolixus, much information on the interaction of lipophorin with organs is available. However, molecular data on the lipophorin receptor and its functions is still needed. Here, we explored lipophorin receptor gene expression and functions using a functional genomics approach. The R. prolixus genome encodes seven genes from the low-density lipoprotein receptor family, including a single ortholog of the lipophorin receptor. All organs analyzed (anterior and posterior midguts, fat body, ovaries, and flight muscle) expressed this gene. In the fat body, blood-feeding strongly reduced lipophorin receptor gene expression. Lipophorin receptor knockdown by RNA interference delayed egg laying and reduced the triacylglycerol in laid eggs without altering lipid stores in the fat body or lipid levels in the hemolymph. In the ovaries, lipophorin receptor knockdown reduces the expression of acetyl-CoA carboxylase and a fatty acid synthase while altered the gene expression profile in the fat body, causing an increase in the expression of carnitine palmitoyltransferase 1 and a reduction in Brummer lipase and vitellogenin 2. RNA interference treatment reduced the hatching of the eggs, causing the collapse and darkening of the laid eggs, in addition to the hatching of deformed first-stage nymphs. Furthermore, the structure of the chorion showed distortions in patterns and cracks and reduced hydrocarbon levels. These results show that the lipophorin receptor alone is not essential for lipid physiology in R. prolixus. However, this protein plays a fundamental role in the viability of eggs and, consequently, in insect reproduction.
Collapse
Affiliation(s)
- Alessa Macedo-Silva
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Brazil
| | - Thamara Rios
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - David Majerowicz
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil; Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Han J, Rotenberg D. Microinjection-enabled gene silencing in first instar larvae of western flower thrips, Frankliniella occidentalis, reveals vital genes for larval survival. INSECT SCIENCE 2024. [PMID: 39614628 DOI: 10.1111/1744-7917.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
The western flower thrips (Frankliniella occidentalis) is a significant agricultural pest, causing severe global yield losses due to extensive feeding damage and the transmission of plant pathogenic viruses. Despite recent advancements in RNA interference (RNAi) in thrips species, its application has been mostly limited to the adult stage. Given the crucial role of first instar larval thrips in acquiring and transmitting orthotospoviruses, achieving gene silencing in these larvae is critical for studying virus entry and acquisition. While thoracic and abdominal injections have proven effective in adult thrips, the low post-injection survival rate hinders their use in larval thrips. This study addresses this challenge by presenting a microinjection methodology to deliver dsRNA into the hemolymph of first instar larval thrips through the coxa, the first proximal segment of the foreleg. This method significantly improved larval survival rate by preventing detrimental damage to the internal tissues. Significant knockdown of V-ATPase-B, cytochrome P450 (CYP3653A2), and apolipophorin-II/I (ApoLp-II/I) transcripts was confirmed after 48 and/or 72 h post injection (hpi), corresponding to the first and second instar larval stages, respectively. Silencing CYP3653A2 or ApoLp-II/I significantly increased larval mortality. These findings demonstrate proof-of-principle of gene silencing and associated silencing phenotype (mortality) for first instar larval thrips and highlight the essential role of CYP3653A2 and ApoLp-II/I in larval vitality. Our RNAi-based tool offers an opportunity to investigate the molecular mechanisms of thrips-orthotospovirus interactions, as the virus must be acquired by young larval thrips for successful transmission to plants, thus presenting potential targets for thrips pest management.
Collapse
Affiliation(s)
- Jinlong Han
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Girotti JR, Calderón-Fernández GM. Lipid Metabolism in Insect Vectors of Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38954247 DOI: 10.1007/5584_2024_811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
According to the World Health Organization vector-borne diseases account for more than 17% of all infectious diseases, causing more than 700,000 deaths annually. Vectors are organisms that are able to transmit infectious pathogens between humans, or from animals to humans. Many of these vectors are hematophagous insects, which ingest the pathogen from an infected host during a blood meal, and later transmit it into a new host. Malaria, dengue, African trypanosomiasis, yellow fever, leishmaniasis, Chagas disease, and many others are examples of diseases transmitted by insects.Both the diet and the infection with pathogens trigger changes in many metabolic pathways, including lipid metabolism, compared to other insects. Blood contains mostly proteins and is very poor in lipids and carbohydrates. Thus, hematophagous insects attempt to efficiently digest and absorb diet lipids and also rely on a large de novo lipid biosynthesis based on utilization of proteins and carbohydrates as carbon source. Blood meal triggers essential physiological processes as molting, excretion, and oogenesis; therefore, lipid metabolism and utilization of lipid storage should be finely synchronized and regulated regarding that, in order to provide the necessary energy source for these events. Also, pathogens have evolved mechanisms to hijack essential lipids from the insect host by interfering in the biosynthesis, catabolism, and transport of lipids, which pose challenges to reproduction, survival, fitness, and other insect traits.In this chapter, we have tried to collect and highlight the current knowledge and recent discoveries on the metabolism of lipids in insect vectors of diseases related to the hematophagous diet and pathogen infection.
