1
|
Dong X, Chen J, Xu R, Li X, Wang Y, Pan X, Zhang C, Li Y, Wang F, Li C. Molecular identification and lipid mobilization role of adipokinetic hormone receptor in Spodoptera litura (F.). BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:758-765. [PMID: 35431022 DOI: 10.1017/s0007485322000141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Energy homeostasis is essential for organisms to maintain fluctuation in energy accumulation, mobilization. Lipids as the main energy reserve in insects, their metabolism is under the control of many physiological program. This study aimed to determine whether the adipokinetic hormone receptor (AKHR) was involved in the lipid mobilization in the Spodoptera litura. A full-length cDNA encoding AKHR was isolated from S. litura. The SlAKHR protein has a conserved seven-transmembrane domain which is the character of a putative G protein receptor. Expression profile investigation revealed that SlAKHR mRNA was highly expressed in immatural stage and abundant in fat body in newly emerged female adults. Knockdown of SlAKHR expression was achieved through RNAi by injecting double-stranded RNA (dsRNA) into the 6th instar larvae. The content of triacylgycerol (TAG) in the fat body increased significantly after the SlAKHR gene was knockdown. And decrease of TAG releasing to hemolymph with increase of free fatty acid (FFA) in hemolymph were observed when the SlAKHR gene was knowned-down. In addition, lipid droplets increased in fat body was also found. These results suggested that SlAKHR is critical for insects to regulate lipids metabolism.
Collapse
Affiliation(s)
- Xiaolin Dong
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Junyuan Chen
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Rubing Xu
- Tobacco Research Institute of Hubei Province, Wuhan 430002, Hubei, China
| | - Xihong Li
- Tobacco Research Institute of Hubei Province, Wuhan 430002, Hubei, China
| | - Yang Wang
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xue Pan
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Cuici Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yanyan Li
- Tobacco Research Institute of Hubei Province, Wuhan 430002, Hubei, China
| | - Fulian Wang
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Chuanren Li
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
2
|
Hughson BN. The Glucagon-Like Adipokinetic Hormone in Drosophila melanogaster - Biosynthesis and Secretion. Front Physiol 2021; 12:710652. [PMID: 35002748 PMCID: PMC8733639 DOI: 10.3389/fphys.2021.710652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic homeostasis requires the precise regulation of circulating sugar titers. In mammals, homeostatic control of circulating sugar titers requires the coordinated secretion and systemic activities of glucagon and insulin. Metabolic homeostasis is similarly regulated in Drosophila melanogaster through the glucagon-like adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). In flies and mammals, glucagon and AKH are biosynthesized in and secreted from specialized endocrine cells. KATP channels borne on these cells respond to fluctuations in circulating glucose titers and thereby regulate glucagon secretion. The influence of glucagon in the pathogenesis of type 2 diabetes mellitus is now recognized, and a crucial mechanism that regulates glucagon secretion was reported nearly a decade ago. Ongoing efforts to develop D. melanogaster models for metabolic syndrome must build upon this seminal work. These efforts make a critical review of AKH physiology timely. This review focuses on AKH biosynthesis and the regulation of glucose-responsive AKH secretion through changes in CC cell electrical activity. Future directions for AKH research in flies are discussed, including the development of models for hyperglucagonemia and epigenetic inheritance of acquired metabolic traits. Many avenues of AKH physiology remain to be explored and thus present great potential for improving the utility of D. melanogaster in metabolic research.
Collapse
Affiliation(s)
- Bryon N. Hughson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Hughson BN, Shimell M, O'Connor MB. AKH Signaling in D. melanogaster Alters Larval Development in a Nutrient-Dependent Manner That Influences Adult Metabolism. Front Physiol 2021; 12:619219. [PMID: 33708137 PMCID: PMC7940354 DOI: 10.3389/fphys.2021.619219] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolism, growth, and development are intrinsically linked, and their coordination is dependent upon inter-organ communication mediated by anabolic, catabolic, and steroid hormones. In Drosophila melanogaster, the corpora cardiaca (CC) influences metabolic homeostasis through adipokinetic hormone (AKH) signaling. AKH has glucagon-like properties and is evolutionarily conserved in mammals as the gonadotropin-releasing hormone, but its role in insect development is unknown. Here we report that AKH signaling alters larval development in a nutrient stress-dependent manner. This activity is regulated by the locus dg2, which encodes a cGMP-dependent protein kinase (PKG). CC-specific downregulation of dg2 expression delayed the developmental transition from larval to pupal life, and altered adult metabolism and behavior. These developmental effects were AKH-dependent, and were observed only in flies that experienced low nutrient stress during larval development. Calcium-mediated vesicle exocytosis regulates ecdysteroid secretion from the prothoracic gland (PG), and we found that AKH signaling increased cytosolic free calcium levels in the PG. We identified a novel pathway through which PKG acts in the CC to communicate metabolic information to the PG via AKH signaling. AKH signaling provides a means whereby larval nutrient stress can alter developmental trajectories into adulthood.
