1
|
Li H, Kong X, Fang Y, Hou J, Zhang W, Zhang Y, Wei J, Li X. Aphis craccivora (Hemiptera: Aphididae) synthesizes juvenile hormone III via a pathway involving epoxidation followed by esterification, potentially providing an epoxidation active site for the synthesis of juvenile hormone SB3. INSECT SCIENCE 2024. [PMID: 39365891 DOI: 10.1111/1744-7917.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/06/2024]
Abstract
Juvenile hormones (JHs) play a crucial role in regulating development and reproduction in insects. Most insects predominantly synthesize JH III, which typically involves esterification followed by epoxidation, lepidopteran insects use a pathway of epoxidation followed by esterification. Although hemipteran insects have JH III and JH skipped bisepoxide III (JH SB3), the synthesis pathway and key epoxidases remain unclear. This study was conducted on Aphis craccivora, and demonstrated that corpora allata, microsomes, Ac-CYP15C1, and Ac-JHAMT catalyze JH III production in vitro, establishing the pathway of epoxidation followed by esterification. These findings were further confirmed through RNA interference and molecular docking. The presence of JH III and JH SB3 in A. craccivora was identified, and their synthesis pathway was elucidated as follows: Ac-CYP15C1 oxidizes farnesic acid to JH A, followed by methylation to JH III by Ac-JHAMT, possibly providing an epoxidation site on the second carbon for JH SB3. This alteration may significantly contribute to the differentiation and functional diversification of JH types in insects.
Collapse
Affiliation(s)
- Haolin Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xue Kong
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Fang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Jiangan Hou
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Wenjie Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Yongheng Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Jiguang Wei
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Negi N, Selvamani SB, Ramasamy GG, Nagarjuna Reddy KV, Pathak J, Thiruvengadam V, Mohan M, Dubey VK, Sushil SN. Identification and expression dynamics of CYPome across different developmental stages of Maconellicoccus hirsutus (Green). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101305. [PMID: 39128380 DOI: 10.1016/j.cbd.2024.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Maconellicoccus hirsutus is a highly polyphagous insect pest, posing a substantial threat to various crop sp., especially in the tropical and sub-tropical regions of the world. While extensive physiological and biological studies have been conducted on this pest, the lack of genetic information has hindered our understanding of the molecular mechanisms underlying its growth, development, and xenobiotic metabolism. The Cytochrome P450 gene, a member of the CYP gene superfamily ubiquitous in living organisms is associated with growth, development, and the metabolism of both endogenous and exogenous substances, contributing to the insect's adaptability in diverse environments. To elucidate the specific role of the CYP450 gene family in M. hirsutus which has remained largely unexplored, a de novo transcriptome assembly of the pink mealybug was constructed. A total of 120 proteins were annotated as CYP450 genes through homology search of the predicted protein sequences across different databases. Phylogenetic studies resulted in categorizing 120 CYP450 genes into four CYP clans. A total of 22 CYP450 families and 30 subfamilies were categorized, with CYP6 forming the dominant family. The study also revealed five genes (Halloween genes) associated with the insect hormone biosynthesis pathway. Further, the expression of ten selected CYP450 genes was studied using qRT-PCR across crawler, nymph, and adult stages, and identified genes that were expressed at specific stages of the insects. Thus, the findings of this study reveal the expression dynamics and possible function of the CYP450 gene family in the growth, development, and adaptive strategies of M. hirsutus which can be further functionally validated.
Collapse
Affiliation(s)
- Nikita Negi
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India; Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur - 492012, India. https://twitter.com/NegiNikita92892
| | - Selva Babu Selvamani
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India. https://twitter.com/MithranSelva
| | - Gandhi Gracy Ramasamy
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India.
| | - K V Nagarjuna Reddy
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India; Department of Entomology, School of Agriculture, Lovely Professional University, Punjab - 144411, India. https://twitter.com/arjun06001332
| | - Jyoti Pathak
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India
| | - Venkatesan Thiruvengadam
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India
| | - Muthugounder Mohan
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India
| | - Vinod Kumar Dubey
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur - 492012, India
| | - Satya N Sushil
- ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India
| |
Collapse
|
3
|
Zhang M, Jiang S, Zhang W, Xiong Y, Jin S, Wang J, Qiao H, Fu H. Functional Study of the Role of the Methyl Farnesoate Epoxidase Gene in the Ovarian Development of Macrobrachium nipponense. Int J Mol Sci 2024; 25:7318. [PMID: 39000423 PMCID: PMC11242038 DOI: 10.3390/ijms25137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Methyl farnesoate epoxidase (MFE) is a gene encoding an enzyme related to the last step of juvenile hormone biosynthesis. Mn-MFE cDNA has a total length of 1695 bp and an open reading frame (ORF) length of 1482 bp, encoding 493 amino acids. Sequence analysis showed that its amino acid sequence has a PPGP hinge, an FGCG structural domain, and other structural domains specific to the P450 family of enzymes. Mn-MFE was most highly expressed in the hepatopancreas, followed by the ovary and gill, weakly expressed in heart and muscle tissue, and barely expressed in the eyestalk and cranial ganglion. Mn-MFE expression remained stable during the larval period, during which it mainly played a critical role in gonadal differentiation. Expression in the ovary was positively correlated and expression in the hepatopancreas was negatively correlated with ovarian development. In situ hybridization (ISH) showed that the signal was expressed in the oocyte, nucleus, cell membrane and follicular cells, and the intensity of expression was strongest at stage O-IV. The knockdown of Mn-MFE resulted in a significantly lower gonadosomatic index and percentage of ovaries past stage O-III compared to the control group. However, no differences were found in the cumulative frequency of molting between the experimental and control groups. Moreover, the analysis of ovarian tissue sections at the end of the experiment showed differences between groups in development speed but not in subcellular structure. These results demonstrate that Mn-MFE promotes the ovarian development of Macrobrachium nipponense adults but has no effect on molting.
