1
|
Qian Q, Niwa R. Endocrine Regulation of Aging in the Fruit Fly Drosophila melanogaster. Zoolog Sci 2024; 41:4-13. [PMID: 38587512 DOI: 10.2108/zs230056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/16/2023] [Indexed: 04/09/2024]
Abstract
The past few decades have witnessed increasing research clarifying the role of endocrine signaling in the regulation of aging in both vertebrates and invertebrates. Studies using the model organism fruit fly Drosophila melanogaster have largely advanced our understanding of evolutionarily conserved mechanisms in the endocrinology of aging and anti-aging. Mutations in single genes involved in endocrine signaling modify lifespan, as do alterations of endocrine signaling in a tissue- or cell-specific manner, highlighting a central role of endocrine signaling in coordinating the crosstalk between tissues and cells to determine the pace of aging. Here, we review the current landscape of research in D. melanogaster that offers valuable insights into the endocrine-governed mechanisms which influence lifespan and age-related physiology.
Collapse
Affiliation(s)
- Qingyin Qian
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan,
| |
Collapse
|
2
|
Zhang X, Li S, Liu S. Juvenile Hormone Studies in Drosophila melanogaster. Front Physiol 2022; 12:785320. [PMID: 35222061 PMCID: PMC8867211 DOI: 10.3389/fphys.2021.785320] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
In the field of insect endocrinology, juvenile hormone (JH) is one of the most wondrous entomological terms. As a unique sesquiterpenoid hormone produced and released by the endocrine gland, corpus allatum (CA), JH is a critical regulator in multiple developmental and physiological processes, such as metamorphosis, reproduction, and behavior. Benefited from the precise genetic interventions and simplicity, the fruit fly, Drosophila melanogaster, is an indispensable model in JH studies. This review is aimed to present the regulatory factors on JH biosynthesis and an overview of the regulatory roles of JH in Drosophila. The future directions of JH studies are also discussed, and a few hot spots are highlighted.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| |
Collapse
|
3
|
Burdina EV, Adonyeva NV, Karpova EK, Rauschenbach IY, Menshanov PN, Gruntenko NE. The effect of mild heat stress of different frequencies on the adaptability of Drosophila melanogaster females. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21619. [PMID: 31532855 DOI: 10.1002/arch.21619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
In natural populations, insects regularly face an adverse impact of different natures: harsh weather swings, lack of food resources, the insecticidal treatment. We studied the effect of repeated episodes of mild heat stress of different frequencies on stress resistance of Drosophila melanogaster females. We found out that the mild heat stress (38°С, 1 hr) repeated daily within 2 weeks resulted in (a) an increased activity of the dopamine (DA) metabolism enzymes, DA-dependent arylalkylamine N-acetyltransferase and alkaline phosphatase, which suggested a decrease in DA level, and (b) an increased survival rate under acute heat stress (38°С, 4 hr). The same mild heat stress repeated weekly had no effect on these parameters.
Collapse
Affiliation(s)
- Elena V Burdina
- Department of Insects Genetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nataly V Adonyeva
- Department of Insects Genetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgeniya K Karpova
- Department of Insects Genetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Inga Yu Rauschenbach
- Department of Insects Genetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Petr N Menshanov
- Department of Insects Genetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Laser Systems Department, Novosibirsk State Technical University, Novosibirsk, Russia
- Physiology Department, Novosibirsk State University, Novosibirsk, Russia
| | - Nataly E Gruntenko
- Department of Insects Genetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Karpova EK, Rauschenbach IY, Gruntenko NE. Comparative analysis of the ftness of Drosophila virilis lines contrasting in response to stress. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj.1834-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the crucial elements contributing to the adaptation of organisms to unfavorable environmental conditions is the reaction of stress. The study of its genetic control and role in adaptation to unfavorable conditions are of special interest. The juvenile hormone (JH) acts as a gonadotropic hormone in adult insects controlling the development of the ovaries, inducing vitellogenesis and oviposition. It was shown that a decrease in JH degradation in individuals reacting to adverse conditions by stress reaction (Rindividuals) causes delay in egg laying and seems to allow the population to “wait out” the unfavorable conditions, thereby contributing to the adaptation at the population level. However, monitoring natural populations of D. melanogaster for the capability of stress reaction demonstrated that they have a high percentage of individuals incapable of it (NRindividuals). The study of reproductive characteristics of R and NRindividuals showed that under normal conditions Rindividuals have the advantage of procreating offspring. Under unfavorable conditions, if the stressor is intense enough, NRindividuals die, but if its intensity is low, then they, unlike Rindividuals, continue to produce offspring. Based on these data, it was hypothesized that the balance of R and NRalleles in the population ensures its adaptation under frequent stresses of low intensity. To verify the hypothesis by an experiment, the ftness characteristics (lifespan, fecundity) of the R and NR lines of D. virilis were studied under normal conditions and under regular heat stress of various frequency.