Collapse
Affiliation(s)
- Juan R Girotti
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Gustavo M Calderón-Fernández
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
4
|
Leyria J, Fruttero LL, Canavoso LE. Lipids in Insect Reproduction: Where, How, and Why. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38874891 DOI: 10.1007/5584_2024_809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Modern insects have inhabited the earth for hundreds of millions of years, and part of their successful adaptation lies in their many reproductive strategies. Insect reproduction is linked to a high metabolic rate that provides viable eggs in a relatively short time. In this context, an accurate interplay between the endocrine system and the nutrients synthetized and metabolized is essential to produce healthy offspring. Lipids guarantee the metabolic energy needed for egg formation and represent the main energy source consumed during embryogenesis. Lipids availability is tightly regulated by a complex network of endocrine signals primarily controlled by the central nervous system (CNS) and associated endocrine glands, the corpora allata (CA) and corpora cardiaca (CC). This endocrine axis provides hormones and neuropeptides that significatively affect tissues closely involved in successful reproduction: the fat body, which is the metabolic center supplying the lipid resources and energy demanded in egg formation, and the ovaries, where the developing oocytes recruit lipids that will be used for optimal embryogenesis. The post-genomic era and the availability of modern experimental approaches have advanced our understanding of many processes involved in lipid homeostasis; therefore, it is crucial to integrate the findings of recent years into the knowledge already acquired in the last decades. The present chapter is devoted to reviewing major recent contributions made in elucidating the impact of the CNS/CA/CC-fat body-ovary axis on lipid metabolism in the context of insect reproduction, highlighting areas of fruitful research.
Collapse
Affiliation(s)
- Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Lilián E Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina.
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
5
|
Gondim KC, Majerowicz D. Lipophorin: The Lipid Shuttle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38874888 DOI: 10.1007/5584_2024_806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Insects need to transport lipids through the aqueous medium of the hemolymph to the organs in demand, after they are absorbed by the intestine or mobilized from the lipid-producing organs. Lipophorin is a lipoprotein present in insect hemolymph, and is responsible for this function. A single gene encodes an apolipoprotein that is cleaved to generate apolipophorin I and II. These are the essential protein constituents of lipophorin. In some physiological conditions, a third apolipoprotein of different origin may be present. In most insects, lipophorin transports mainly diacylglycerol and hydrocarbons, in addition to phospholipids. The fat body synthesizes and secretes lipophorin into the hemolymph, and several signals, such as nutritional, endocrine, or external agents, can regulate this process. However, the main characteristic of lipophorin is the fact that it acts as a reusable shuttle, distributing lipids between organs without being endocytosed or degraded in this process. Lipophorin interacts with tissues through specific receptors of the LDL receptor superfamily, although more recent results have shown that other proteins may also be involved. In this chapter, we describe the lipophorin structure in terms of proteins and lipids, in addition to reviewing what is known about lipoprotein synthesis and regulation. In addition, we reviewed the results investigating lipophorin's function in the movement of lipids between organs and the function of lipophorin receptors in this process.
Collapse
Affiliation(s)
- Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
7
|
Khan MT, Dalvin S, Nilsen F, Male R. Two apolipoproteins in salmon louse ( Lepeophtheirus salmonis), apolipoprotein 1 knock down reduces reproductive capacity. Biochem Biophys Rep 2021; 28:101156. [PMID: 34729423 PMCID: PMC8545670 DOI: 10.1016/j.bbrep.2021.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
The salmon louse, Lepeophtheirus salmonis is an ectoparasite of salmonid fish in the Northern Hemisphere, causing large economical losses in the aquaculture industry and represent a threat to wild populations of salmonids. Like other oviparous animals, it is likely that female lice use lipoproteins for lipid transport to maturing oocytes and other organs of the body. As an important component of lipoproteins, apolipoproteins play a vital role in the transport of lipids through biosynthesis of lipoproteins. Apolipoproteins have been studied in detail in different organisms, but no studies have been done in salmon lice. Two apolipoprotein encoding genes (LsLp1 and LsLp2) were identified in the salmon lice genome. Transcriptional analysis revealed both genes to be expressed at all stages from larvae to adult with some variation, LsLp1 generally higher than LsLp2 and both at their highest levels in adult stages of the louse. In adult female louse, the LsLp1 and LsLp2 transcripts were found in the sub-epidermal tissue and the intestine. RNA interference-mediated knockdown of LsLp1 and LsLp2 in female lice resulted in reduced expression of both transcripts. LsLp1 knockdown female lice produced significantly less offspring than control lice, while knockdown of LsLp2 in female lice caused no reduction in the number of offspring. These results suggest that LsLp1 has an important role in reproduction in female salmon lice. Salmon lice are ectoparasites and a major threat to aquaculture industry and wild salmon. Two apolipoproteins in salmon louse (Lepeophtheirus salmonis). Expressed at all stages from larvae to adult, sub-epidermal tissue and the intestine . RNA interference-mediated knockdown of LsLp1 and LsLp2. LsLp1 knockdown female lice produced significantly less offspring than control lice.