Collapse
Affiliation(s)
- Mengying Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
| | - Sufei Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Jisheng Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
| | - Hui Qiao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| |
Collapse
|
4
|
Ohnuki S, Tokishita S, Kojima M, Fujiwara S. Effect of chlorpyrifos-exposure on the expression levels of CYP genes in Daphnia magna and examination of a possibility that an up-regulated clan 3 CYP, CYP360A8, reacts with pesticides. ENVIRONMENTAL TOXICOLOGY 2024; 39:3641-3653. [PMID: 38504311 DOI: 10.1002/tox.24224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Daphnia magna is a test organism used for ecological risk assessments of pesticides, but little is known about the expression levels of cytochrome P450s (CYP)s and their changes after pesticide exposure in the less than 24-h-olds used for ecotoxicity tests. In this study, D. magna juveniles were exposed to 0.2 μg/L of chlorpyrifos under the conditions for acute immobilization test as specified by the OECD test guideline for 24 h, and then the gene expression was compared between the control and chlorpyrifos-exposure groups by RNA-sequencing analysis, with a focus on CYP genes. Among 38 CYP genes expressed in the control group, seven were significantly up-regulated while two were significantly down-regulated in the chlorpyrifos-exposure group. Although the sublethal concentration of chlorpyrifos did not change their expression levels so drastically (0.8 < fold change < 2.6), CY360A8 of D. magna (DmCYP360A8), which had been proposed to be responsible for metabolism of xenobiotics, was abundantly expressed in controls yet up-regulated by chlorpyrifos. Therefore, homology modeling of DmCYP360A8 was performed based on the amino acid sequence, and then molecular docking simulations with the insecticides that were indicated to be metabolized by CYPs in D. magna were conducted. The results indicated that DmCYP360A8 could contribute to the metabolism of diazinon and chlorfenapyr but not chlorpyrifos. These findings suggest that chlorpyrifos is probably detoxified by other CYP(s) including up-regulated and/or constitutively expressed one(s).
Collapse
Affiliation(s)
- Shinpei Ohnuki
- Odawara Research Center, Nippon Soda Co., Ltd., Odawara, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shinichi Tokishita
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masaki Kojima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shoko Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
5
|
Jia Q, Yang L, Wen J, Liu S, Wen D, Luo W, Wang W, Palli SR, Sheng L. Cyp6g2 is the major P450 epoxidase responsible for juvenile hormone biosynthesis in Drosophila melanogaster. BMC Biol 2024; 22:111. [PMID: 38741075 PMCID: PMC11092216 DOI: 10.1186/s12915-024-01910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Juvenile hormones (JH) play crucial role in regulating development and reproduction in insects. The most common form of JH is JH III, derived from MF through epoxidation by CYP15 enzymes. However, in the higher dipterans, such as the fruitfly, Drosophila melanogaster, a bis-epoxide form of JHB3, accounted most of the JH detected. Moreover, these higher dipterans have lost the CYP15 gene from their genomes. As a result, the identity of the P450 epoxidase in the JH biosynthesis pathway in higher dipterans remains unknown. RESULTS In this study, we show that Cyp6g2 serves as the major JH epoxidase responsible for the biosynthesis of JHB3 and JH III in D. melanogaster. The Cyp6g2 is predominantly expressed in the corpus allatum (CA), concurring with the expression pattern of jhamt, another well-studied gene that is crucial in the last steps of JH biosynthesis. Mutation in Cyp6g2 leads to severe disruptions in larval-pupal metamorphosis and exhibits reproductive deficiencies, exceeding those seen in jhamt mutants. Notably, Cyp6g2-/-::jhamt2 double mutants all died at the pupal stage but could be rescued through the topical application of JH analogs. JH titer analyses revealed that both Cyp6g2-/- mutant and jhamt2 mutant lacking JHB3 and JH III, while overexpression of Cyp6g2 or jhamt caused a significant increase in JHB3 and JH III titer. CONCLUSIONS These findings collectively established that Cyp6g2 as the major JH epoxidase in the higher dipterans and laid the groundwork for the further understanding of JH biosynthesis. Moreover, these findings pave the way for developing specific Cyp6g2 inhibitors as insect growth regulators or insecticides.
Collapse
Affiliation(s)
- Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Liu Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jiamin Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyuan, 558000, China
| | - Wei Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Weihua Wang
- Center of Pharmaceutical Technology, Tsinghua University, Beijing, 100084, China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Li Sheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China.
| |
Collapse
|
6
|
Hou J, Guo X, Li H, Zhang W, Zhang Y, Zhang F, Li H, Wei J, Li X. Precise Regulation of Juvenile Hormone III R-Stereoisomer Synthesis by Apis mellifera through Specifically Binding Methyl-(2 E,6 E)-farnesoate and Strictly Controlling Its Titer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20155-20166. [PMID: 38051952 DOI: 10.1021/acs.jafc.3c05385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Juvenile hormone III (JH III) is a crucial hormone synthesized exclusively as R-stereoisomer in most insects. Herein, we established a mature Tris-HCl culture system for essential biochemical reactions and applied stable instrumental detection methods to analyze JH III, methyl farnesoate (MF) and juvenile hormone acid (JHA) using UPLC-MS/MS. Our results revealed that the R-JH III terminal synthesis pathway in Apis mellifera follows the "esterify then epoxidize" sequence, with precise methyl-(2E,6E)-farnesoate titer regulation and its spatial cis-trans isomerism, achieving selective R-JH III synthesis. Furthermore, we observed that the preferred generation of S/R-JH III chiral enantiomers varied depending on the spatial cis-trans isomerism of different MFs. Our results suggest that S-JH III could theoretically exist in insects, offering a novel perspective for understanding the synthesis mechanism of diverse complex juvenile hormones in different insect species.
