1
|
Suh E, Stopard IJ, Lambert B, Waite JL, Dennington NL, Churcher TS, Thomas MB. Estimating the effects of temperature on transmission of the human malaria parasite, Plasmodium falciparum. Nat Commun 2024; 15:3230. [PMID: 38649361 PMCID: PMC11035611 DOI: 10.1038/s41467-024-47265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Despite concern that climate change could increase the human risk to malaria in certain areas, the temperature dependency of malaria transmission is poorly characterized. Here, we use a mechanistic model fitted to experimental data to describe how Plasmodium falciparum infection of the African malaria vector, Anopheles gambiae, is modulated by temperature, including its influences on parasite establishment, conversion efficiency through parasite developmental stages, parasite development rate, and overall vector competence. We use these data, together with estimates of the survival of infected blood-fed mosquitoes, to explore the theoretical influence of temperature on transmission in four locations in Kenya, considering recent conditions and future climate change. Results provide insights into factors limiting transmission in cooler environments and indicate that increases in malaria transmission due to climate warming in areas like the Kenyan Highlands, might be less than previously predicted.
Collapse
Affiliation(s)
- Eunho Suh
- Center for Infectious Disease Dynamics, Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Isaac J Stopard
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Ben Lambert
- Department of Statistics, University of Oxford, Oxford, UK
| | - Jessica L Waite
- Center for Infectious Disease Dynamics, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Research Development, University of Vermont, Burlington, VT, USA
| | - Nina L Dennington
- Center for Infectious Disease Dynamics, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Thomas S Churcher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, University of York, York, UK
- Invasion Science Research Institute and Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Srygley RB. Selective protein self-deprivation by Mormon crickets following fungal attack. JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104555. [PMID: 37595783 DOI: 10.1016/j.jinsphys.2023.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Immune responses to infection result in behavioral changes that affect resource acquisition, such as general starvation and compensatory feeding to offset changes in resource allocation. Mormon crickets aggregate and march in bands containing millions of insects. Some bands are comprised of insects seeking proteins. They are also low in circulating phenoloxidase (PO) and more susceptible to fungal attack, as we have demonstrated in the lab. Here, we ask: Do Mormon crickets elevate PO and consume protein in response to infection by the pathogenic fungus Beauveria bassiana? B. bassiana was applied topically (day 0), and mortality began on day 5. Total protein, PO, and prophenoloxidase (proPO) were assayed in hemolymph on day 1 and 4. On day 1, PO titers were not different between inoculated and control insects, whereas by day 4, PO was greater in the inoculated group. proPO activity was unchanged. Circulating protein declined in inoculated insects relative to controls. As predicted, PO titers were elevated as a result of fungal infection, and hemolymph protein was reduced, but the insects did not compensate behaviorally. Indeed, during the first three days post-infection, infected insects reduced protein consumption while maintaining carbohydrate consumption similar to the controls. Following day 3, a more general reduction in protein and carbohydrate intake was evident in infected insects. Survivorship to infection was associated with the amount of protein consumed and unrelated to carbohydrate consumption. Selective protein deprivation by the host seems counterintuitive, but it might limit growth and toxin production by the invading fungus. Alternatively, the fungus might control the host diet to compromise host immunity to infection. Abrupt changes in allocation resulting from an infection can lead to changes in acquisition that are not always intuitive. Because protein acquisition drives aggression between members of the migratory band, B. bassiana application may reduce cannibalism and slow band movement.