Collapse
Key Words
- Apolipoproteins
- CP, clotting protein
- Crustacea
- DIG, Digoxigenin
- Ectoparasite
- Gene expression
- LDL, low density lipoprotein
- LLTP, large lipid transfer protein
- Lp, lipophorin
- Ls, Lepeophtheirus salmonis
- MTP, microsomal triglyceride transfer protein
- RNAi
- RNAi, RNA interference
- Reproduction
- Vit, vitellogenins
- apo B-100, apolipoprotein B-100
- apoCr, apolipocrustaceins
- apoLp-II/I, apolipophorin-II/I
- dLPs, large discoidal lipoproteins
- ef1α, elongation factor 1 alpha
Collapse
Affiliation(s)
- Muhammad Tanveer Khan
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sussie Dalvin
- Sea Lice Research Centre, Institute of Marine Research, Bergen, Norway
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Rune Male
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
- Corresponding author. Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020, Bergen, Norway.
| |
Collapse
|
8
|
Son JH, Weiss BL, Schneider DI, Dera KSM, Gstöttenmayer F, Opiro R, Echodu R, Saarman NP, Attardo GM, Onyango M, Abd-Alla AMM, Aksoy S. Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis. PLoS Pathog 2021; 17:e1009539. [PMID: 34529715 PMCID: PMC8478229 DOI: 10.1371/journal.ppat.1009539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/28/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
Tsetse flies (Glossina spp.) house a population-dependent assortment of microorganisms that can include pathogenic African trypanosomes and maternally transmitted endosymbiotic bacteria, the latter of which mediate numerous aspects of their host's metabolic, reproductive, and immune physiologies. One of these endosymbionts, Spiroplasma, was recently discovered to reside within multiple tissues of field captured and laboratory colonized tsetse flies grouped in the Palpalis subgenera. In various arthropods, Spiroplasma induces reproductive abnormalities and pathogen protective phenotypes. In tsetse, Spiroplasma infections also induce a protective phenotype by enhancing the fly's resistance to infection with trypanosomes. However, the potential impact of Spiroplasma on tsetse's viviparous reproductive physiology remains unknown. Herein we employed high-throughput RNA sequencing and laboratory-based functional assays to better characterize the association between Spiroplasma and the metabolic and reproductive physiologies of G. fuscipes fuscipes (Gff), a prominent vector of human disease. Using field-captured Gff, we discovered that Spiroplasma infection induces changes of sex-biased gene expression in reproductive tissues that may be critical for tsetse's reproductive fitness. Using a Gff lab line composed of individuals heterogeneously infected with Spiroplasma, we observed that the bacterium and tsetse host compete for finite nutrients, which negatively impact female fecundity by increasing the length of intrauterine larval development. Additionally, we found that when males are infected with Spiroplasma, the motility of their sperm is compromised following transfer to the female spermatheca. As such, Spiroplasma infections appear to adversely impact male reproductive fitness by decreasing the competitiveness of their sperm. Finally, we determined that the bacterium is maternally transmitted to intrauterine larva at a high frequency, while paternal transmission was also noted in a small number of matings. Taken together, our findings indicate that Spiroplasma exerts a negative impact on tsetse fecundity, an outcome that could be exploited for reducing tsetse population size and thus disease transmission.
Collapse
Affiliation(s)
- Jae Hak Son
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Daniela I. Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Kiswend-sida M. Dera
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- Insectarium de Bobo-Dioulasso—Campagne d’Eradication de la mouche Tse´-tse´ et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
| | - Fabian Gstöttenmayer
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Robert Opiro
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Norah P. Saarman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Maria Onyango
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
9
|
Zhao Y, Liu W, Zhao X, Yu Z, Guo H, Yang Y, Zhang J, Moussian B, Zhang J. Apolipophorin-II/I Contributes to Cuticular Hydrocarbon Transport and Cuticle Barrier Construction in Locusta migratoria. Front Physiol 2020; 11:790. [PMID: 32733279 PMCID: PMC7360829 DOI: 10.3389/fphys.2020.00790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Apolipophorins are carrier proteins that bind lipids and mediate their transport from tissue to tissue in animals. Apolipophorin I and II (apoLp-II/I) are the major apolipophorins in insects. The implication of apoLp-II/I in cuticle lipid-barrier formation in insects has not been addressed to date. In the present study, we investigated the function of apoLp-II/I in the migratory locust Locusta migratoria (LmapoLp-II/I). During the development of fifth instar nymphs, LmapoLp-II/I transcript levels increased until mid-instar, and then decreased gradually until molting to the adult stage. We found that LmapoLp-II/I was predominately expressed in the fat body and the integument including oenocytes and epidermal cells. Immunodetection experiments revealed that LmapoLp-I mainly localized in the cytoplasm of oenocytes and epidermal cells. Silencing of LmapoLp-II/I caused molting defects in nymphs. Importantly, RNA interference against LmapoLp-II/I resulted in a significant decrease in the content of cuticle surface lipids including alkanes and methyl alkanes. Cuticular permeability was significantly enhanced in these nymphs in Eosin Y penetration assays. By consequence, desiccation resistance and insecticide tolerance of dsLmapoLp-II/I-treated locusts were reduced. Taken together, our results indicate that LmapoLp-II/I is involved in the transport and deposition of surface-cuticular lipids that are crucial for maintaining normal cuticle barrier function in L. migratoria.