Collapse
Affiliation(s)
- Jiangan Hou
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xiaxia Guo
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Haolin Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Wenjie Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yongheng Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Fu Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Honghong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jiguang Wei
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
7
|
Yu Y, Li T, Guo M, Xiong R, Yan D, Chen P. Possible Regulation of Larval Juvenile Hormone Titers in Bombyx mori by BmFAMeT6. INSECTS 2023; 14:644. [PMID: 37504649 PMCID: PMC10380277 DOI: 10.3390/insects14070644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Juvenile hormone (JH) plays a vital role in the growth, development, and reproduction of insects and other arthropods. Previous experiments have suggested that BmFAMeT6 could affect the duration of the silk moth's larval stage. In this study, we established the BmFAMeT6 overexpression strain and BmFAMeT6 knockout strain using the GAL4/UAS binary hybrid system and CRISPR/Cas 9 system, respectively, and found that the larval stage of the overexpression strain was shorter, while the knockout strain was longer. Our results exhibited that both the JH titers and BmKr-h1 levels in the larvae of the third instar were reduced significantly by BmFAMeT6 overexpression, but were increased obviously by BmFAMeT6 knockout. In addition, injection of farnesoic acid induced changes in the JH I and JH II levels in the hemolymphs of larvae. This study is the first to directly reveal the role of BmFAMeT6 in the regulation of insect JH titers and the relationship between farnesoic acid and JH (JH I and JH II). This provides a new perspective on regulating the growth and development of insects such as Bombyx mori.
Collapse
Affiliation(s)
- Yang Yu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Tian Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Drug Discovery Research Center, Southwest Medical University, Luzhou 646099, China
| | - Meiwei Guo
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Rong Xiong
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Dongshen Yan
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Ping Chen
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Smykal V, Dolezel D. Evolution of proteins involved in the final steps of juvenile hormone synthesis. JOURNAL OF INSECT PHYSIOLOGY 2023; 145:104487. [PMID: 36707023 PMCID: PMC10015273 DOI: 10.1016/j.jinsphys.2023.104487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Juvenile hormone (JH), a sesquiterpenoid produced by the insect corpus allatum gland (CA), is a key regulator of insect metamorphosis, reproduction, caste differentiation, and polyphenism. The first part of JH biosynthesis occurs via the universal eukaryotic mevalonate pathway. The final steps involve epoxidation and methylation. However, the sequence of these steps might not be conserved among all insects and Crustacea. Therefore, we used available genomic and transcriptomic data and identified JH acid methyltransferase (JHAMT), analyzed their genomic duplications in selected model organisms, and reconstructed their phylogeny. We have further reconstructed phylogeny of FAMeT proteins and show that evolution of this protein group is more complicated than originally appreciated. The analysis delineates important milestones in the evolution of several JH biosynthetic enzymes in arthropods, reviews major literature data on the last steps of JH synthesis, and defines questions and some hypotheses worth pursuing experimentally.
Collapse
Affiliation(s)
- Vlastimil Smykal
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - David Dolezel
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
| |
Collapse
|
9
|
Liu F, Cui Y, Lu H, Chen X, Li Q, Ye Z, Chen W, Zhu S. Myofilaments promote wing expansion and maintain genitalia morphology in the American cockroach, Periplaneta americana. INSECT MOLECULAR BIOLOGY 2023; 32:46-55. [PMID: 36214335 DOI: 10.1111/imb.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Insects are the most widely distributed and successful animals on the planet. A large number of insects are capable of flight with functional wings. Wing expansion is an important process for insects to achieve functional wings after eclosion and healthy genital morphology is crucial for adult reproduction. Myofilaments are functional units that constitute sarcomeres and trigger muscle contraction. Here, we identified four myofilament proteins, including Myosin, Paramyosin, Tropomyosin and Troponin T, from the wing pads of nymphs in the American cockroach, Periplaneta americana. RNAi-mediated knockdown of Myosin, Paramyosin, Tropomyosin and Troponin T in the early stage of final instar nymphs caused a severely curly wing phenotype in the imaginal moult, especially in the Paramyosin and Troponin T knockdown groups, indicating that these myofilament proteins are involved in controlling wing expansion behaviours during the nymph-adult transition. In addition, the knockdown resulted in abnormal external genitalia, caused ovulation failure, and affected male accessory gland development. Interestingly, the expression of myofilament genes was induced by methoprene, a juvenile hormone (JH) analogue, and decreased by the depletion of the JH receptor gene Met. Altogether, we have determined that myofilament genes play an important role in promoting wing expansion and maintaining adult genitalia morphology, and their expression is induced by JH signalling. Our data reveal a novel mechanism by which wing expansion is regulated by myofilaments and the functions of myofilaments are involved in maintaining genitalia morphology.
Collapse
Affiliation(s)
- Fangfang Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Yingying Cui
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Huna Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Xiaoyi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Ziqi Ye
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Wanyi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Shiming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, People's Republic of China
| |
Collapse
|
10
|
Semchuchot W, Chotwiwatthanakun C, Santimanawong W, Kruangkum T, Thaijongrak P, Withyachumnarnkul B, Vanichviriyakit R. Sesquiterpenoid pathway in the mandibular organ of Penaeus monodon: Cloning, expression, characterization of PmJHAMT and its alteration response to eyestalk ablation. Gen Comp Endocrinol 2023; 331:114176. [PMID: 36410448 DOI: 10.1016/j.ygcen.2022.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Methyl farnesoate (MF), a crustacean equivalent of juvenile hormone (JH) of insects, is known to be produced from the mandibular organ (MO). This study reports transcriptome analysis of Penaeus monodon MO and identifies putative genes encoding enzymes in the sesquiterpenoid pathway. A total of 44,490,420 clean reads were obtained and utilized for subsequent analysis. De novo assembly created 31,201 transcripts and 31,167 unigenes. To archive the functional annotation, all unigenes were annotated with KOG, KEGG, and GO. Putative genes encoding enzymes and regulatory proteins involved in the sesquiterpenoid pathway were obtained from the MO transcriptome data based on the conserved domains and sequence homology. They included S-adenosylmethionine synthetase, farnesyl pyrophosphate synthase, short chain dependent dehydrogenase/reductase (SDR), NAD(P) + -dependent aldehyde dehydrogenase, S-adenosylmethionine-dependent methyltransferases or juvenile hormone acid-O-methyl transferase (JHAMT), farnesoic acid O-methyl transferase (FAMeT), juvenile hormone binding protein, cytochrome C/P-450 family 15 (CRYP15A1)/methylfarnesoate epoxidase (MFE), juvenile hormone epoxide hydrolase (JHEH), and juvenile hormone esterase (JHE). We first identified and characterized JHAMT orthologs inP. monodon(PmJHAMT). The complete cDNA sequence ofPmJHAMTconsisted of 1,221 nt encoded 271 amino acids with a conserved S-adenosyl methionine (SAM) binding domain. Phylogenetic analysis clusteredPmJHAMTinto the group JHAMT with the same clade of the crabPortunus trituberculausJHAMT. Moreover, the predicted three-dimensional structure of PmJHAMT showed remarkable similarity with the recent crystal structure ofthe Bombyx moriJHAMT homodimer. RT-PCR analysis revealed that PmJHAMT was exclusively expressed in MO and initially expressed at stage 3 postlarvae. In situ hybridization with a specific probe to PmJHAMT validated the specific expression of this gene in MO cells. Finally, we evaluated the regulation of MO by eyestalk inhibitory peptides. Diminishing MO inhibitory hormone through unilateral eyestalk ablation resulted in a significantly higher expression ofPmJHAMTin MO by quantitative PCR. This result indicated that the eyestalk inhibitory hormone inhibited MF synthesis byPmJHAMTgene suppression in the MO. This finding provides insight into the crustacean sesquiterpenoid pathway and improves our understanding of crustacean endocrinology.