Collapse
Affiliation(s)
- Bryon N Hughson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - MaryJane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Gäde G, Šimek P, Marco HG. The Adipokinetic Peptides in Diptera: Structure, Function, and Evolutionary Trends. Front Endocrinol (Lausanne) 2020; 11:153. [PMID: 32296388 PMCID: PMC7136388 DOI: 10.3389/fendo.2020.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Nineteen species of various families of the order Diptera and one species from the order Mecoptera are investigated with mass spectrometry for the presence and primary structure of putative adipokinetic hormones (AKHs). Additionally, the peptide structure of putative AKHs in other Diptera are deduced from data mining of publicly available genomic or transcriptomic data. The study aims to demonstrate the structural biodiversity of AKHs in this insect order and also possible evolutionary trends. Sequence analysis of AKHs is achieved by liquid chromatography coupled to mass spectrometry. The corpora cardiaca of almost all dipteran species contain AKH octapeptides, a decapeptide is an exception found only in one species. In general, the dipteran AKHs are order-specific- they are not found in any other insect order with two exceptions only. Four novel AKHs are revealed by mass spectrometry: two in the basal infraorder of Tipulomorpha and two in the brachyceran family Syrphidae. Data mining revealed another four novel AKHs: one in various species of the infraorder Culicumorpha, one in the brachyceran superfamily Asiloidea, one in the family Diopsidae and in a Drosophilidae species, and the last of the novel AKHs is found in yet another Drosophila. In general, there is quite a biodiversity in the lower Diptera, whereas the majority of the cyclorraphan Brachycera produce the octapeptide Phote-HrTH. A hypothetical molecular peptide evolution of dipteran AKHs is suggested to start with an ancestral AKH, such as Glomo-AKH, from which all other AKHs in Diptera to date can evolve via point mutation of one of the base triplets, with one exception.
Collapse
Affiliation(s)
- Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Petr Šimek
- Biology Centre, Czech Academy of Sciences, Ceské Budejovice, Czechia
| | - Heather G. Marco
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Abdulganiyyu IA, Sani MA, Separovic F, Marco H, Jackson GE. Phote-HrTH (Phormia terraenovae Hypertrehalosaemic Hormone), the Metabolic Hormone of the Fruit Fly: Solution Structure and Receptor Binding Model. Aust J Chem 2020. [DOI: 10.1071/ch19461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fruit flies are a widely distributed pest insect that pose a significant threat to food security. Flight is essential for the dispersal of the adult flies to find new food sources and ideal breeding spots. The supply of metabolic fuel to power the flight muscles of insects is regulated by adipokinetic hormones (AKHs). The fruit fly, Drosophila melanogaster, has the same AKH that is present in the blowfly, Phormia terraenovae; this AKH has the code-name Phote-HrTH. Binding of the AKH to the extra-cellular binding site of a G protein-coupled receptor causes its activation. In this paper, the structure of Phote-HrTH in sodium dodecyl sulfate (SDS) micelle solution was determined using NMR restrained molecular dynamics. The peptide was found to bind to the micelle and be fairly rigid, with an S2 order parameter of 0.96. The translated protein sequence of the AKH receptor from the fruit fly, D. melanogaster, Drome-AKHR, was used to construct two models of the receptor. It is proposed that these two models represent the active and inactive state of the receptor. The model based on the crystal structure of the β-2 adrenergic receptor was found to bind Phote-HrTH with a binding constant of −102kJmol−1, while the other model, based on the crystal structure of rhodopsin, did not bind the peptide. Under molecular dynamic simulation, in a palmitoyloleoylphosphatidylcholine (POPC) membrane, the receptor complex changed from an inactive to an active state. The identification and characterisation of the ligand binding site of Drome-AKHR provide novel information of ligand–receptor interaction, which could lead to the development of species-specific control substances to use discriminately against the fruit fly.