Collapse
|
5
|
Karpova EK, Rauschenbach IY, Gruntenko NE. Comparative analysis of the ftness of Drosophila virilis lines contrasting in response to stress. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj18.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the crucial elements contributing to the adaptation of organisms to unfavorable environmental conditions is the reaction of stress. The study of its genetic control and role in adaptation to unfavorable conditions are of special interest. The juvenile hormone (JH) acts as a gonadotropic hormone in adult insects controlling the development of the ovaries, inducing vitellogenesis and oviposition. It was shown that a decrease in JH degradation in individuals reacting to adverse conditions by stress reaction (Rindividuals) causes delay in egg laying and seems to allow the population to “wait out” the unfavorable conditions, thereby contributing to the adaptation at the population level. However, monitoring natural populations of D. melanogaster for the capability of stress reaction demonstrated that they have a high percentage of individuals incapable of it (NRindividuals). The study of reproductive characteristics of R and NRindividuals showed that under normal conditions Rindividuals have the advantage of procreating offspring. Under unfavorable conditions, if the stressor is intense enough, NRindividuals die, but if its intensity is low, then they, unlike Rindividuals, continue to produce offspring. Based on these data, it was hypothesized that the balance of R and NRalleles in the population ensures its adaptation under frequent stresses of low intensity. To verify the hypothesis by an experiment, the ftness characteristics (lifespan, fecundity) of the R and NR lines of D. virilis were studied under normal conditions and under regular heat stress of various frequency.
Collapse
|
6
|
Lee SS, Ding Y, Karapetians N, Rivera-Perez C, Noriega FG, Adams ME. Hormonal Signaling Cascade during an Early-Adult Critical Period Required for Courtship Memory Retention in Drosophila. Curr Biol 2017; 27:2798-2809.e3. [DOI: 10.1016/j.cub.2017.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/08/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022]
|
7
|
C-type allatostatins mimic stress-related effects of alarm pheromone on honey bee learning and memory recall. PLoS One 2017; 12:e0174321. [PMID: 28323874 PMCID: PMC5360335 DOI: 10.1371/journal.pone.0174321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/07/2017] [Indexed: 11/19/2022] Open
Abstract
As honey bee populations worldwide are declining there is an urgent need for a deeper understanding of stress reactivity in these important insects. Our data indicate that stress responses in bees (Apis mellifera L.) may be mediated by neuropeptides identified, on the basis of sequence similarities, as allatostatins (ASTA, ASTC and ASTCC). Effects of allatostatin injection are compared with stress-related changes in learning performance induced by the honeybee alarm pheromone, isopentylacetate (IPA). We find that bees can exhibit two markedly different responses to IPA, with opposing effects on learning behaviour and memory generalisation, and that strikingly similar responses can be elicited by allatostatins, in particular ASTCC. These findings lend support to the hypothesis that allatostatins mediate stress reactivity in honey bees and suggest responses to stress in these insects are state dependent.