Collapse
Affiliation(s)
- Yiyan Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China.,College of Life Science, Shanxi University, Taiyuan, China
| | - Weimin Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Xiaoming Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Zhitao Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Hongfang Guo
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China.,College of Life Science, Shanxi University, Taiyuan, China
| | - Yang Yang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China.,College of Life Science, Shanxi University, Taiyuan, China
| | - Jianqin Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
10
|
Gondim KC, Atella GC, Pontes EG, Majerowicz D. Lipid metabolism in insect disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:108-123. [PMID: 30171905 DOI: 10.1016/j.ibmb.2018.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
More than a third of the world population is at constant risk of contracting some insect-transmitted disease, such as Dengue fever, Zika virus disease, malaria, Chagas' disease, African trypanosomiasis, and others. Independent of the life cycle of the pathogen causing the disease, the insect vector hematophagous habit is a common and crucial trait for the transmission of all these diseases. This lifestyle is unique, as hematophagous insects feed on blood, a diet that is rich in protein but relatively poor in lipids and carbohydrates, in huge amounts and low frequency. Another unique feature of these insects is that blood meal triggers essential metabolic processes, as molting and oogenesis and, in this way, regulates the expression of various genes that are involved in these events. In this paper, we review current knowledge of the physiology and biochemistry of lipid metabolism in insect disease vectors, comparing with classical models whenever possible. We address lipid digestion and absorption, hemolymphatic transport, and lipid storage by the fat body and ovary. In this context, both de novo fatty acid and triacylglycerol synthesis are discussed, including the related fatty acid activation process and the intracellular lipid binding proteins. As lipids are stored in order to be mobilized later on, e.g. for flight activity or survivorship, lipolysis and β-oxidation are also considered. All these events need to be finely regulated, and the role of hormones in this control is summarized. Finally, we also review information about infection, when vector insect physiology is affected, and there is a crosstalk between its immune system and lipid metabolism. There is not abundant information about lipid metabolism in vector insects, and significant current gaps in the field are indicated, as well as questions to be answered in the future.
Collapse
Affiliation(s)
- Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emerson G Pontes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Khan MT, Dalvin S, Waheed Q, Nilsen F, Male R. Molecular characterization of the lipophorin receptor in the crustacean ectoparasite Lepeophtheirus salmonis. PLoS One 2018; 13:e0195783. [PMID: 29649335 PMCID: PMC5897026 DOI: 10.1371/journal.pone.0195783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
The Salmon louse (Lepeophtheirus salmonis) is a marine ectoparasite of salmonid fish in the Northern Hemisphere and considered as a major challenge in aquaculture and a threat to wild populations of salmonids. Adult female lice produce a large number of lipid-rich eggs, however, the mechanism of maternal lipid transport into developing eggs during salmon louse reproduction has not been described. In the present study, a full-length L. salmonis lipophorin receptor (LsLpR) consisting of 16 exons was obtained by RACE and RT-PCR. The predicted ORF was 952 amino acids and structural analysis showed five functional domains that are similar to LpR of insects and decapods. Phylogenetic analysis placed the LsLpR together with LpRs from decapods and insects. Expression analysis revealed that the relative abundance of LsLpR transcripts was highest in the larvae and adult female lice. In adult females, the LsLpR transcripts and protein were found in the ovary and vitellogenic oocytes whereas, in larvae, the LsLpR transcripts were found in the neuronal somata of the brain and the intestine. Oil Red O stain results revealed that storage of neutral lipids was found in vitellogenic oocytes and ovaries of adult females, and in the yolk of larvae. Moreover, RNA interference (RNAi) was conducted to demonstrate the function of LsLpR in reproduction and lipid metabolism in L. salmonis. In larvae, the transcription of LsLpR was decreased by 44–54% while in an experiment LsLpR knockdown female lice produced 72% less offspring than control lice.
Collapse
Affiliation(s)
- Muhammad Tanveer Khan
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sussie Dalvin
- Sea Lice Research Centre, Institute of Marine Research, Bergen, Norway
| | - Qaiser Waheed
- Computational Biology Unit, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Rune Male
- Computational Biology Unit, Department of Biological Sciences, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
12
|
Fruttero LL, Leyria J, Ramos FO, Stariolo R, Settembrini BP, Canavoso LE. The process of lipid storage in insect oocytes: The involvement of β-chain of ATP synthase in lipophorin-mediated lipid transfer in the chagas' disease vector Panstrongylus megistus (Hemiptera: Reduviidae). JOURNAL OF INSECT PHYSIOLOGY 2017; 96:82-92. [PMID: 27983943 DOI: 10.1016/j.jinsphys.2016.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Lipophorin is the main lipoprotein in the hemolymph of insects. During vitellogenesis, lipophorin delivers its hydrophobic cargo to developing oocytes by its binding to non-endocytic receptors at the plasma membrane of the cells. In some species however, lipophorin may also be internalized to some extent, thus maximizing the storage of lipid resources in growing oocytes. The ectopic β chain of ATP synthase (β-ATPase) was recently described as a putative non-endocytic lipophorin receptor in the anterior midgut of the hematophagous insect Panstrongylus megistus. In the present work, females of this species at the vitellogenic stage of the reproductive cycle were employed to investigate the role of β-ATPase in the transfer of lipids to the ovarian tissue. Subcellular fractionation and western blot revealed the presence of β-ATPase in the microsomal membranes of the ovarian tissue, suggesting its localization in the plasma membrane. Immunofluorescence assays showed partial co-localization of β-ATPase and lipophorin in the membrane of oocytes as well as in the basal domain of the follicular epithelial cells. Ligand blotting and co-immunoprecipitation approaches confirmed the interaction between lipophorin and β-ATPase. In vivo experiments with an anti-β-ATPase antibody injected to block such an interaction demonstrated that the antibody significantly impaired the transfer of fatty acids from lipophorin to the oocyte. However, the endocytic pathway of lipophorin was not affected. On the other hand, partial inhibition of ATP synthase activity did not modify the transfer of lipids from lipophorin to oocytes. When the assays were performed at 4°C to diminish endocytosis, the results showed that the antibody interfered with lipophorin binding to the oocyte plasma membrane as well as with the transfer of fatty acids from the lipoprotein to the oocyte. The findings strongly support that β-ATPase plays a role as a docking lipophorin receptor at the ovary of P. megistus, similarly to its function in the midgut of such a vector. In addition, the role of β-ATPase as a docking receptor seems to be independent of the enzymatic ATP synthase activity.