Collapse
|
6
|
Abstract
Two areas of research that have greatly increased in attention are: dipterans as vectors and the microbes they are capable of vectoring. Because it is the front-end of the fly that first encounters these microbes, this review focuses on the legs, mouthparts, and foregut, which includes the crop as major structures involved in dipteran vectoring ability. The legs and mouthparts are generally involved in mechanical transmission of microbes. However, the crop is involved in more than just mechanical transmission, for it is within the lumen of the crop that microbes are taken up with the meal of the fly, stored, and it is within the lumen that horizontal transmission of bacterial resistance has been demonstrated. In addition to storage of microbes, the crop is also involved in depositing the microbes via a process known as regurgitation. Various aspects of crop regulation are discussed and specific examples of crop involvement with microorganisms are discussed. The importance of biofilm and biofilm formation are presented, as well as, some physical parameters of the crop that might either facilitate or inhibit biofilm formation. Finally, there is a brief discussion of dipteran model systems for studying crop microbe interactions.
Collapse
Affiliation(s)
- John G Stoffolano
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
7
|
Solari P, Maccioni R, Marotta R, Catelani T, Debellis D, Baroli B, Peddio S, Muroni P, Kasture S, Solla P, Stoffolano JG, Liscia A. The imbalance of serotonergic circuitry impairing the crop supercontractile muscle activity and the mitochondrial morphology of PD PINK1 B9Drosophila melanogaster are rescued by Mucuna pruriens. JOURNAL OF INSECT PHYSIOLOGY 2018; 111:32-40. [PMID: 30393142 DOI: 10.1016/j.jinsphys.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Despite its great potentiality, little attention has been paid to modelling gastrointestinal symptoms of Parkinson's disease (PD) in Drosophila melanogaster (Dm). Our previous studies on standardized Mucuna pruriens extract (Mpe) have shown usefulness in the Drosophila model of PD. In this communication, we provide new information on the effect of Mpe on basal and serotonin treated contractions in the crop (i.e., an important and essential part of the gut) in Drosophila PD mutant for PTEN-induced putative kinase 1 (PINK1B9) gene. The effect of Mpe on PINK1B9 supplied with standard diet to larvae and/or adults, were assayed on 10-15 days old flies. Conversely from what we observed in the wild type flies, recordings demonstrated that exogenous applications of serotonin on crop muscles of untreated PINK1B9 affect neither the frequency nor the amplitude of the crop contraction, while the same muscle parameters are enhanced following brain injections of serotonin, thus suggesting that PINK1B9 mutants may likely have an impairment in the serotonergic pathways. Also, the mitochondrial morphology in the crop muscles is strongly compromised, as demonstrated by the transmission electron microscopy analysis. The Mpe treatment rescued the crop muscle parameters and also the mitochondrial morphology when supplied to both larvae and adults. Overall, this study strengthens the relevance of using PINK1B9 Dm as a translational model to study the gastrointestinal symptoms in PD and also confirms the useful employment of M. pruriens for PD treatment.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Riccardo Maccioni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Roberto Marotta
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Tiziano Catelani
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Doriana Debellis
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Biancamaria Baroli
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Stefania Peddio
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Patrizia Muroni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | | | - Paolo Solla
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Monserrato, Italy
| | - John G Stoffolano
- Stockbridge School of Agriculture, College of Natural Sciences, University of Massachusetts, Amherst, MA, United States
| | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy.