Collapse
|
8
|
Rauschenbach IY, Karpova EK, Burdina EV, Adonyeva NV, Bykov RA, Ilinsky YY, Menshanov PN, Gruntenko NE. Insulin-like peptide DILP6 regulates juvenile hormone and dopamine metabolism in Drosophila females. Gen Comp Endocrinol 2017; 243:1-9. [PMID: 27823956 DOI: 10.1016/j.ygcen.2016.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Insulin-like peptide DILP6 is a component of the insulin/insulin-like growth factor signalling pathway of Drosophila. Juvenile hormone (JH) and dopamine (DA) are involved in the stress response and in the control of reproduction. In this study, we investigate whether DILP6 regulates the JH and DA levels by studying the effect of a strong hypomorphic mutation dilp641 on JH and DA metabolism in D. melanogaster females. We show that DILP6 regulates JH and DA metabolism: the mutation dilp641 results in a reduction in JH-hydrolysing activity and an increase in the activities of DA synthesis enzymes (alkaline phosphatase (ALP) and tyrosine hydroxylase (TH)). In the mutant females, we also found increased fecundity in addition to the intensity of the response (stress reactivity) of ALP and TH to heat stress. As we showed previously, this suggests an increased level of JH synthesis. We confirm this suggestion by treating the mutant females with the JH inhibitor, precocene, which restors the activity and stress reactivity of ALP and TH as well as fecundity to levels similar to those in the control flies. The data suggest a feedback system in the interaction between JH and DILP6 in which DILP6 negatively regulates the JH titre via an increase in the hormone degradation and a decrease in its synthesis.
Collapse
Affiliation(s)
- I Yu Rauschenbach
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - E K Karpova
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - E V Burdina
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - N V Adonyeva
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - R A Bykov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Y Y Ilinsky
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - P N Menshanov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - N E Gruntenko
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia.
| |
Collapse
|
9
|
Gruntenko NE, Adonyeva NV, Burdina EV, Karpova EK, Andreenkova OV, Gladkikh DV, Ilinsky YY, Rauschenbach IY. The impact of FOXO on dopamine and octopamine metabolism in Drosophila under normal and heat stress conditions. Biol Open 2016; 5:1706-1711. [PMID: 27754851 PMCID: PMC5155542 DOI: 10.1242/bio.022038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The forkhead boxO transcription factor (FOXO) is a component of the insulin signalling pathway and plays a role in responding to adverse conditions, such as oxidative stress and starvation. In stressful conditions, FOXO moves from the cytosol to the nucleus where it activates gene expression programmes. Here, we show that FOXO in Drosophila melanogaster responds to heat stress as it does to other stressors. The catecholamine signalling pathway is another component of the stress response. In Drosophila, dopamine and octopamine levels rise steeply under heat, nutrition and mechanical stresses, which are followed by a decrease in the activity of synthesis enzymes. We demonstrate that the nearly twofold decline of FOXO expression in foxoBG01018 mutants results in dramatic changes in the metabolism of dopamine and octopamine and the overall response to stress. The absence of FOXO increases tyrosine decarboxylase activity, the first enzyme in octopamine synthesis, and decreases the enzymatic activity of enzymes in dopamine synthesis, alkaline phosphatase and tyrosine hydroxylase, in young Drosophila females. We identified the juvenile hormone as a mediator of FOXO regulation of catecholamine metabolism. Our findings suggest that FOXO is a possible trigger for endocrinological stress reactions. Summary: The transcription factor FOXO affects catecholamine metabolism under normal and heat stress conditions in D. melanogaster, and juvenile hormone (JH) is a mediator of this effect.