Collapse
Affiliation(s)
- Leonardo L Fruttero
- Dpto. Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jimena Leyria
- Dpto. Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fabián O Ramos
- Dpto. Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Raúl Stariolo
- Coordinación Nacional de Control de Vectores, Servicio Nacional de Chagas. Santa María de Punilla, Córdoba, Argentina
| | - Beatriz P Settembrini
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Provincia de Buenos Aires, Argentina; Museo Argentino de Ciencias Naturales, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lilián E Canavoso
- Dpto. Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
13
|
Fruttero LL, Leyria J, Canavoso LE. Lipids in Insect Oocytes: From the Storage Pathways to Their Multiple Functions. Results Probl Cell Differ 2017; 63:403-434. [PMID: 28779328 DOI: 10.1007/978-3-319-60855-6_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In insect physiology, the mechanisms involved in the buildup and regulation of yolk proteins in developing oocytes have been thoroughly researched during the last three decades. Comparatively, the study of lipid metabolism in oocytes had received less attention. The importance of this issue lies in the fact that lipids make up to 40% of the dry weight of an insect egg, being the most important supply of energy for the developing embryo. Since the oocyte has a very limited capacity to synthesize lipids de novo, most of the lipids in the mature eggs arise from the circulation. The main lipid carriers in the insect circulatory system are the lipoproteins lipophorin and vitellogenin. In some species, the endocytosis of lipophorin and vitellogenin may account for about 10% of the lipids present in mature eggs. Thus, most of the lipids are transferred by a lipophorin-mediated pathway, in which the lipoprotein unloads its lipid cargo at the surface of oocytes without internalization. This chapter recapitulates the current status on lipid storage and its utilization in insect oocytes and discusses the participation of key factors including lipoproteins, transfer proteins, lipolytic enzymes, and dynamic organelles such as lipid droplets. The new findings in the field of lipophorin receptors are presented in the context of lipid accumulation during egg maturation, and the roles of lipids beyond energy source are summarized from the perspective of oogenesis and embryogenesis. Finally, prospective and fruitful areas of future research are suggested.
Collapse
Affiliation(s)
- Leonardo L Fruttero
- Instituto do Cerebro (InsCer). Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jimena Leyria
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Lilián E Canavoso
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina.
| |
Collapse
|
14
|
Benoit JB, Attardo GM, Baumann AA, Michalkova V, Aksoy S. Adenotrophic viviparity in tsetse flies: potential for population control and as an insect model for lactation. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:351-71. [PMID: 25341093 PMCID: PMC4453834 DOI: 10.1146/annurev-ento-010814-020834] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tsetse flies (Glossina spp.), vectors of African trypanosomes, are distinguished by their specialized reproductive biology, defined by adenotrophic viviparity (maternal nourishment of progeny by glandular secretions followed by live birth). This trait has evolved infrequently among insects and requires unique reproductive mechanisms. A key event in Glossina reproduction involves the transition between periods of lactation and nonlactation (dry periods). Increased lipolysis, nutrient transfer to the milk gland, and milk-specific protein production characterize lactation, which terminates at the birth of the progeny and is followed by a period of involution. The dry stage coincides with embryogenesis of the progeny, during which lipid reserves accumulate in preparation for the next round of lactation. The obligate bacterial symbiont Wigglesworthia glossinidia is critical to tsetse reproduction and likely provides B vitamins required for metabolic processes underlying lactation and/or progeny development. Here we describe findings that utilized transcriptomics, physiological assays, and RNA interference-based functional analysis to understand different components of adenotrophic viviparity in tsetse flies.
Collapse
Affiliation(s)
- Joshua B. Benoit
- Department of Biological Sciences, McMicken School of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio 45221
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
| | - Aaron A. Baumann
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava 845 06 SR, Slovakia
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
15
|
Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Microbiol 2014; 80:5844-53. [PMID: 25038091 DOI: 10.1128/aem.01150-14] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viviparous tsetse fly utilizes proline as a hemolymph-borne energy source. In tsetse, biosynthesis of proline from alanine involves the enzyme alanine-glyoxylate aminotransferase (AGAT), which requires pyridoxal phosphate (vitamin B6) as a cofactor. This vitamin can be synthesized by tsetse's obligate symbiont, Wigglesworthia glossinidia. In this study, we examined the role of Wigglesworthia-produced vitamin B6 for maintenance of proline homeostasis, specifically during the energetically expensive lactation period of the tsetse's reproductive cycle. We found that expression of agat, as well as genes involved in vitamin B6 metabolism in both host and symbiont, increases in lactating flies. Removal of symbionts via antibiotic treatment of flies (aposymbiotic) led to hypoprolinemia, reduced levels of vitamin B6 in lactating females, and decreased fecundity. Proline homeostasis and fecundity recovered partially when aposymbiotic tsetse were fed a diet supplemented with either yeast or Wigglesworthia extracts. RNA interference-mediated knockdown of agat in wild-type flies reduced hemolymph proline levels to that of aposymbiotic females. Aposymbiotic flies treated with agat short interfering RNA (siRNA) remained hypoprolinemic even upon dietary supplementation with microbial extracts or B vitamins. Flies infected with parasitic African trypanosomes display lower hemolymph proline levels, suggesting that the reduced fecundity observed in parasitized flies could result from parasite interference with proline homeostasis. This interference could be manifested by competition between tsetse and trypanosomes for vitamins, proline, or other factors involved in their synthesis. Collectively, these results indicate that the presence of Wigglesworthia in tsetse is critical for the maintenance of proline homeostasis through vitamin B6 production.