Collapse
Affiliation(s)
- Wanita Semchuchot
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Charoonroj Chotwiwatthanakun
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Wanida Santimanawong
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prawporn Thaijongrak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Boonsirm Withyachumnarnkul
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Science and Industrial Technology, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Rapeepun Vanichviriyakit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
11
|
Wang YQ, Li GY, Li L, Song QS, Stanley D, Wei SJ, Zhu JY. Genome-wide and expression-profiling analyses of the cytochrome P450 genes in Tenebrionidea. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21954. [PMID: 36065122 DOI: 10.1002/arch.21954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) are present in almost all areas of the tree of life. As one of the largest and most diverse superfamilies of multifunctional enzymes, they play important roles in the metabolism of xenobiotics and biosynthesis of endogenous compounds, shaping the success of insects. In this study, the CYPome (an omics term for all the CYP genes in a genome) diversification was examined in the four Tenebrionidea species through genome-wide analysis. A total of 483 CYP genes were identified, of which 103, 157, 122, and 101 were respectively deciphered from the genomes of Tebebrio molitor, Asbolus verucosus, Hycleus cichorii and Hycleus phaleratus. These CYPs were classified into four major clans (mitochondrial, CYP2, CYP3, and CYP4), and clans CYP3 and CYP4 are most diverse. Phylogenetic analysis showed that most CYPs of these Tenebrionidea beetles from each clan had a very close 1:1 orthology to each other, suggesting that they originate closely and have evolutionally conserved function. Expression analysis at different developmental stages and in various tissues showed the life stage-, gut-, salivary gland-, fat body-, Malpighian tubule-, antennae-, ovary- and testis-specific expression patterns of T. molitor CYP genes, implying their various potential roles in development, detoxification, immune response, digestion, olfaction, and reproduction. Our studies provide a platform to understand the evolution of Tenebrionidea CYP gene superfamily, and a basis for further functional investigation of the T. molitor CYPs involved in various biological processes.
Collapse
Affiliation(s)
- Yu-Qin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Guang-Ya Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lu Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
12
|
Shelomi M. Cytochrome P450 Genes Expressed in Phasmatodea Midguts. INSECTS 2022; 13:873. [PMID: 36292821 PMCID: PMC9603955 DOI: 10.3390/insects13100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Cytochrome P450s (CYPs) are xenobiotic detoxification genes found in most eukaryotes, and linked in insects to the tolerance of plant secondary chemicals and insecticide resistance. The number and diversity of CYP clans, families, and subfamilies that an organism produces could correlate with its dietary breadth or specialization. This study examined the CYP diversity expressed in the midguts of six species of folivorous stick insects (Phasmatodea), to identify their CYP complement and see if any CYPs correlate with diet toxicity or specialization, and see what factors influenced their evolution in this insect order. CYP genes were mined from six published Phasmatodea transcriptomes and analyzed phylogenetically. The Phasmatodea CYP complement resembles that of other insects, though with relatively low numbers, and with significant expansions in the CYP clades 6J1, 6A13/14, 4C1, and 15A1. The CYP6 group is known to be the dominant CYP family in insects, but most insects have no more than one CYP15 gene, so the function of the multiple CYP15A1 genes in Phasmatodea is unknown, with neofunctionalization following gene duplication hypothesized. No correlation was found between CYPs and diet specialization or toxicity, with some CYP clades expanding within the Phasmatodea and others likely inherited from a common ancestor.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
13
|
Tu S, Tuo P, Xu D, Wang Z, Wang M, Xie X, Zhu D. Molecular Characterization of the Cytochrome P450 Epoxidase ( CYP15) in the Swimming Crab Portunus trituberculatus and Its Putative Roles in Methyl Farnesoate Metabolism. THE BIOLOGICAL BULLETIN 2022; 242:75-86. [PMID: 35580030 DOI: 10.1086/719047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
CYP15, which encodes a microsomal cytochrome P450 enzyme, could be involved in juvenile hormone biosynthesis in insects. In this study, a full-length cDNA of CYP15 was cloned from the swimming crab Portunus trituberculatus. This PtCYP15 amino acid sequence contains six conserved domains, which is a typical feature of the cytochrome P450 family. Phylogenetic tree analysis results showed that PtCYP15 clusters in a single branch of crustacean species, suggesting that CYP15 may be more widely present in crustaceans. The PtCYP15 mRNA has a broad pattern of tissue expression in P. trituberculatus, including high levels of expression in the hepatopancreas of both sexes and in the ovary of female crabs. During ovarian development stages, PtCYP15 mRNA is highly expressed in stages I and II and less so in stages III and IV in the hepatopancreas and the ovary of the female crabs. These expression profiles are opposite those of methyl farnesoate in hemolymph, suggesting that PtCYP15 might be involved in methyl farnesoate metabolism. In vitro studies show that only methyl farnesoate upregulated vitellogenin expression in the hepatopancreas, suggesting that methyl farnesoate might be the equivalent of juvenile hormone III in crustaceans. Methyl farnesoate treatment increased levels of PtCYP15 in explants of the hepatopancreas and ovary, while juvenile hormone III treatment reduced levels of PtCYP15 mRNA in ovary explants, suggesting that PtCYP15 might be involved in degrading methyl farnesoate. Furthermore, PtCYP15 mRNA expression levels were inhibited by adding juvenile hormone III to ovary explants. These findings provide foundational information for future research on methyl farnesoate metabolism in crustaceans.