Collapse
Affiliation(s)
- Nataly E Gruntenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalya V Adonyeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V Burdina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Evgenia K Karpova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga V Andreenkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Daniil V Gladkikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yury Y Ilinsky
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Inga Yu Rauschenbach
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
10
|
Karpova EK, Rauschenbach IY, Burdina EV, Gruntenko NE. Mutation in the Drosophila insulin-like receptor substrate, chico, affects the neuroendocrine stress-reaction development. DOKL BIOCHEM BIOPHYS 2016; 469:253-6. [DOI: 10.1134/s1607672916040050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 11/23/2022]
|
11
|
Burdina EV, Adonyeva NV, Gruntenko NE, Rauschenbach IY. Gene dilp6 regulates octopamine metabolism in Drosophila melanogaster. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416060041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Karpova EK, Rauschenbach IY, Gruntenko NE. Comparative analysis of the fitness of Drosophila virilis lines contrasting in response to stress. Vavilovskii Zhurnal Genet Selektsii 2015. [DOI: 10.18699/vj18.34-o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the crucial elements contributing to the adaptation of organisms to unfavorable environmental conditions is the reaction of stress. The study of its genetic control and role in adaptation to unfavorable conditions are of special interest. The juvenile hormone (JH) acts as a gonadotropic hormone in adult insects controlling the development of the ovaries, inducing vitellogenesis and oviposition. It was shown that a decrease in JH degradation in individuals reacting to adverse conditions by stress reaction (R-individuals) causes delay in egg laying and seems to allow the population to “wait out” the unfavorable conditions, thereby contributing to the adaptation at the population level. However, monitoring natural populations of D. melanogaster for the capability of stress reaction demonstrated that they have a high percentage of individuals incapable of it (NR-individuals). The study of reproductive characteristics of R- and NR-individuals showed that under normal conditions R-individuals have the advantage of procreating offspring. Under unfavorable conditions, if the stressor is intense enough, NR-individuals die, but if its intensity is low, then they, unlike R-individuals, continue to produce offspring. Based on these data, it was hypothesized that the balance of R- and NR-alleles in the population ensures its adaptation under frequent stresses of low intensity. To verify the hypothesis by an experiment, the fitness characteristics (lifespan, fecundity) of the R and NR lines of D. virilis were studied under normal conditions and under regular heat stress of various frequency.
Collapse
|
13
|
Rauschenbach IY, Karpova EK, Adonyeva NV, Andreenkova OV, Faddeeva NV, Burdina EV, Alekseev AA, Menshanov PN, Gruntenko NE. Disruption of insulin signalling affects the neuroendocrine stress reaction in Drosophila females. ACTA ACUST UNITED AC 2014; 217:3733-41. [PMID: 25214494 DOI: 10.1242/jeb.106815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Juvenile hormone (JH) and dopamine are involved in the stress response in insects. The insulin/insulin-like growth factor signalling pathway has also recently been found to be involved in the regulation of various processes, including stress tolerance. However, the relationships between the JH, dopamine and insulin signalling pathways remain unclear. Here, we study the role of insulin signalling in the regulation of JH and dopamine metabolism under normal and heat stress conditions in Drosophila melanogaster females. We show that suppression of the insulin-like receptor (InR) in the corpus allatum, a specialised endocrine gland that synthesises JH, causes an increase in dopamine level and JH-hydrolysing activity and alters the activities of enzymes that produce as well as those that degrade dopamine [alkaline phosphatase (ALP), tyrosine hydroxylase (TH) and dopamine-dependent arylalkylamine N-acetyltransferase (DAT)]. We also found that InR suppression in the corpus allatum modulates dopamine, ALP, TH and JH-hydrolysing activity in response to heat stress and that it decreases the fecundity of the flies. JH application restores dopamine metabolism and fecundity in females with decreased InR expression in the corpus allatum. Our data provide evidence that the insulin/insulin-like growth factor signalling pathway regulates dopamine metabolism in females of D. melanogaster via the system of JH metabolism and that it affects the development of the neuroendocrine stress reaction and interacts with JH in the control of reproduction in this species.