Collapse
|
16
|
Telleria EL, Benoit JB, Zhao X, Savage AF, Regmi S, e Silva TLA, O'Neill M, Aksoy S. Insights into the trypanosome-host interactions revealed through transcriptomic analysis of parasitized tsetse fly salivary glands. PLoS Negl Trop Dis 2014; 8:e2649. [PMID: 24763140 PMCID: PMC3998935 DOI: 10.1371/journal.pntd.0002649] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022] Open
Abstract
The agents of sleeping sickness disease, Trypanosoma brucei complex parasites, are transmitted to mammalian hosts through the bite of an infected tsetse. Information on tsetse-trypanosome interactions in the salivary gland (SG) tissue, and on mammalian infective metacyclic (MC) parasites present in the SG, is sparse. We performed RNA-seq analyses from uninfected and T. b. brucei infected SGs of Glossina morsitans morsitans. Comparison of the SG transcriptomes to a whole body fly transcriptome revealed that only 2.7% of the contigs are differentially expressed during SG infection, and that only 263 contigs (0.6%) are preferentially expressed in the SGs (SG-enriched). The expression of only 37 contigs (0.08%) and 27 SG-enriched contigs (10%) were suppressed in infected SG. These suppressed contigs accounted for over 55% of the SG transcriptome, and included the most abundant putative secreted proteins with anti-hemostatic functions present in saliva. In contrast, expression of putative host proteins associated with immunity, stress, cell division and tissue remodeling were enriched in infected SG suggesting that parasite infections induce host immune and stress response(s) that likely results in tissue renewal. We also performed RNA-seq analysis from mouse blood infected with the same parasite strain, and compared the transcriptome of bloodstream form (BSF) cells with that of parasites obtained from the infected SG. Over 30% of parasite transcripts are differentially regulated between the two stages, and reflect parasite adaptations to varying host nutritional and immune ecology. These differences are associated with the switch from an amino acid based metabolism in the SG to one based on glucose utilization in the blood, and with surface coat modifications that enable parasite survival in the different hosts. This study provides a foundation on the molecular aspects of the trypanosome dialogue with its tsetse and mammalian hosts, necessary for future functional investigations. Tsetse flies transmit the causative agents of African sleeping sickness and nagana in sub-Saharan Africa. The parasites are acquired when tsetse flies feed on an infected host, undergo multiplication in the fly gut and migrate to the salivary glands (SG). The cycle resumes once this infected fly transmits the parasites in conjunction with saliva to another host when feeding. We compared gene expression changes between parasitized and uninfected tsetse SG. We also assessed changes in parasite gene expression in the tsetse SG in relation to those present within vertebrate blood. We found that parasite infections increase expression of host proteins associated with stress and cell division, indicative of extensive cellular damage in SG. We also found that parasite infections reduce expression of the most highly expressed SG-specific secreted proteins, suggesting modification of saliva composition. The parasite transcriptome reveals changes in specific cell surface proteins and in metabolism related to glucose-amino acid utilization in the different host environments. This study provides information for critical understanding of tsetse-trypanosome interactions, and transcriptional changes that likely enable the parasite to persist in the varying environment of its insect and vertebrate hosts.
Collapse
Affiliation(s)
- Erich Loza Telleria
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, LEPH, New Haven, Connecticut, United States of America
| | - Joshua B. Benoit
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, LEPH, New Haven, Connecticut, United States of America
| | - Xin Zhao
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, LEPH, New Haven, Connecticut, United States of America
| | - Amy F. Savage
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, LEPH, New Haven, Connecticut, United States of America
| | - Sandesh Regmi
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, LEPH, New Haven, Connecticut, United States of America
| | - Thiago Luiz Alves e Silva
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, LEPH, New Haven, Connecticut, United States of America
| | - Michelle O'Neill
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, LEPH, New Haven, Connecticut, United States of America
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, LEPH, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
17
|
Michalkova V, Benoit JB, Attardo GM, Medlock J, Aksoy S. Amelioration of reproduction-associated oxidative stress in a viviparous insect is critical to prevent reproductive senescence. PLoS One 2014; 9:e87554. [PMID: 24763119 PMCID: PMC3998933 DOI: 10.1371/journal.pone.0087554] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
Impact of reproductive processes upon female health has yielded conflicting results; particularly in relation to the role of reproduction-associated stress. We used the viviparous tsetse fly to determine if lactation, birth and involution lead to damage from oxidative stress (OS) that impairs subsequent reproductive cycles. Tsetse females carry an intrauterine larva to full term at each pregnancy cycle, and lactate to nourish them with milk secretions produced by the accessory gland ( = milk gland) organ. Unlike most K-strategists, tsetse females lack an apparent period of reproductive senescence allowing the production of 8-10 progeny over their entire life span. In a lactating female, over 47% of the maternal transcriptome is associated with the generation of milk proteins. The resulting single larval offspring weighs as much as the mother at birth. In studying this process we noted an increase in specific antioxidant enzyme (AOE) transcripts and enzymatic activity at critical times during lactation, birth and involution in the milk gland/fat body organ and the uterus. Suppression of superoxide dismutase (sod) decreased fecundity in subsequent reproductive cycles in young mothers and nearly abolished fecundity in geriatric females. Loss of fecundity was in part due to the inability of the mother to produce adequate milk to support larval growth. Longevity was also impaired after sod knockdown. Generation of OS in virgin females through exogenous treatment with hydrogen peroxide at times corresponding to pregnancy intervals reduced survival, which was exacerbated by sod knockdown. AOE expression may prevent oxidative damage associated with the generation of nutrients by the milk gland, parturition and milk gland breakdown. Our results indicate that prevention of OS is essential for females to meet the growing nutritional demands of juveniles during pregnancy and to repair the damage that occurs at birth. This process is particularly important for females to remain fecund during the latter portion of their lifetime.