Collapse
Affiliation(s)
- Robert B Srygley
- USDA-Agricultural Research Service, Northern Plains Agricultural Research Laboratory, 1500 N. Central Ave., Sidney, MT 59270, USA.
| |
Collapse
|
3
|
|
4
|
A common measure of prey immune function is not constrained by the cascading effects of predators. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Padda SS, Glass JR, Stahlschmidt ZR. When it's hot and dry: life-history strategy influences the effects of heat waves and water limitation. J Exp Biol 2021; 224:jeb236398. [PMID: 33692081 DOI: 10.1242/jeb.236398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/26/2021] [Indexed: 11/20/2022]
Abstract
The frequency, duration and co-occurrence of several environmental stressors, such as heat waves and droughts, are increasing globally. Such multiple stressors may have compounding or interactive effects on animals, resulting in either additive or non-additive costs, but animals may mitigate these costs through various strategies of resource conservation or shifts in resource allocation. Through a factorial experiment, we investigated the independent and interactive effects of a simulated heat wave and water limitation on life-history, physiological and behavioral traits. We used the variable field cricket, Gryllus lineaticeps, which exhibits a wing dimorphism that mediates two distinct life-history strategies during early adulthood. Long-winged individuals invest in flight musculature and are typically flight capable, whereas short-winged individuals lack flight musculature and capacity. A comprehensive and integrative approach with G. lineaticeps allowed us to examine whether life-history strategy influenced the costs of multiple stressors as well as the resulting cost-limiting strategies. Concurrent heat wave and water limitation resulted in largely non-additive and single-stressor costs to important traits (e.g. survival and water balance), extensive shifts in resource allocation priorities (e.g. reduced prioritization of body mass) and a limited capacity to conserve resources (e.g. heat wave reduced energy use only when water was available). Life-history strategy influenced the emergency life-history stage because wing morphology and stressor(s) interacted to influence body mass, boldness behavior and immunocompetence. Our results demonstrate that water availability and life-history strategy should be incorporated into future studies integrating important conceptual frameworks of stress across a suite of traits - from survival and life history to behavior and physiology.
Collapse
Affiliation(s)
- Sugjit S Padda
- University of the Pacific, Stockton, 3601 Pacific Avenue, Stockton, CA 95211, USA. School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Jordan R Glass
- University of the Pacific, Stockton, 3601 Pacific Avenue, Stockton, CA 95211, USA. School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Zachary R Stahlschmidt
- University of the Pacific, Stockton, 3601 Pacific Avenue, Stockton, CA 95211, USA. School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| |
Collapse
|
6
|
Stahlschmidt ZR, Jeong N, Johnson D, Meckfessel N. From phenoloxidase to fecundity: food availability does not influence the costs of oxidative challenge in a wing-dimorphic cricket. J Comp Physiol B 2019; 190:17-26. [PMID: 31720761 DOI: 10.1007/s00360-019-01244-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/30/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
Stressed animals often struggle to maintain optimal investment into a number of fitness-related traits, which can result in some traits being more adversely affected than others. Variation in stress-related costs may also depend on the environment-costs can be facultative and only occur when resources are limited, or they may be obligate and occur regardless of resource availability. Dynamics of oxidative stress may be important in life-history evolution given their role in a range of biological processes-from reproduction to immunity to locomotion. Thus, we examined how resource (food) availability influences the costs of oxidative challenge to fitness-related traits spanning several levels of biological organization. We manipulated food availability and oxidative status in females of the wing-dimorphic sand field cricket (Gryllus firmus) during early adulthood. We then determined investment into several traits: reproduction (ovary mass), soma (body mass and flight musculature), and immune function (total phenoloxidase activity). Oxidative challenge (paraquat exposure) obligated costs to somatic tissue and a parameter of immune function regardless of food availability, but it did not affect reproduction. We show that the costs of oxidative challenge are trait-specific, but we did not detect a facultative (food-dependent) cost of oxidative challenge to any trait measured. Although the dynamics of oxidative stress are complex, our study is an important step toward a more complete understanding of the roles that resource availability and redox systems play in mediating life histories.