Collapse
|
14
|
Sun Y, Fu D, Liu B, Wang L, Chen H. Functional Characterization of Allatostatin C (PISCF/AST) and Juvenile Hormone Acid O-Methyltransferase in Dendroctonus armandi. Int J Mol Sci 2022; 23:ijms23052749. [PMID: 35269892 PMCID: PMC8910878 DOI: 10.3390/ijms23052749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
Allatostatin C (PISCF/AST) is a neuropeptide gene that affects juvenile hormone (JH) synthesis in the corpora allata. Juvenile hormone acid O-methyltransferase (JHAMT) is a key gene in the JH biosynthetic pathway. In this study, two genes encoding DaAST and DaJHAMT were cloned. Both DaAST and DaJHAMT were expressed in the larvae, pupae and adults of Chinese white pine beetle (Dendroctonus armandi), and highly expressed in the head and the gut. The expression of the two genes was induced by JH analog (JHA) methoprene and the functions of the two genes were then investigated by RNAi. Considering the role of hormones in metamorphosis, JHA significantly induced DaAST and DaJHAMT in the larval stage. DaAST knockdown in larvae, pupae and adults significantly increased the DaJHAMT mRNA levels. Moreover, knockdown of DaAST instead of DaJHAMT increased pupae mortality and the abnormal rate of emergence morphology and reduced emergence rates. However, knockdown of DaJHAMT instead of DaAST significantly reduced frontalin biosynthesis in adult males. The results showed that DaAST acts as an allatostatin and inhibits JH biosynthesis, and that JHAMT is a key regulatory enzyme for JH synthesis in the D. armandi.
Collapse
Affiliation(s)
- Yaya Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Danyang Fu
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Bin Liu
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Linjun Wang
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: ; Tel.: +86-02085280256
| |
Collapse
|
15
|
Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc Natl Acad Sci U S A 2021; 118:2109381118. [PMID: 34697248 DOI: 10.1073/pnas.2109381118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
Methyl farnesoate (MF) plays hormonal regulatory roles in crustaceans. An epoxidated form of MF, known as juvenile hormone (JH), controls metamorphosis and stimulates reproduction in insects. To address the evolutionary significance of MF epoxidation, we generated mosquitoes completely lacking either of the two enzymes that catalyze the last steps of MF/JH biosynthesis and epoxidation, respectively: the JH acid methyltransferase (JHAMT) and the P450 epoxidase CYP15 (EPOX). jhamt -/- larvae lacking both MF and JH died at the onset of metamorphosis. Strikingly, epox -/- mutants, which synthesized MF but no JH, completed the entire life cycle. While epox -/- adults were fertile, the reproductive performance of both sexes was dramatically reduced. Our results suggest that although MF can substitute for the absence of JH in mosquitoes, it is with a significant fitness cost. We propose that MF can fulfill most roles of JH, but its epoxidation to JH was a key innovation providing insects with a reproductive advantage.
Collapse
|
16
|
Martín D, Chafino S, Franch-Marro X. How stage identity is established in insects: the role of the Metamorphic Gene Network. CURRENT OPINION IN INSECT SCIENCE 2021; 43:29-38. [PMID: 33075581 DOI: 10.1016/j.cois.2020.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Proper formation of adult insects requires the integration of spatial and temporal regulatory axes. Whereas spatial information confers identity to each tissue, organ and appendage, temporal information specifies at which stage of development the animal is. Regardless of the type of post-embryonic development, either hemimetabolous or holometabolous, temporal specificity is achieved through interactions between the temporal identity genes Kr-h1, E93 and Br-C, whose sequential expression is controlled by the two major developmental hormones, 20-hydroxyecdysone and Juvenile hormone. Given the intimate regulatory connection between these three factors to specify life stage identity, we dubbed the regulatory axis that comprises these genes as the Metamorphic Gene Network (MGN). In this review, we survey the molecular mechanisms underlying the control by the MGN of stage identity and progression in hemimetabolous and holometabolous insects.
Collapse
Affiliation(s)
- David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Silvia Chafino
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
17
|
Dermauw W, Van Leeuwen T, Feyereisen R. Diversity and evolution of the P450 family in arthropods. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103490. [PMID: 33169702 DOI: 10.1016/j.ibmb.2020.103490] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 05/13/2023]
Abstract
The P450 family (CYP genes) of arthropods encodes diverse enzymes involved in the metabolism of foreign compounds and in essential endocrine or ecophysiological functions. The P450 sequences (CYPome) from 40 arthropod species were manually curated, including 31 complete CYPomes, and a maximum likelihood phylogeny of nearly 3000 sequences is presented. Arthropod CYPomes are assembled from members of six CYP clans of variable size, the CYP2, CYP3, CYP4 and mitochondrial clans, as well as the CYP20 and CYP16 clans that are not found in Neoptera. CYPome sizes vary from two dozen genes in some parasitic species to over 200 in species as diverse as collembolans or ticks. CYPomes are comprised of few CYP families with many genes and many CYP families with few genes, and this distribution is the result of dynamic birth and death processes. Lineage-specific expansions or blooms are found throughout the phylogeny and often result in genomic clusters that appear to form a reservoir of catalytic diversity maintained as heritable units. Among the many P450s with physiological functions, six CYP families are involved in ecdysteroid metabolism. However, five so-called Halloween genes are not universally represented and do not constitute the unique pathway of ecdysteroid biosynthesis. The diversity of arthropod CYPomes has only partially been uncovered to date and many P450s with physiological functions regulating the synthesis and degradation of endogenous signal molecules (including ecdysteroids) and semiochemicals (including pheromones and defense chemicals) remain to be discovered. Sequence diversity of arthropod P450s is extreme, and P450 sequences lacking the universally conserved Cys ligand to the heme have evolved several times. A better understanding of P450 evolution is needed to discern the relative contributions of stochastic processes and adaptive processes in shaping the size and diversity of CYPomes.