| |
Collapse
|
8
|
Solari P, Sollai G, Masala C, Maccioni R, Crnjar R, Liscia A. Octopamine modulates the activity of motoneurons related to calling behavior in the gypsy moth Lymantria dispar. INSECT SCIENCE 2018; 25:797-808. [PMID: 29473996 DOI: 10.1111/1744-7917.12580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/31/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
A morphofunctional investigation of the different neuronal subpopulations projecting through each of the nerves IV-VI emerging bilaterally from the terminal abdominal ganglion (TAG) was correlated with the octopaminergic activity in the ganglion that controls the ovipositor movements associated with calling behavior in the female gypsy moth Lymantria dispar. Tetramethylrodamine-dextran backfills from nerve stumps resulted in a relatively low number of TAG projections, ranging from 12 to 13 for nerve pair IV, 12 to 14 for nerve pair V, and 8 to 9 for nerve pair VI. Furthermore, as assessed by electrophysiological recordings, a number of fibers within each of these nerves displays spontaneous tonic activity, also when the ganglion is fully disconnected from the ventral nerve cord (VNC). Octopamine (OA) applications to the TAG strongly enhanced the activity of these nerves, either by increasing the firing rate of a number of spontaneously firing units or by recruiting new ones. This octopaminergic activity affected calling behavior, and specifically the muscle activity leading to cycling extensions of the intersegmental membrane (IM) between segments VIII and IX (ovipositor). Our results indicate that in the female gypsy moth the octopaminergic neural activity of the TAG is coupled with extensions and retractions of IM for the purpose of releasing pheromone, where motor units innervated by nerve pair IV appear antagonistic with respect to those innervated by nerve pair V.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Giorgia Sollai
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Carla Masala
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Riccardo Maccioni
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Roberto Crnjar
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Anna Liscia
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| |
Collapse
|
9
|
Hou QL, Chen EH, Jiang HB, Wei DD, Gui SH, Wang JJ, Smagghe G. Adipokinetic hormone receptor gene identification and its role in triacylglycerol mobilization and sexual behavior in the oriental fruit fly (Bactrocera dorsalis). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:1-13. [PMID: 28919559 DOI: 10.1016/j.ibmb.2017.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/11/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Energy homeostasis requires continuous compensation for fluctuations in energy expenditure and availability of food resources. In insects, energy mobilization is under control of the adipokinetic hormone (AKH) where it is regulating the nutritional status by supporting the mobilization of lipids. In this study, we characterized the gene coding for the AKH receptor (AKHR) and investigated its function in the oriental fruit fly (Bactrocera dorsalis) that is economically one of the most important pest insects of tropical and subtropical fruit. Bacdo-AKHR is a typical G protein-coupled receptor (GPCR) and phylogenetic analysis confirmed that Bacdo-AKHR is closely related to insect AKHRs from other species. When expressed in Chinese hamster ovary (CHO) cells, Bacdo-AKHR exhibited a high sensitivity and selectivity for AKH peptide (EC50 = 19.3 nM). Using qPCR, the developmental stage and tissue-specific expression profiles demonstrated that Bacdo-AKHR was highly expressed in both the larval and adult stages, and also specifically in the fat body and midgut of the adult with no difference in sex. To investigate the role of AKHR in B. dorsalis, RNAi assays were performed with dsRNA against Bacdo-AKHR in adult flies of both sexes and under starvation and feeding condition. As major results, the knockdown of this gene resulted in triacylglycerol (TAG) accumulation. With RNAi-males, we observed a severe decrease in their sexual courtship activity when starved, but there was a partial rescue in copulation when refed. Also in RNAi-males, the tethered-flight duration declined compared with the control group when starved, which is confirming the dependency on energy metabolism. In RNAi-females, the sexual behavior was not affected, but their fecundity was decreased. Our findings indicate an interesting role of AKHR in the sexual behavior of males specifically. The effects are associated with TAG accumulation, and we also reported that the conserved role of AKH-mediated system in B. dorsalis is nutritional state-dependent. Hence, we provided further understanding on the multiple functions of AKH/AKHR in B. dorsalis.
Collapse
Affiliation(s)
- Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China
| | - Shun-Hua Gui
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China.