Collapse
Affiliation(s)
| | - N Jeong
- University of the Pacific, Stockton, CA, 95211, USA
| | - D Johnson
- University of the Pacific, Stockton, CA, 95211, USA
| | - N Meckfessel
- University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
7
|
Meagher S, Winters KL, McCravy KW, Zwolak R. Complex and Diverse Drivers of Parasite Loads in a Cosmopolitan Insect. J Parasitol 2019. [PMID: 31460831 DOI: 10.1645/19-48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The goal of parasite epidemiologists is to understand the factors that determine host infection levels. Potential infection determinants exist at many scales, including spatial and temporal environmental variation, among-host differences, and interactions between symbionts infecting the same host. All of these factors can impact levels of parasitism, but frequently only a subset is considered in any host-parasite system. We examined several potential determinants of pinworm infection in wild Australian cockroaches (Periplaneta australasiae) from multiple biological scales: (1) habitat; (2) season; (3) cockroach body size, developmental stage, and sex; and (4) interactions between 2 pinworm species (Leidynema appendiculata and Thelastoma sp.). Over 1 yr, we collected 239 cockroaches from 2 separate rooms in an Illinois greenhouse. We used generalized linear mixed-effects models (GLMMs) to evaluate simultaneously the influence of these factors on pinworm abundance, and nearly all had significant effects. Overall, the abundance of L. appendiculata was greater than Thelastoma sp., but the relative abundance of the 2 species was reversed in each room (i.e., a taxon × habitat effect). Abundance varied over 4 trapping seasons and increased with cockroach size. Adult cockroaches had more pinworms than nymphs, and there was also a significant taxon × stage effect: adult cockroaches had fewer pinworms than expected for their larger size, and this reduction was greater in Thelastoma sp. than in L. appendiculata. Cockroach sex had no effect on infection. Although females had more worms than males, this difference could be explained by the larger size of females. Finally, after controlling for all other potential determinants of infection, we found a strong negative association between Thelastoma sp. and L. appendiculata; cockroaches tended to be infected with either 1 pinworm species or the other. Our work underscores the importance of measuring potential determinants of infection from as many scales as possible. Such approaches are necessary to unravel the complexities of host-parasite interactions.
Collapse
Affiliation(s)
- Shawn Meagher
- Department of Biological Sciences, Western Illinois University, Macomb, Illinois 61455
| | - Krista L Winters
- Department of Biological Sciences, Western Illinois University, Macomb, Illinois 61455
| | - Kenneth W McCravy
- Department of Biological Sciences, Western Illinois University, Macomb, Illinois 61455
| | - Rafał Zwolak
- Department of Systematic Zoology, Institute of Environmental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
8
|
Tomilova OG, Yaroslavtseva ON, Ganina MD, Tyurin MV, Chernyak EI, Senderskiy IV, Noskov YA, Polenogova OV, Akhanaev YB, Kryukov VY, Glupov VV, Morozov SV. Changes in antifungal defence systems during the intermoult period in the Colorado potato beetle. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:106-117. [PMID: 31077710 DOI: 10.1016/j.jinsphys.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Susceptibility to the fungus Metarhizium robertsii and changes in host defences were evaluated in different stages of the intermoult period (4-6 h, 34-36 h and 84-86 h post moult in IV larval instars) of the Colorado potato beetle. A significant thickening of the cuticle during larval growth was accompanied by decreases in cuticle melanization, phenoloxidase activity and epicuticular hydrocarbon contents (C28-C32). At the same time, a decrease in the conidial adhesion rate and an increase in resistance to the fungus were observed. In addition, we recorded significant elevation of the encapsulation rate and total haemocyte counts in the haemolymph during the specified period. The activity of detoxification enzymes decreased in the haemolymph but increased in the fat body during larval growth. No significant differences in the fatty acid content in the epicuticle were observed. The role of developmental disorders in susceptibility to entomopathogenic fungi is also discussed.
Collapse
Affiliation(s)
- Oksana G Tomilova
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Olga N Yaroslavtseva
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Mariya D Ganina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Academician Lavrentyev Ave., 9, 630090, Russia
| | - Maksim V Tyurin
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Elena I Chernyak
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Academician Lavrentyev Ave., 9, 630090, Russia
| | - Igor V Senderskiy
- All-Russia Institute of Plant Protection, sh. Podbel'skogo, 3, St. Petersburg - Pushkin, 196608, Russia
| | - Yury A Noskov
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia; Tomsk State University, st. Lenin, 36, Tomsk 634050, Russia
| | - Olga V Polenogova
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Yuriy B Akhanaev
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia.