Collapse
Affiliation(s)
- Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
18
|
Tsang SSK, Law STS, Li C, Qu Z, Bendena WG, Tobe SS, Hui JHL. Diversity of Insect Sesquiterpenoid Regulation. Front Genet 2020; 11:1027. [PMID: 33133135 PMCID: PMC7511761 DOI: 10.3389/fgene.2020.01027] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Insects are arguably the most successful group of animals in the world in terms of both species numbers and diverse habitats. The sesquiterpenoids juvenile hormone, methyl farnesoate, and farnesoic acid are well known to regulate metamorphosis, reproduction, sexual dimorphism, eusociality, and defense in insects. Nevertheless, different insects have evolved with different sesquiterpenoid biosynthetic pathway as well as products. On the other hand, non-coding RNAs such as microRNAs have been implicated in regulation of many important biological processes, and have recently been explored in the regulation of sesquiterpenoid production. In this review, we summarize the latest findings on the diversity of sesquiterpenoids reported in different groups of insects, as well as the recent advancements in the understanding of regulation of sesquiterpenoid production by microRNAs.
Collapse
Affiliation(s)
- Stacey S K Tsang
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sean T S Law
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chade Li
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe Qu
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jerome H L Hui
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Wu L, Yu Z, Jia Q, Zhang X, Ma E, Li S, Zhu KY, Feyereisen R, Zhang J. Knockdown of LmCYP303A1 alters cuticular hydrocarbon profiles and increases the susceptibility to desiccation and insecticides in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104637. [PMID: 32711771 DOI: 10.1016/j.pestbp.2020.104637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) serve many functions in insects, from the regulation of development to xenobiotic detoxification. Several conserved CYPs have been shown to play a role in insect growth and development. CYP303A1 is a highly conserved CYP with a single ortholog in most insects, but its underlying molecular characteristics and specific physiological functions remain poorly understood. In Drosophila melanogaster and Locusta migratoria, CYP303A1 is indispensable for eclosion to adult. Here, we report additional functions of the locust gene LmCYP303A1 in nymphal molts, cuticular lipid deposition and insecticide penetration. RT-qPCR revealed that LmCYP303A1 had a high expression level before ecdysis and was highly expressed in integument, wing pads, foregut and hindgut. Suppression of LmCYP303A1 expression by RNA interference (RNAi) caused a lethal phenotype with molting defect from nymph to nymph. In addition, LmCYP303A1 RNAi resulted in locusts being more susceptible to desiccation and to insecticide toxicity. Furthermore, knockdown of LmCYP303A1 efficiently suppressed the transcript level of key genes (ELO7, FAR15 and CYP4G102) responsible for cuticular hydrocarbon (CHC) synthesis, which led to a decrease in some CHC levels. Taken together, our results suggest that one of the functions of LmCYP303A1 is to regulate the biosynthesis of CHC, which plays critical roles in protecting locusts from water loss and insecticide penetration.
Collapse
Affiliation(s)
- Lixian Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhitao Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xueyao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1017, Denmark; Department of Plant and Crops, Ghent University, B-9000Ghent, Belgium
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
20
|
Ghaffar A, Sehgal SA, Fatima R, Batool R, Aimen U, Awan S, Batool S, Ahmad F, Nurulain SM. Molecular docking analyses of CYP450 monooxygenases of Tribolium castaneum (Herbst) reveal synergism of quercetin with paraoxon and tetraethyl pyrophosphate: in vivo and in silico studies. Toxicol Res (Camb) 2020; 9:212-221. [PMID: 32670552 PMCID: PMC7329183 DOI: 10.1093/toxres/tfaa023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Pest management in stored grain industry is a global issue due to the development of insecticide resistance in stored grain insect pests. Excessive use of insecticides at higher doses poses a serious threat of food contamination and residual toxicity for grain consumers. Since the development of new pesticide incurs heavy costs, identifying an effective synergist can provide a ready and economical tool for controlling resistant pest populations. Therefore, the synergistic property of quercetin with paraoxon and tetraethyl pyrophosphate has been evaluated against the larvae and adults of Tribolium castaneum (Herbst). Comparative molecular docking analyses were carried out to further identify the possible mechanism of synergism. It was observed that quercetin has no insecticidal when applied at the rate of 1.5 and 3.0 mg/g; however, a considerable synergism was observed when applied in combination with paraoxon. The comparative molecular docking analyses of CYP450 monooxygenase (CYP15A1, CYP6BR1, CYP6BK2, CYP6BK3) family were performed with quercetin, paraoxon and tetraethyl pyrophosphate which revealed considerable molecular interactions, predicting the inhibition of CYP450 isoenzyme by all three ligands. The study concludes that quercetin may be an effective synergist for organophosphate pesticides depending upon the dose and type of the compound. In addition, in silico analyses of the structurally diversified organophosphates can effectively differentiate the organophosphates which are synergistic with quercetin.