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China; Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
10
|
Calkins TL, DeLaat A, Piermarini PM. Physiological characterization and regulation of the contractile properties of the mosquito ventral diverticulum (crop). JOURNAL OF INSECT PHYSIOLOGY 2017; 103:98-106. [PMID: 29107658 PMCID: PMC5708170 DOI: 10.1016/j.jinsphys.2017.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 05/16/2023]
Abstract
In adult dipteran insects (flies), the crop is a diverticulum of the esophagus that serves as a food storage organ. The crop pumps stored contents into the alimentary canal for digestion and absorption. The pumping is mediated by peristaltic contractions of the crop musculature. In adult female mosquitoes, the crop (ventral diverticulum) selectively stores sugar solutions (e.g., nectar); proteinaceous blood meals by-pass the crop and are transferred directly to the midgut for digestion. The mechanisms that regulate crop contractions have never been investigated in mosquitoes. Here we provide the first physiological characterization of the contractile properties of the mosquito crop and explore the mechanisms that regulate crop contractions. Using an in vitro bioassay we found that the isolated crop spontaneously contracts in Ringer solution for at least 1 h and its contractions are dependent on extracellular Ca2+. Adding serotonin (5-hydroxytryptamine, 5-HT) or a membrane-permeable analog of cyclic adenosine monophosphate (cAMP) to the extracellular bath increased the frequency of crop contractions. On the other hand, adding benzethonium chloride (BzCl; a chemical that mimics the effects of myosuppressins), H-89 or Rp-cAMPS (inhibitors of protein kinase A, PKA), or carbenoxolone (an inhibitor of gap junctions) reduced the frequency of the unstimulated, spontaneous and/or 5-HT-stimulated crop contractions. Adding aedeskinin III did not detectably alter crop contraction rates. In addition to pharmacological evidence of gap junctions, we demonstrated that the crop expressed several mRNAs encoding gap junctional proteins (i.e. innexins). Furthermore, we localized immunoreactivity for innexin 2 and innexin 3 to muscle and epithelial cells of the crop, respectively. Our results 1) suggest that 5-HT and myosupressins oppositely regulate contractile activity of the mosquito crop, and 2) provide the first evidence for putative roles of cAMP, PKA, and gap junctions in modulating contractile activity of the dipteran crop.
Collapse
Affiliation(s)
- Travis L Calkins
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Andrew DeLaat
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA.
| |
Collapse
|
11
|
Solari P, Rivelli N, De Rose F, Picciau L, Murru L, Stoffolano JG, Liscia A. Opposite effects of 5-HT/AKH and octopamine on the crop contractions in adult Drosophila melanogaster: Evidence of a double brain-gut serotonergic circuitry. PLoS One 2017; 12:e0174172. [PMID: 28334024 PMCID: PMC5363830 DOI: 10.1371/journal.pone.0174172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/03/2017] [Indexed: 01/29/2023] Open
Abstract
This study showed that in adult Drosophila melanogaster, the type of sugar-either present within the crop lumen or in the bathing solution of the crop-had no effect on crop muscle contraction. What is important, however, is the volume within the crop lumen. Electrophysiological recordings demonstrated that exogenous applications of serotonin on crop muscles increases both the amplitude and the frequency of crop contraction rate, while adipokinetic hormone mainly enhances the crop contraction frequency. Conversely, octopamine virtually silenced the overall crop activity. The present study reports for the first time an analysis of serotonin effects along the gut-brain axis in adult D. melanogaster. Injection of serotonin into the brain between the interocellar area shows that brain applications of serotonin decrease the frequency of crop activity. Based on our results, we propose that there are two different, opposite pathways for crop motility control governed by serotonin: excitatory when added in the abdomen (i.e., directly bathing the crop) and inhibitory when supplied within the brain (i.e., by injection). Finally, our results point to a double brain-gut serotonergic circuitry suggesting that not only the brain can affect gut functions, but the gut can also affect the central nervous system. On the basis of our results, and data in the literature, a possible mechanism for these two discrete serotonergic functions is suggested.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| | - Nicholas Rivelli
- Stockbridge School of Agriculture, College of Natural Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Francescaelena De Rose
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| | - Lorenzo Picciau
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| | - Ludovico Murru
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| | - John G. Stoffolano
- Stockbridge School of Agriculture, College of Natural Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| |
Collapse
|
12
|
Schoofs L, De Loof A, Van Hiel MB. Neuropeptides as Regulators of Behavior in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:35-52. [PMID: 27813667 DOI: 10.1146/annurev-ento-031616-035500] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neuropeptides are by far the largest and most diverse group of signaling molecules in multicellular organisms. They are ancient molecules important in regulating a multitude of processes. Their small proteinaceous character allowed them to evolve and radiate quickly into numerous different molecules. On average, hundreds of distinct neuropeptides are present in animals, sometimes with unique classes that do not occur in distantly related species. Acting as neurotransmitters, neuromodulators, hormones, or growth factors, they are extremely diverse and are involved in controlling growth, development, ecdysis, digestion, diuresis, and many more physiological processes. Neuropeptides are also crucial in regulating myriad behavioral actions associated with feeding, courtship, sleep, learning and memory, stress, addiction, and social interactions. In general, behavior ensures that an organism can survive in its environment and is defined as any action that can change an organism's relationship to its surroundings. Even though the mode of action of neuropeptides in insects has been vigorously studied, relatively little is known about most neuropeptides and only a few model insects have been investigated. Here, we provide an overview of the roles neuropeptides play in insect behavior. We conclude that multiple neuropeptides need to work in concert to coordinate certain behaviors. Additionally, most neuropeptides studied to date have more than a single function.