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Sergey V Morozov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Academician Lavrentyev Ave., 9, 630090, Russia
| |
Collapse
|
9
|
Sex differences in immunity in a natural population of bush-cricket (Orthoptera: Phaneropterinae). Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00193-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Srygley RB, Jaronski ST. Protein deficiency lowers resistance of Mormon crickets to the pathogenic fungus Beauveria bassiana. JOURNAL OF INSECT PHYSIOLOGY 2018; 105:40-45. [PMID: 29355499 DOI: 10.1016/j.jinsphys.2018.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
Little is known about the effects of dietary macronutrients on the capacity of insects to ward off a fungal pathogen. Here we tested the hypothesis that Mormon crickets fed restricted protein diets have lower enzymatic assays of generalized immunity, slower rates of encapsulation of foreign bodies, and greater mortality from infection by Beauveria bassiana, a fungal pathogen. Beginning in the last nymphal instar, Mormon crickets were fed a high, intermediate, or low protein diet with correspondingly low, intermediate, or high carbohydrate proportions. After they eclosed to adult, we drew hemolymph, topically applied B. bassiana, maintained them on diet treatments, and measured mortality for 21 days. Mormon crickets fed high protein diets had higher prophenoloxidase titers, greater encapsulation response, and higher survivorship to Beauveria fungal infection than those on low protein diets. We replicated the study adding very high and very low protein diets to the treatments. A high protein diet increased phenoloxidase titers, and those fed the very high protein diet had more circulating prophenoloxidase. Mormon crickets fed the very low protein diet were the most susceptible to B. bassiana infection, but the more concentrated phenoloxidase and prophenoloxidase associated with the highest protein diets did not confer the greatest protection from the fungal pathogen as in the first replicate. We conclude that protein-restricted diets caused Mormon crickets to have lower phenoloxidase titers, slower encapsulation of foreign bodies, and greater mortality from B. bassiana infection than those fed high protein diets. These results support the nutrition-based dichotomy of migrating Mormon crickets, protein-deficient ones are more susceptible to pathogenic fungi whereas carbohydrate-deficient ones are more vulnerable to bacterial challenge.
Collapse
Affiliation(s)
- R B Srygley
- Pest Management Research Unit, Northern Plains Agricultural Research Laboratory, USDA-Agricultural Research Service, 1500 N. Central Ave., Sidney, MT 59270, United States.
| | - S T Jaronski
- Pest Management Research Unit, Northern Plains Agricultural Research Laboratory, USDA-Agricultural Research Service, 1500 N. Central Ave., Sidney, MT 59270, United States
| |
Collapse
|
11
|
Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol 2017; 15:e2003489. [PMID: 29036170 PMCID: PMC5658182 DOI: 10.1371/journal.pbio.2003489] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 10/26/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022] Open
Abstract
Malaria transmission is known to be strongly impacted by temperature. The current understanding of how temperature affects mosquito and parasite life history traits derives from a limited number of empirical studies. These studies, some dating back to the early part of last century, are often poorly controlled, have limited replication, explore a narrow range of temperatures, and use a mixture of parasite and mosquito species. Here, we use a single pairing of the Asian mosquito vector, An. stephensi and the human malaria parasite, P. falciparum to conduct a comprehensive evaluation of the thermal performance curves of a range of mosquito and parasite traits relevant to transmission. We show that biting rate, adult mortality rate, parasite development rate, and vector competence are temperature sensitive. Importantly, we find qualitative and quantitative differences to the assumed temperature-dependent relationships. To explore the overall implications of temperature for transmission, we first use a standard model of relative vectorial capacity. This approach suggests a temperature optimum for transmission of 29°C, with minimum and maximum temperatures of 12°C and 38°C, respectively. However, the robustness of the vectorial capacity approach is challenged by