Collapse
Affiliation(s)
- Ammarah Ghaffar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Kotwali Rd, Gurunanakpura, Faisalabad 38000, Pakistan
| | - Rida Fatima
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Roya Batool
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Ume Aimen
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Sliha Awan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Sajida Batool
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Faheem Ahmad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Syed M Nurulain
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| |
Collapse
|
21
|
Naruse S, Washidu Y, Miura K, Shinoda T, Minakuchi C. Methoprene-tolerant is essential for embryonic development of the red flour beetle Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104017. [PMID: 31972216 DOI: 10.1016/j.jinsphys.2020.104017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Insect juvenile hormone (JH) is well known to regulate post-embryonic development and reproduction in concert with ecdysteroids in a variety of insect species. In contrast, our knowledge on the role of JH in embryonic development is limited and inconsistent. Preceding studies indicate that JH biosynthesis or JH signaling genes are dispensable in holometabolous Drosophila melanogaster and Bombyx mori, while essential in hemimetabolous Blattella germanica. In the red flour beetle Tribolium castaneum, we performed functional analyses of key factors in JH signaling, i.e. the JH receptor Methoprene-tolerant (Met) and the early JH-response gene Krüppel homolog 1 (Kr-h1) using parental RNA interference. Knockdown of Met resulted in a significant reduction in hatching rates and survival rates in the first and second larval instars. Meanwhile, knockdown of Kr-h1 caused no significant effect on hatching or survival. The unhatched embryos under Met knockdown developed up to the late embryonic stage, but their body shape was flat and tubby compared with the controls. Attempts to suppress JH biosynthesis by parental RNA interference of JH biosynthetic enzymes were unsuccessful due to insufficient knockdown efficiency. These results suggested that Met but not Kr-h1 is essential for the embryonic development of T. castaneum, although involvement of JH still remains to be examined. Taken together, the function of Met in embryonic development seems to be diverse among insect species.
Collapse
Affiliation(s)
- Shouya Naruse
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Yumiko Washidu
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Ken Miura
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Tetsuro Shinoda
- National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba 305-8634, Japan; Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| | - Chieka Minakuchi
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan; National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba 305-8634, Japan.
| |
Collapse
|
22
|
Pengfei L, Weiwei W, Xiaofei L, Qin L, Jinwen Z, Rui H, Hang C. Regulation of Hormone-Related Genes in Ericerus pela (Hemiptera: Coccidae) for Dimorphic Metamorphosis. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5587053. [PMID: 31612946 PMCID: PMC6792091 DOI: 10.1093/jisesa/iez092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Indexed: 05/21/2023]
Abstract
Insect hormones regulate metamorphosis including that leading to sexual dimorphism. Using RNA-Seq, we discovered that the second-instar male larva (SM) of the white wax insect, Ericerus pela, have 5,968 and 8,620 differentially expressed transcripts compared with the second-instar female larva (SF) and the first-instar male larva (FM), respectively. The expression levels of genes involved in the apoptosis of old tissues and the reconstruction of new ones in the SM significantly enhanced, while the SF mainly has enhanced expression levels of anabolic genes such as chitin. We predicted that the second-instar larvae are the developmental origin of sexual dimorphic metamorphosis. Meanwhile, in the juvenile hormone (JH) metabolic pathway, CYP15A1 and JH esterase (JHE) are differentially expressed; and in the 20-hydroxyecdysone (20E) metabolic pathway, CYP307A1, CYP314A1, and CYP18A1 are differentially expressed. In the SM, the expression levels of CYP307A1 and CYP314A1 are significantly increased, whereas the expression level of CYP18A1 is significantly decreased; in the SF, the expression levels of the above genes are opposite to that of the SM. Expression trends of RNA-seq is consistent with the expression level of qRT-PCR, and seven of them are highly correlated (R ≥ 0.610) and four are moderately correlated (0.588 ≥ R ≥ 0.542).
Collapse
Affiliation(s)
- Liu Pengfei
- Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China
- NanJing Forestry University, Nanjing, China
| | - Wang Weiwei
- Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China
| | - Ling Xiaofei
- Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China
| | - Lu Qin
- Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China
| | - Zhang Jinwen
- Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China
| | - He Rui
- Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China
- The Key Laboratory of Cultivating and Utilization of Resources Insects, State Forestry Administration, Kunming, China
| | - Chen Hang
- Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China
- The Key Laboratory of Cultivating and Utilization of Resources Insects, State Forestry Administration, Kunming, China
- Corresponding author, e-mail:
| |
Collapse
|
23
|
Chanchay P, Vongsangnak W, Thancharoen A, Sriboonlert A. Reconstruction of insect hormone pathways in an aquatic firefly, Sclerotia aquatilis (Coleoptera: Lampyridae), using RNA-seq. PeerJ 2019; 7:e7428. [PMID: 31396456 PMCID: PMC6681800 DOI: 10.7717/peerj.7428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/07/2019] [Indexed: 01/19/2023] Open
Abstract
Insect hormones: ecdysteroids and juvenile hormones have crucial functions during the regulation of different developmental pathways in insects. Insect metamorphosis is one of the primary pathways regulated by these hormones. The insect hormone biosynthetic pathway is conserved among arthropods, including insects, with some variations in the form of hormones used among each group of insects. In this study, the candidate genes involved in the insect hormone pathways and their functional roles were assessed in an aquatic firefly, Sclerotia aquatilis using a high-throughput RNA sequencing technique. Illumina next-generation sequencing (NGS) was used to generate transcriptome data for the different developmental stages (i.e., larva, pupa, and adult) of S. aquatilis. A total of 82,022 unigenes were generated across all different developmental stages. Functional annotation was performed for each gene, based on multiple biological databases, generating 46,230 unigenes. These unigenes were subsequently mapped using KEGG pathways. Accordingly, 221 protein-encoding genes involved in the insect hormone pathways were identified, including, JHAMT, CYP15A1, JHE, and Halloween family genes. Twenty potential gene candidates associated with the biosynthetic and degradation pathways for insect hormones were subjected to real-time PCR, reverse transcriptase PCR (RT-PCR) and sequencing analyses. The real-time PCR results showed similar expression patterns as those observed for transcriptome expression profiles for most of the examined genes. RT-PCR and Sanger sequencing confirmed the expressed coding sequences of these gene candidates. This study is the first to examine firefly insect hormone pathways, facilitating a better understanding of firefly growth and development.