Collapse
Affiliation(s)
- Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Matthias Boris Van Hiel
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| |
Collapse
|
13
|
Bil M, Timmermans I, Verlinden H, Huybrechts R. Characterization of the adipokinetic hormone receptor of the anautogenous flesh fly, Sarcophaga crassipalpis. JOURNAL OF INSECT PHYSIOLOGY 2016; 89:52-59. [PMID: 27063262 DOI: 10.1016/j.jinsphys.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
Adipokinetic hormone (AKH) is an insect neuropeptide mainly involved in fat body energy mobilization. In flies (Phormia regina, Sarcophaga crassipalpis), bugs (Pyrrhocoris apterus) and cockroaches (Periplaneta americana) AKH was also demonstrated to be involved in the regulation of digestion. This makes AKH an important peptide for anautogenous female flies that need to feed on a supplementary protein meal to initiate vitellogenesis, the large scale synthesis of yolk proteins and their uptake by the developing oocytes. Flesh fly AKH, originally identified as Phormia terraenovae hypertrehalosemic hormone (PhoteHrTH), functions through activation of the AKH receptor (AKHR). This is a G protein-coupled receptor that is the orthologue of the human gonadotropin-releasing hormone receptor. Pharmacological characterization indicated that the receptor can be activated by two related dipteran AKH ligands with an EC50 value in the low nanomolar range, whereas micromolar concentrations of the Tribolium castaneum AKH were needed. Consistent with the energy mobilizing function of AKH, the receptor transcript levels were most abundant in the fat body tissue. Nonetheless, Sarcophaga crassipalpis AKHR transcript levels were also high in the brain, the foregut and the hindgut. Interestingly, the receptor transcript numbers were reduced in almost all measured tissues after protein feeding. These changes may enforce the use of ingested energy carrying molecules prior to stored energy mobilization.
Collapse
Affiliation(s)
- Magdalena Bil
- Research Group of Insect Physiology and Molecular Ethology, KU Leuven, Naamsestraat 59, B-3000, Belgium
| | - Iris Timmermans
- Research Group of Insect Physiology and Molecular Ethology, KU Leuven, Naamsestraat 59, B-3000, Belgium
| | - Heleen Verlinden
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, B-3000, Belgium
| | - Roger Huybrechts
- Research Group of Insect Physiology and Molecular Ethology, KU Leuven, Naamsestraat 59, B-3000, Belgium.
| |
Collapse
|
14
|
Caers J, Janssen T, Van Rompay L, Broeckx V, Van Den Abbeele J, Gäde G, Schoofs L, Beets I. Characterization and pharmacological analysis of two adipokinetic hormone receptor variants of the tsetse fly, Glossina morsitans morsitans. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:73-84. [PMID: 26690928 DOI: 10.1016/j.ibmb.2015.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/05/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Adipokinetic hormones (AKH) are well known regulators of energy metabolism in insects. These neuropeptides are produced in the corpora cardiaca and perform their hormonal function by interacting with specific G protein-coupled receptors (GPCRs) at the cell membranes of target tissues, mainly the fat body. Here, we investigated the sequences, spatial and temporal distributions, and pharmacology of AKH neuropeptides and receptors in the tsetse fly, Glossina morsitans morsitans. The open reading frames of two splice variants of the Glomo-akh receptor (Glomo-akhr) gene and of the AKH neuropeptide encoding genes, gmmhrth and gmmakh, were cloned. Both tsetse AKHR isoforms show strong sequence conservation when compared to other insect AKHRs. Glomo-AKH prepropeptides also have the typical architecture of AKH precursors. In an in vitro Ca(2+) mobilization assay, Glomo-AKH neuropeptides activated each receptor isoform up to nanomolar concentrations. We identified structural features of tsetse AKH neuropeptides essential for receptor activation in vitro. Gene expression profiles suggest a function for AKH signaling in regulating Glossina energy metabolism, where AKH peptides are released from the corpora cardiaca and activate receptors mainly expressed in the fat body. This analysis of the ligand-receptor coupling, expression, and pharmacology of the two Glomo-AKHR variants facilitates further elucidation of the function of AKH in G. m. morsitans.