the fact that the empirical data violate several of the model’s simplifying assumptions. Accordingly, we present an alternative model of relative force of infection that better captures the observed biology of the vector–parasite interaction. This model suggests a temperature optimum for transmission of 26°C, with a minimum and maximum of 17°C and 35°C, respectively. The differences between the models lead to potentially divergent predictions for the potential impacts of current and future climate change on malaria transmission. The study provides a framework for more detailed, system-specific studies that are essential to develop an improved understanding on the effects of temperature on malaria transmission. Many of the mosquito and parasite life history traits that combine to influence the transmission intensity of malaria (e.g., adult mosquito longevity, biting rate, the developmental period of the parasite within the mosquito, and the proportion of mosquitoes that become infectious) are strongly temperature sensitive. Yet, in spite of decades of research, the precise relationships between individual traits and temperature remain poorly characterized. As a consequence, the majority of studies exploring the influence of local environmental conditions, or prospective impacts of climate change, draw on a combination of studies that utilize different experimental methods and a range of mosquito and parasite species. Here, we use the Indian malaria mosquito, Anopheles stephensi, and the human malaria parasite, Plasmodium falciparum, to thoroughly characterize the influence of temperature on key transmission-related traits. The results reveal a number of novel insights and challenge some longstanding assumptions regarding the nature of mosquito and parasite thermal responses. This study provides an experimental blueprint for further system-specific studies necessary to more fully understand the implications of changing temperatures on malaria transmission.
Collapse
|
12
|
Smith CC, Srygley RB, Healy F, Swaminath K, Mueller UG. Spatial Structure of the Mormon Cricket Gut Microbiome and its Predicted Contribution to Nutrition and Immune Function. Front Microbiol 2017; 8:801. [PMID: 28553263 PMCID: PMC5427142 DOI: 10.3389/fmicb.2017.00801] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/19/2017] [Indexed: 01/24/2023] Open
Abstract
The gut microbiome of insects plays an important role in their ecology and evolution, participating in nutrient acquisition, immunity, and behavior. Microbial community structure within the gut is heavily influenced by differences among gut regions in morphology and physiology, which determine the niches available for microbes to colonize. We present a high-resolution analysis of the structure of the gut microbiome in the Mormon cricket Anabrus simplex, an insect known for its periodic outbreaks in the western United States and nutrition-dependent mating system. The Mormon cricket microbiome was dominated by 11 taxa from the Lactobacillaceae, Enterobacteriaceae, and Streptococcaceae. While most of these were represented in all gut regions, there were marked differences in their relative abundance, with lactic-acid bacteria (Lactobacillaceae) more common in the foregut and midgut and enteric (Enterobacteriaceae) bacteria more common in the hindgut. Differences in community structure were driven by variation in the relative prevalence of three groups: a Lactobacillus in the foregut, Pediococcus lactic-acid bacteria in the midgut, and Pantoea agglomerans, an enteric bacterium, in the hindgut. These taxa have been shown to have beneficial effects on their hosts in insects and other animals by improving nutrition, increasing resistance to pathogens, and modulating social behavior. Using PICRUSt to predict gene content from our 16S rRNA sequences, we found enzymes that participate in carbohydrate metabolism and pathogen defense in other orthopterans. These were predominately represented in the hindgut and midgut, the most important sites for nutrition and pathogen defense. Phylogenetic analysis of 16S rRNA sequences from cultured isolates indicated low levels of divergence from sequences derived from plants and other insects, suggesting that these bacteria are likely to be exchanged between Mormon crickets and the environment. Our study shows strong spatial variation in microbiome community structure, which influences predicted gene content and thus the potential of the microbiome to influence host function.