Collapse
Affiliation(s)
- Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United State of America
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Joshua B. Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United State of America
- * E-mail:
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United State of America
| | - Jan Medlock
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United State of America
| |
Collapse
|
18
|
Benoit JB, Hansen IA, Attardo GM, Michalková V, Mireji PO, Bargul JL, Drake LL, Masiga DK, Aksoy S. Aquaporins are critical for provision of water during lactation and intrauterine progeny hydration to maintain tsetse fly reproductive success. PLoS Negl Trop Dis 2014; 8:e2517. [PMID: 24762803 PMCID: PMC3998938 DOI: 10.1371/journal.pntd.0002517] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/20/2013] [Indexed: 12/26/2022] Open
Abstract
Tsetse flies undergo drastic fluctuations in their water content throughout their adult life history due to events such as blood feeding, dehydration and lactation, an essential feature of the viviparous reproductive biology of tsetse. Aquaporins (AQPs) are transmembrane proteins that allow water and other solutes to permeate through cellular membranes. Here we identify tsetse aquaporin (AQP) genes, examine their expression patterns under different physiological conditions (blood feeding, lactation and stress response) and perform functional analysis of three specific genes utilizing RNA interference (RNAi) gene silencing. Ten putative aquaporins were identified in the Glossina morsitans morsitans (Gmm) genome, two more than has been previously documented in any other insect. All organs, tissues, and body parts examined had distinct AQP expression patterns. Two AQP genes, gmmdripa and gmmdripb ( = gmmaqp1a and gmmaqp1b) are highly expressed in the milk gland/fat body tissues. The whole-body transcript levels of these two genes vary over the course of pregnancy. A set of three AQPs (gmmaqp5, gmmaqp2a, and gmmaqp4b) are expressed highly in the Malpighian tubules. Knockdown of gmmdripa and gmmdripb reduced the efficiency of water loss following a blood meal, increased dehydration tolerance and reduced heat tolerance of adult females. Knockdown of gmmdripa extended pregnancy length, and gmmdripb knockdown resulted in extended pregnancy duration and reduced progeny production. We found that knockdown of AQPs increased tsetse milk osmolality and reduced the water content in developing larva. Combined knockdown of gmmdripa, gmmdripb and gmmaqp5 extended pregnancy by 4–6 d, reduced pupal production by nearly 50%, increased milk osmolality by 20–25% and led to dehydration of feeding larvae. Based on these results, we conclude that gmmDripA and gmmDripB are critical for diuresis, stress tolerance and intrauterine lactation through the regulation of water and/or other uncharged solutes. Glossina sp. are responsible for transmission of African trypanosomes, the causative agents of sleeping sickness in humans and Nagana in cattle. Blood feeding and nutrient provisioning through lactation during intrauterine progeny development are periods when considerable water movement occurs within tsetse flies. With the completion of the tsetse fly genome, we sought to characterize the role of aquaporins in relation water homeostasis during blood feeding, stress tolerance and the lactation cycle. We provide evidence that specific AQPs are 1. critical during diuresis following a bloodmeal, 2. important in the regulation of dehydration resistance and heat tolerance and 3. crucial in the allocation of water within tsetse milk that is necessary for progeny hydration. Specifically, we discovered a novel tsetse AQP that is imperative to lactation and may represent a potential target for population control of this disease vector.