Collapse
Affiliation(s)
- Pornchanan Chanchay
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food, and Health, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Anchana Thancharoen
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
24
|
Jiang M, Lü SM, Qi ZY, Zhang YL. Characterized cantharidin distribution and related gene expression patterns in tissues of blister beetles, Epicauta chinensis. INSECT SCIENCE 2019; 26:240-250. [PMID: 28745022 DOI: 10.1111/1744-7917.12512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Cantharidin (CTD), a terpenoid defensive toxin mainly produced by blister beetles, is widely known by its toxicity to both cancer cells and pests. However, little information is known about its biosynthesis in blister beetles. In this study, first we determined the CTD content in various tissues of adult blister beetles on different days after mating, and then detected the temporal and spatial expression patterns of genes related to CTD biosynthesis in Epicauta chinensis. Results revealed that the accessory gland is the source of the highest CTD production. The second highest level was in the fat body in male blister beetles after mating. In females, the highest CTD content was in the reproductive system except the ovary after mating. As revealed by messenger RNA expression level analysis, the highest levels of 3-hydroxy-3-methylglutary-CoA reductase (HMGR) and juvenile hormone epoxide hydrolase (JHEH) transcripts of E. chinensis were observed in the fat body in males after mating. However, the highest transcript level of EcHMGR was in the ovary and EcJHEH was maintained at a nearly similar level in females. The transcript level of methyl-farnesoate epoxide was significantly higher in the head and that of CYP4BM1 in the midgut in both male and female E. chinensis. We speculate that the fat body may play a more important role than other tissues on the CTD biosynthesis in male E. chinensis after mating. There may be multiple tissues involved in the process of CTD biosynthesis. These four genes probably play regulatory roles in different tissues in males.
Collapse
Affiliation(s)
- Ming Jiang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Shu-Min Lü
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
| | - Zi-Yi Qi
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
| | - Ya-Lin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
25
|
Nouzova M, Rivera-Pérez C, Noriega FG. Omics approaches to study juvenile hormone synthesis. CURRENT OPINION IN INSECT SCIENCE 2018; 29:49-55. [PMID: 30551825 PMCID: PMC6470398 DOI: 10.1016/j.cois.2018.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 05/04/2023]
Abstract
The juvenile hormones (JHs) are a family of insect acyclic sesquiterpenoids produced by the corpora allata (CA), a pair of endocrine glands connected to the brain. They are involved in the regulation of development, reproduction, behavior, caste determination, diapause, stress response, and numerous polyphenisms. In the post-genomics era, comprehensive analyses using functional 'omics' technologies such as transcriptomics, proteomics and metabolomics have increased our understanding of the activity of the minute CA. This review attempts to summarize some of the 'omics' studies that have contributed to further understand JH synthesis in insects, with an emphasis on our own research on the mosquito Aedes aegypti.
Collapse
Affiliation(s)
- Marcela Nouzova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA
| | | | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
26
|
Characterization of Juvenile Hormone Related Genes Regulating Cantharidin Biosynthesis in Epicauta chinensis. Sci Rep 2017; 7:2308. [PMID: 28536442 PMCID: PMC5442126 DOI: 10.1038/s41598-017-02393-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/11/2017] [Indexed: 11/10/2022] Open
Abstract
Cantharidin is a defensive toxin biosynthesized by blister beetles. It is well known for medical applications and toxicity. However, the biosynthesis process of cantharidin is still not well understood. In the present study, three genes (methyl farnesoate epoxidase (EcMFE), juvenile hormone acid O-methyltransferase (EcJHAMT) and juvenile hormone epoxide hydrolase (EcJHEH)) were identified from Epicauta chinensis. The temporal and spatial expression patterns of these three genes revealed that the expression levels of EcMFE and EcJHEH were high in the first instar larval stage of E. chinensis with EcJHEH transcripts highest in the fifth larval instar. The expression level of EcJHAMT was significantly higher in the 2nd and 3rd larval instars. The transcripts of EcMFE, EcJHEH and EcJHAMT showed a similar tendency with the cantharidin production in male blister beetles after mating. We verified the functions of these three genes in cantharidin biosynthesis using the RNA interference method. Interference of EcMFE and EcJHEH significantly inhibited the biosynthesis of cantharidin in male E. chinensis after mating, but interference of EcJHAMT has no apparent influence on cantharidin biosynthesis. We propose that EcMFE and EcJHEH may be involved in the biosynthesis of cantharidin, but JH III might not be the direct precursor of cantharidin.
Collapse
|
27
|
The Occurrence of the Holometabolous Pupal Stage Requires the Interaction between E93, Krüppel-Homolog 1 and Broad-Complex. PLoS Genet 2016; 12:e1006020. [PMID: 27135810 PMCID: PMC4852927 DOI: 10.1371/journal.pgen.1006020] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/09/2016] [Indexed: 12/17/2022] Open
Abstract
Complete metamorphosis (Holometaboly) is a key innovation that underlies the spectacular success of holometabolous insects. Phylogenetic analyses indicate that Holometabola form a monophyletic group that evolved from ancestors exhibiting hemimetabolous development (Hemimetaboly). However, the nature of the changes underlying this crucial transition, including the occurrence of the holometabolan-specific pupal stage, is poorly understood. Using the holometabolous beetle Tribolium castaneum as a model insect, here we show that the transient up-regulation of the anti-metamorphic Krüppel-homolog 1 (TcKr-h1) gene at the end of the last larval instar is critical in the formation of the pupa. We find that depletion of this specific TcKr-h1 peak leads to the precocious up-regulation of the adult-specifier factor TcE93 and, hence, to a direct transformation of the larva into the adult form, bypassing the pupal stage. Moreover, we also find that the TcKr-h1-dependent repression of TcE93 is critical to allow the strong up-regulation of Broad-complex (TcBr-C), a key transcription factor that regulates the correct formation of the pupa in holometabolous insects. Notably, we show that the genetic interaction between Kr-h1 and E93 is also present in the penultimate nymphal instar of the hemimetabolous insect Blattella germanica, suggesting that the evolution of the pupa has been facilitated by the co-option of regulatory mechanisms present in hemimetabolan metamorphosis. Our findings, therefore, contribute to the molecular understanding of insect metamorphosis, and indicate the evolutionary conservation of the genetic circuitry that controls hemimetabolan and holometabolan metamorphosis, thereby shedding light on the evolution of complete metamorphosis.
Collapse
|