Collapse
Affiliation(s)
- Chad C Smith
- Department of Integrative Biology, University of Texas at Austin, AustinTX, USA
| | - Robert B Srygley
- Northern Plains Agricultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, SidneyMT, USA
| | - Frank Healy
- Department of Biology, Trinity University, San AntonioTX, USA
| | | | - Ulrich G Mueller
- Department of Integrative Biology, University of Texas at Austin, AustinTX, USA
| |
Collapse
|
13
|
Srygley RB. Diet Drives the Collective Migrations and Affects the Immunity of Mormon Crickets and Locusts: A Comparison of These Potential Superspreaders of Disease. Integr Comp Biol 2016; 56:268-77. [DOI: 10.1093/icb/icw035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Srygley RB, Lorch PD. Loss of safety in numbers and a novel driver of mass migration: radiotelemetry reveals heavy wasp predation on a band of Mormon crickets. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160113. [PMID: 27293791 PMCID: PMC4892453 DOI: 10.1098/rsos.160113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/05/2016] [Indexed: 06/06/2023]
Abstract
Coordinated movement of animals is a spectacular phenomenon that has received much attention. Experimental studies of Mormon crickets and locust nymphs have demonstrated that collective motion can arise from cannibalism that compensates for nutritional deficiencies arising from group living. Grouping into migratory bands confers protection from predators. By radiotracking migrating, Mormon crickets released over 3 days, we found that specialized, parasitoid digger wasps (Sphecidae) respond numerically and prey heavily on aggregated Mormon crickets leading to loss of safety in numbers. Palmodes laeviventris paralysed and buried 42% of tagged females and 8% of the males on the final day of tracking. Risk of wasps and Mormon crickets hatching on the same site is high and may drive nymphal emigration. A preference to provision offspring with adult female Mormon crickets can be explained by their greater fat content and larger size compared with males, improving survival of wasps during diapause.
Collapse
Affiliation(s)
- Robert B. Srygley
- Northern Plains Agricultural Research Laboratory, USDA-Agricultural Research Service, 1500 N. Central Avenue, Sidney, MT 59270, USA
| | - Patrick D. Lorch
- Biological Sciences Department, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
15
|
Gherlenda AN, Haigh AM, Moore BD, Johnson SN, Riegler M. Climate change, nutrition and immunity: Effects of elevated CO2 and temperature on the immune function of an insect herbivore. JOURNAL OF INSECT PHYSIOLOGY 2016; 85:57-64. [PMID: 26678330 DOI: 10.1016/j.jinsphys.2015.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Balanced nutrition is fundamental to health and immunity. For herbivorous insects, nutrient-compositional shifts in host plants due to elevated atmospheric CO2 concentrations and temperature may compromise this balance. Therefore, understanding their immune responses to such shifts is vital if we are to predict the outcomes of climate change for plant-herbivore-parasitoid and pathogen interactions. We tested the immune response of Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) feeding on Eucalyptus tereticornis Sm. seedlings exposed to elevated CO2 (640 μmol mol(-1); CE) and temperature (ambient plus 4 °C; TE). Larvae were immune-challenged with a nylon monofilament in order to simulate parasitoid or pathogen attack without other effects of actual parasitism or pathology. The cellular (in vivo melanisation) and humoral (in vitro phenoloxidase PO activity) immune responses were assessed, and linked to changes in leaf chemistry. CE reduced foliar nitrogen (N) concentrations and increased C:N ratios and concentrations of total phenolics. The humoral response was reduced at CE. PO activity and haemolymph protein concentrations decreased at CE, while haemolymph protein concentrations were positively correlated with foliar N concentrations. However, the cellular response increased at CE and this was not correlated with any foliar traits. Immune parameters were not impacted by TE. Our study revealed that opposite cellular and humoral immune responses occurred as a result of plant-mediated effects at CE. In contrast, elevated temperatures within the tested range had minimal impact on immune responses. These complex interactions may alter the outcomes of parasitoid and pathogen attack in future climates.