Collapse
Affiliation(s)
- Joshua B. Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| | - Immo A. Hansen
- Department of Biology and Institute of Applied Biosciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Veronika Michalková
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Paul O. Mireji
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Joel L. Bargul
- Molecular Biology and Bioinformatics Unit, International Center of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Lisa L. Drake
- Department of Biology and Institute of Applied Biosciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Daniel K. Masiga
- Molecular Biology and Bioinformatics Unit, International Center of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
19
|
Baumann AA, Benoit JB, Michalkova V, Mireji P, Attardo GM, Moulton JK, Wilson TG, Aksoy S. Juvenile hormone and insulin suppress lipolysis between periods of lactation during tsetse fly pregnancy. Mol Cell Endocrinol 2013; 372:30-41. [PMID: 23499946 PMCID: PMC4222070 DOI: 10.1016/j.mce.2013.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/30/2013] [Accepted: 02/26/2013] [Indexed: 11/30/2022]
Abstract
Tsetse flies are viviparous insects that nurture a single intrauterine progeny per gonotrophic cycle. The developing larva is nourished by the lipid-rich, milk-like secretions from a modified female accessory gland (milk gland). An essential feature of the lactation process involves lipid mobilization for incorporation into the milk. In this study, we examined roles for juvenile hormone (JH) and insulin/IGF-like (IIS) signaling pathways during tsetse pregnancy. In particular, we examined the roles for these pathways in regulating lipid homeostasis during transitions between non-lactating (dry) and lactating periods. The dry period occurs over the course of oogenesis and embryogenesis, while the lactation period spans intrauterine larvigenesis. Genes involved in the JH and IIS pathways were upregulated during dry periods, correlating with lipid accumulation between bouts of lactation. RNAi suppression of Forkhead Box Sub Group O (FOXO) expression impaired lipolysis during tsetse lactation and reduced fecundity. Similar reduction of the JH receptor Methoprene tolerant (Met), but not its paralog germ cell expressed (gce), reduced lipid accumulation during dry periods, indicating functional divergence between Met and gce during tsetse reproduction. Reduced lipid levels following Met knockdown led to impaired fecundity due to inadequate fat reserves at the initiation of milk production. Both the application of the JH analog (JHA) methoprene and injection of insulin into lactating females increased stored lipids by suppressing lipolysis and reduced transcripts of lactation-specific genes, leading to elevated rates of larval abortion. To our knowledge, this study is the first to address the molecular physiology of JH and IIS in a viviparous insect, and specifically to provide a role for JH signaling through Met in the regulation of lipid metabolism during insect lactation.
Collapse
Affiliation(s)
- Aaron A. Baumann
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Joshua B. Benoit
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT 06520
- Author for correspondence:
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT 06520
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Paul Mireji
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT 06520
| | - John K. Moulton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville TN
| | - Thomas G. Wilson
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT 06520
| |
Collapse
|
20
|
Barnard AC, Nijhof AM, Fick W, Stutzer C, Maritz-Olivier C. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface. Genes (Basel) 2012; 3:702-41. [PMID: 24705082 PMCID: PMC3899984 DOI: 10.3390/genes3040702] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/06/2023] Open
Abstract
The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase.
Collapse
Affiliation(s)
| | - Ard M Nijhof
- Institut für Parasitologie und Tropenveterinärmedizin, Freie Universität Berlin, Königsweg 67, 14163, Berlin, Germany.
| | - Wilma Fick
- Department of Genetics, University of Pretoria, Pretoria, 0002, South Africa.
| | - Christian Stutzer
- Department of Biochemistry, University of Pretoria, Pretoria, 0002, South Africa.
| | | |
Collapse
|
21
|
The tsetse fly obligate mutualist Wigglesworthia morsitans alters gene expression and population density via exogenous nutrient provisioning. Appl Environ Microbiol 2012; 78:7792-7. [PMID: 22904061 DOI: 10.1128/aem.02052-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate mutualist Wigglesworthia morsitans provisions nutrients to tsetse flies. The symbiont's response to thiamine (B(1)) supplementation of blood meals, specifically towards the regulation of thiamine biosynthesis and population density, is described. Despite an ancient symbiosis and associated genome tailoring, Wigglesworthia responds to nutrient availability, potentially accommodating a decreased need.
Collapse
|
22
|
Benoit JB, Attardo GM, Michalkova V, Takác P, Bohova J, Aksoy S. Sphingomyelinase activity in mother's milk is essential for juvenile development: a case from lactating tsetse flies. Biol Reprod 2012; 87:17, 1-10. [PMID: 22517621 PMCID: PMC3406556 DOI: 10.1095/biolreprod.112.100008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/26/2012] [Accepted: 04/04/2012] [Indexed: 12/27/2022] Open
Abstract
Sphingosine is a structural component of sphingolipids. The metabolism of phosphoethanolamine ceramide (sphingomyelin) by sphingomyelinase (SMase), followed by the breakdown of ceramide by ceramidase (CDase) yields sphingosine. Female tsetse fly is viviparous and generates a single progeny within her uterus during each gonotrophic cycle. The mother provides her offspring with nutrients required for development solely via intrauterine lactation. Quantitative PCR showed that acid smase1 (asmase1) increases in mother's milk gland during lactation. aSMase1 was detected in the milk gland and larval gut, indicating this protein is generated during lactation and consumed by the larva. The higher levels of SMase activity in larval gut contents indicate that this enzyme is activated by the low gut pH. In addition, cdase is expressed at high levels in the larval gut. Breakdown of the resulting ceramide is likely accomplished by the larval gut-secreted CDase, which allows absorption of sphingosine. We used the tsetse system to understand the critical role(s) of SMase and CDase during pregnancy and lactation and their downstream effects on adult progeny fitness. Reduction of asmase1 by short interfering RNA negatively impacted pregnancy and progeny performance, resulting in a 4-5-day extension in pregnancy, 10%-15% reduction in pupal mass, lower pupal hatch rates, impaired heat tolerance, reduced symbiont levels, and reduced fecundity of adult progeny. This study suggests that the SMase activity associated with tsetse lactation and larval digestion is similar in function to that of mammalian lactation and represents a critical process for juvenile development, with important effects on the health of progeny during their adulthood.
Collapse
Affiliation(s)
- Joshua B Benoit
- Division of Epidemiology and Public Health, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | |
Collapse
|