Collapse
Affiliation(s)
- Jelle Caers
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Tom Janssen
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Liesbeth Van Rompay
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Valérie Broeckx
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerpen, Belgium; Laboratory of Zoophysiology, Department of Physiology, University of Ghent, Krijgslaan 281, 9000, Ghent, Belgium.
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Private Bag, 7701, Rondebosch, South Africa.
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Isabel Beets
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| |
Collapse
|
15
|
Solari P, Stoffolano JG, De Rose F, Barbarossa IT, Liscia A. The chemosensitivity of labellar sugar receptor in female Phormia regina is paralleled with ovary maturation: Effects of serotonin. JOURNAL OF INSECT PHYSIOLOGY 2015; 82:38-45. [PMID: 26319532 DOI: 10.1016/j.jinsphys.2015.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 06/04/2023]
Abstract
Oogenesis in most adult insects is a nutrient-dependent process involving ingestion of both proteins and carbohydrates that ultimately depends on peripheral input from chemoreceptors. The main goal of this study was to characterize, in the female blowfly Phormia regina, the responsive changes of the labellar chemoreceptors to carbohydrates and proteins in relation to four different stages along the ovarian cycle: (1) immature ovaries, (2) mid-mature ovaries, (3) mature ovaries and ready for egg-laying and (4) post egg-laying ovaries. Then, the possible effects exerted by exogenous serotonin on the chemoreceptor sensitivity profiles were investigated. Our results show that ovary length, width and contraction rate progressively increase from stage 1 to 3, when all these parameters reach their maximum values, before declining in the next stage 4. The sensitivity of the labellar "sugar" chemoreceptors to both sucrose and proteins varies during the ovarian maturation stages, reaching a minimum for sucrose in stage 3, while that to proteins begins. Exogenous 5-HT supply specifically increases the chemoreceptor sensitivity to sugar at the stages 3 and 4, while it does not affect that to proteins. In conclusion, our results provide evidence that in female blowflies the cyclic variations in the sensitivity of the labellar chemosensilla to sugars and proteins are time-related to ovarian development and that during the stages 3 and 4 the responsiveness of the sugar cell to sucrose is under serotonergic control.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, I-09042 Monserrato (CA), Italy
| | - John G Stoffolano
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Francescaelena De Rose
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. 8, I-09042 Monserrato (CA), Italy
| | - Iole Tomassini Barbarossa
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, I-09042 Monserrato (CA), Italy
| | - Anna Liscia
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. 8, I-09042 Monserrato (CA), Italy.
| |
Collapse
|
16
|
Energy Homeostasis Control in Drosophila Adipokinetic Hormone Mutants. Genetics 2015; 201:665-83. [PMID: 26275422 DOI: 10.1534/genetics.115.178897] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
Maintenance of biological functions under negative energy balance depends on mobilization of storage lipids and carbohydrates in animals. In mammals, glucagon and glucocorticoid signaling mobilizes energy reserves, whereas adipokinetic hormones (AKHs) play a homologous role in insects. Numerous studies based on AKH injections and correlative studies in a broad range of insect species established the view that AKH acts as master regulator of energy mobilization during development, reproduction, and stress. In contrast to AKH, the second peptide, which is processed from the Akh encoded prohormone [termed "adipokinetic hormone precursor-related peptide" (APRP)] is functionally orphan. APRP is discussed as ecdysiotropic hormone or as scaffold peptide during AKH prohormone processing. However, as in the case of AKH, final evidence for APRP functions requires genetic mutant analysis. Here we employed CRISPR/Cas9-mediated genome engineering to create AKH and AKH plus APRP-specific mutants in the model insect Drosophila melanogaster. Lack of APRP did not affect any of the tested steroid-dependent processes. Similarly, Drosophila AKH signaling is dispensable for ontogenesis, locomotion, oogenesis, and homeostasis of lipid or carbohydrate storage until up to the end of metamorphosis. During adulthood, however, AKH regulates body fat content and the hemolymph sugar level as well as nutritional and oxidative stress responses. Finally, we provide evidence for a negative autoregulatory loop in Akh gene regulation.
Collapse
|