Collapse
Affiliation(s)
- Andrew N Gherlenda
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Anthony M Haigh
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Ben D Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
16
|
Tate AT, Graham AL. Dynamic Patterns of Parasitism and Immunity across Host Development Influence Optimal Strategies of Resource Allocation. Am Nat 2015; 186:495-512. [DOI: 10.1086/682705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Bacterial Exposure at the Larval Stage Induced Sexual Immune Dimorphism and Priming in Adult Aedes aegypti Mosquitoes. PLoS One 2015; 10:e0133240. [PMID: 26181517 PMCID: PMC4504673 DOI: 10.1371/journal.pone.0133240] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/25/2015] [Indexed: 11/23/2022] Open
Abstract
Gender differences in the immune response of insects are driven by natural selection for females and sexual selection for males. These natural forces entail a multitude of extrinsic and intrinsic factors involved in a genotype-environment interaction that results in sex-biased expression of the genes shared by males and females. However, little is known about how an infection at a particular ontogenetic stage may influence later stages, or how it may impact sexual immune dimorphism. Using Aedes aegypti mosquitoes, the aim of the present study was to analyze the effect of a bacterial exposure at the larval stage on adult immunity in males and females. The parameters measured were phenoloxidase activity, nitric oxide production, antimicrobial activity, and the antimicrobial peptide transcript response. As a measure of the immune response success, the persistence of injected bacteria was also evaluated. The results show that males, as well as females, were able to enhance survival in the adult stage as a result of being exposed at the larval stage, which indicates a priming effect. Moreover, there was a differential gender immune response, evidenced by higher PO activity in males as well as higher NO production and greater antimicrobial activity in females. The greater bacterial persistence in females suggests a gender-specific strategy for protection after a previous experience with an elicitor. Hence, this study provides a primary characterization of the complex and gender-specific immune response of male and female adults against a bacterial challenge in mosquitoes primed at an early ontogenetic stage.
Collapse
|
18
|
Piñera AV, Charles HM, Dinh TA, Killian KA. Maturation of the immune system of the male house cricket, Acheta domesticus. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:752-760. [PMID: 23727197 DOI: 10.1016/j.jinsphys.2013.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 06/02/2023]
Abstract
The immune system functions to counteract the wide range of pathogens an insect may encounter during its lifespan, ultimately maintaining fitness and increasing the likelihood of survival to reproductive maturity. In this study, we describe the maturation of the innate immune system of the male house cricket Acheta domesticus during the last two nymphal stages, and during early and late adulthood. Total hemolymph phenoloxidase enzyme activity, lysozyme-like enzyme activity, the number of circulating hemocytes, and encapsulation ability were all determined for each developmental stage or age examined. The number of circulating hemocytes and lysozyme-like enzyme activity were similar for all developmental stages examined. Nymphs and newly molted adult males, however, had significantly lower total phenoloxidase activity than later adult stages, yet nymphs were able to encapsulate a nylon thread just as well as adults. Encapsulation ability would thus appear to be independent of total phenoloxidase activity.