Collapse
Affiliation(s)
- Inga Y Rauschenbach
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Evgenia K Karpova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalya V Adonyeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga V Andreenkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalya V Faddeeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V Burdina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexander A Alekseev
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Petr N Menshanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nataly E Gruntenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
14
|
Rauschenbach IY, Karpova EK, Adonyeva NV, Gruntenko NE. InR gene expression and octopamine metabolism in Drosophila melanogaster females. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414030077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Yamamoto R, Bai H, Dolezal AG, Amdam G, Tatar M. Juvenile hormone regulation of Drosophila aging. BMC Biol 2013; 11:85. [PMID: 23866071 PMCID: PMC3726347 DOI: 10.1186/1741-7007-11-85] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/05/2013] [Indexed: 01/01/2023] Open
Abstract
Background Juvenile hormone (JH) has been demonstrated to control adult lifespan in a number of non-model insects where surgical removal of the corpora allata eliminates the hormone’s source. In contrast, little is known about how juvenile hormone affects adult Drosophila melanogaster. Previous work suggests that insulin signaling may modulate Drosophila aging in part through its impact on juvenile hormone titer, but no data yet address whether reduction of juvenile hormone is sufficient to control Drosophila life span. Here we adapt a genetic approach to knock out the corpora allata in adult Drosophila melanogaster and characterize adult life history phenotypes produced by reduction of juvenile hormone. With this system we test potential explanations for how juvenile hormone modulates aging. Results A tissue specific driver inducing an inhibitor of a protein phosphatase was used to ablate the corpora allata while permitting normal development of adult flies. Corpora allata knockout adults had greatly reduced fecundity, inhibited oogenesis, impaired adult fat body development and extended lifespan. Treating these adults with the juvenile hormone analog methoprene restored all traits toward wildtype. Knockout females remained relatively long-lived even when crossed into a genotype that blocked all egg production. Dietary restriction further extended the lifespan of knockout females. In an analysis of expression profiles of knockout females in fertile and sterile backgrounds, about 100 genes changed in response to loss of juvenile hormone independent of reproductive state. Conclusions Reduced juvenile hormone alone is sufficient to extend the lifespan of Drosophila melanogaster. Reduced juvenile hormone limits reproduction by inhibiting the production of yolked eggs, and this may arise because juvenile hormone is required for the post-eclosion development of the vitellogenin-producing adult fat body. Our data do not support a mechanism for juvenile hormone control of longevity simply based on reducing the physiological costs of egg production. Nor does the longevity benefit appear to function through mechanisms by which dietary restriction extends longevity. We identify transcripts that change in response to juvenile hormone independent of reproductive state and suggest these represent somatically expressed genes that could modulate how juvenile hormone controls persistence and longevity.
Collapse
Affiliation(s)
- Rochele Yamamoto
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | | | | | | | | |
Collapse
|
16
|
Bogomolova EV, Adonyeva NV, Karpova EK, Gruntenko NE, Rauschenbach IY. Ubiquitous downregulation of InR gene expression affects stress associated hormone metabolism in Drosophila females. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413050037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Adonyeva NV, Bogomolova EV, Rauschenbach IY, Gruntenko NE. Insulin affects dopamine metabolism in Drosophila females under normal and stress conditions. DOKL BIOCHEM BIOPHYS 2013; 448:40-2. [DOI: 10.1134/s1607672913010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Indexed: 11/22/2022]
|
18
|
General Stress Responses in the Honey Bee. INSECTS 2012; 3:1271-98. [PMID: 26466739 PMCID: PMC4553576 DOI: 10.3390/insects3041271] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/09/2012] [Accepted: 11/20/2012] [Indexed: 11/25/2022]
Abstract
The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA) axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine), neuropeptides (allatostatin, corazonin) and metabolic hormones (adipokinetic hormone, diuretic hormone). Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop). We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.
Collapse
|
19
|
Rauschenbach IY, Bogomolova EV, Karpova EK, Shumnaya LV, Gruntenko NE. The role of D1 like receptors in the regulation of juvenile hormone synthesis in Drosophila females with increased dopamine level. DOKL BIOCHEM BIOPHYS 2012; 446:231-4. [DOI: 10.1134/s1607672912050134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Indexed: 11/23/2022]
|
20
|
Karpova EK, Bogomolova EV, Romanova IV, Gruntenko NE, Rauschenbach IY. Role of DopR in the molecular mechanism of the dopamine control of juvenile hormone metabolism in female Drosophila. RUSS J GENET+ 2012. [DOI: 10.1134/s102279541207006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|