Collapse
Affiliation(s)
- Angelica V Piñera
- Department of Zoology and Center for Neuroscience, 212 Pearson Hall, Miami University, Oxford, OH 45056, USA
| | | | | | | |
Collapse
|
19
|
Trauer U, Hilker M. Parental legacy in insects: variation of transgenerational immune priming during offspring development. PLoS One 2013; 8:e63392. [PMID: 23700423 PMCID: PMC3658988 DOI: 10.1371/journal.pone.0063392] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/03/2013] [Indexed: 02/06/2023] Open
Abstract
In insects, a parental immune challenge can prepare and enhance offspring immune activity. Previous studies of such transgenerational immune priming (TGIP) mainly focused on a single offspring life stage. However, different developmental stages may be exposed to different risks and show different susceptibility to parental immune priming. Here we addressed the question (i) whether TGIP effects on the immunity of Manduca sexta offspring vary among the different developmental offspring stages. We differentiated between unchallenged and immunochallenged offspring; for the latter type of offspring, we further investigated (ii) whether TGIP has an impact on the time that enhanced immune levels persist after offspring immune challenge. Finally, we determined (iii) whether TGIP effects on offspring performance depend on the offspring stage. Our results show that TGIP effects on phenoloxidase (PO) activity, but not on antibacterial activity, vary among unchallenged offspring stages. In contrast, TGIP effects on PO and antibacterial activity did not vary among immunochallenged offspring stages. The persistence of enhanced immune levels in immunochallenged offspring was dependent on the parental immune state. Antibacterial (but not PO) activity in offspring of immunochallenged parents decreased over five days after pupal immune challenge, whereas no significant change over time was detectable in offspring of control parents. Finally, TGIP effects on the developmental time of unchallenged offspring varied among stages; young larvae of immunochallenged parents developed faster and gained more weight than larvae of control parents. However, offspring females of immunochallenged parents laid fewer eggs than females derived from control parents. These findings suggest that the benefits which the offspring gains from TGIP during juvenile development are paid by the adults with reduced reproductive power. Our study shows that TGIP effects vary among offspring stages and depend on the type of immunity (PO or antibacterial activity) as well as the time past offspring immune challenge.
Collapse
Affiliation(s)
- Ute Trauer
- Institute of Biology – Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Monika Hilker
- Institute of Biology – Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
20
|
Dubovskiy IM, Whitten MMA, Yaroslavtseva ON, Greig C, Kryukov VY, Grizanova EV, Mukherjee K, Vilcinskas A, Glupov VV, Butt TM. Can insects develop resistance to insect pathogenic fungi? PLoS One 2013; 8:e60248. [PMID: 23560083 PMCID: PMC3613352 DOI: 10.1371/journal.pone.0060248] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/24/2013] [Indexed: 11/18/2022] Open
Abstract
Microevolutionary adaptations and mechanisms of fungal pathogen resistance were explored in a melanic population of the Greater wax moth, Galleria mellonella. Under constant selective pressure from the insect pathogenic fungus Beauveria bassiana, 25th generation larvae exhibited significantly enhanced resistance, which was specific to this pathogen and not to another insect pathogenic fungus, Metarhizium anisopliae. Defense and stress management strategies of selected (resistant) and non-selected (susceptible) insect lines were compared to uncover mechanisms underpinning resistance, and the possible cost of those survival strategies. We hypothesize that the insects developed a transgenerationally primed resistance to the fungus B. bassiana, a costly trait that was achieved not by compromising life-history traits but rather by prioritizing and re-allocating pathogen-species-specific augmentations to integumental front-line defenses that are most likely to be encountered by invading fungi. Specifically during B. bassiana infection, systemic immune defenses are suppressed in favour of a more limited but targeted repertoire of enhanced responses in the cuticle and epidermis of the integument (e.g. expression of the fungal enzyme inhibitor IMPI, and cuticular phenoloxidase activity). A range of putative stress-management factors (e.g. antioxidants) is also activated during the specific response of selected insects to B. bassiana but not M. anisopliae. This too occurs primarily in the integument, and probably contributes to antifungal defense and/or helps ameliorate the damage inflicted by the fungus or the host’s own immune responses.
Collapse
Affiliation(s)
- Ivan M. Dubovskiy
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Miranda M. A. Whitten
- Institute of Life Sciences, College of Medicine, Swansea University, Swansea, United Kingdom
| | - Olga N. Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Carolyn Greig
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Vadim Y. Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina V. Grizanova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Krishnendu Mukherjee
- Institut für Phytopathologie und Angewandte Zoologie, Abteilung Angewandte Entomologie, Gießen, Germany
| | - Andreas Vilcinskas
- Institut für Phytopathologie und Angewandte Zoologie, Abteilung Angewandte Entomologie, Gießen, Germany
| | - Viktor V. Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Tariq M. Butt
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
- * E-mail:
| |
Collapse
|