1
|
Xu X, Pu S, Jiang M, Hu X, Wang Q, Yu J, Chu J, Wei G, Wang L. Knockout of nuclear receptor HR38 gene impairs pupal-adult development in silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2024; 33:29-40. [PMID: 37738573 DOI: 10.1111/imb.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023]
Abstract
Nuclear receptors are ligand-regulated transcription factors that play important role in regulating insect metamorphosis through the ecdysone signalling pathway. In this study, we investigated the nuclear receptor HR38 gene in Bombyx mori (BmHR38), belonging to the NR4A subfamily. BmHR38 mRNA was highly expressed in the head and epidermis at the pupal stage. The expression of the BmHR38 gene was influenced by different doses of 20E at different times. A BmHR38 deletion mutant silkworm was generated using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Compared with the wild-type B. mori, the BmHR38 deletion mutant resulted in abnormal development during the pupal stage, leading to either failed eclosion or the formation of abnormal adult wings. After silencing of BmHR38 in the pupal stage, the phenotype of pupa or moth had no significant change, but it did result in reduced egg production. The mRNA levels of USP, E75 and E74 were significantly increased, while the transcript levels of FTZ-F1 were suppressed after RNA interference. Furthermore, interference with BmHR38 also inhibited the expressions of chitin metabolism genes, including Chs1, Chs2, Chi, Chi-h and CDA. Our results suggest that BmHR38 is essential for pupal development and pupa-adult metamorphosis in B. mori by regulating the expression of NRs and chitin metabolism genes.
Collapse
Affiliation(s)
- Xinyue Xu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shangkun Pu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mouzhen Jiang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaoxuan Hu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qing Wang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jun Yu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jianghong Chu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Guoqing Wei
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Lei Wang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Zhang K, Su J, Hu X, Yan X, Chen S, Li C, Pan G, Chang H, Tian W, Abbas MN, Cui H. Integrin β2 and β3: Two plasmatocyte markers deepen our understanding of the development of plasmatocytes in the silkworm Bombyx mori. INSECT SCIENCE 2022; 29:1659-1671. [PMID: 35420711 DOI: 10.1111/1744-7917.13045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Insect hemocytes play important biological roles at developmental stages, metamorphosis, and innate immunity. As one of the most abundant cell types, plasmatocytes can participate in various innate immune responses, especially in encapsulation and node formation. Here, 2 molecular markers of plasmatocytes, consisting of integrin β2 and β3, were identified and used to understand the development of plasmatocytes. Plasmatocytes are widely distributed in the hematopoietic system, including circulating hemolymph and hematopoietic organs (HPOs). HPOs constantly release plasmatocytes with high proliferative activity in vitro; removal of HPOs leads to a dramatic reduction in the circulating plasmatocytes, and the remaining plasmatocytes gradually lose their ability to proliferate in vivo. Our results demonstrated that the release of plasmatocytes from HPOs is regulated by insulin-mediated signals and their downstream pathways, including PI3K/Akt and MAPK/Erk signals. The insulin/PI3K/Akt signaling pathway can significantly irritate the hematopoiesis, and its inhibitor LY294002 could inhibit the hemocytes discharged from HPOs. While the insulin/MAPK/Erk signaling pathway plays a negative regulatory role, inhibiting its activity with U0126 can markedly promote the discharge of plasmatocytes from HPOs. Our results indicate that the circulating plasmatocytes are mainly generated and discharged by HPOs. This process is co-regulated by the PI3K/Akt and MAPK/Erk signals in an antagonistic manner to adjust the dynamic balance of the hemocytes. These findings can enhance our understanding of insect hematopoiesis.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Jingjing Su
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xin Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaomin Yan
- Chongqing iCELL Biotechnology Co. Ltd, Chongqing, China
| | - Siyuan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hongbo Chang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Wenli Tian
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Ma Y, Zeng W, Ba Y, Luo Q, Ou Y, Liu R, Ma J, Tang Y, Hu J, Wang H, Tang X, Mu Y, Li Q, Chen Y, Ran Y, Xiang Z, Xu H. A single-cell transcriptomic atlas characterizes the silk-producing organ in the silkworm. Nat Commun 2022; 13:3316. [PMID: 35680954 PMCID: PMC9184679 DOI: 10.1038/s41467-022-31003-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/30/2022] [Indexed: 01/07/2023] Open
Abstract
The silk gland of the domesticated silkworm Bombyx mori, is a remarkable organ that produces vast amounts of silk with exceptional properties. Little is known about which silk gland cells execute silk protein synthesis and its precise spatiotemporal control. Here, we use single-cell RNA sequencing to build a comprehensive cell atlas of the silkworm silk gland, consisting of 14,972 high-quality cells representing 10 distinct cell types, in three early developmental stages. We annotate all 10 cell types and determine their distributions in each region of the silk gland. Additionally, we decode the developmental trajectory and gene expression status of silk gland cells. Finally, we discover marker genes involved in the regulation of silk gland development and silk protein synthesis. Altogether, this work reveals the heterogeneity of silkworm silk gland cells and their gene expression dynamics, affording a deeper understanding of silk-producing organs at the single-cell level.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Wenhui Zeng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yongbing Ba
- Shanghai OE Biotech. Co., Ltd., Shanghai, 201212, China
| | - Qin Luo
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yao Ou
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Rongpeng Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jingwen Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yiyun Tang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jie Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Haomiao Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xuan Tang
- Shanghai OE Biotech. Co., Ltd., Shanghai, 201212, China
| | - Yuanyuan Mu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Qingjun Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqin Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yiting Ran
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Hanfu Xu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Shen CH, Xu QY, Mu LL, Fu KY, Guo WC, Li GQ. Involvement of Leptinotarsa hormone receptor 38 in the larval-pupal transition. Gene 2020; 751:144779. [DOI: 10.1016/j.gene.2020.144779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/16/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
|
5
|
Gu SH, Chen CH, Lin PL, Hsieh HY. Role of protein phosphatase 2A in PTTH-stimulated prothoracic glands of the silkworm, Bombyx mori. Gen Comp Endocrinol 2019; 274:97-105. [PMID: 30668972 DOI: 10.1016/j.ygcen.2019.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 11/16/2022]
Abstract
In the present study, the roles of a major serine/threonine protein phosphatase 2A (PP2A) in prothoracicotropic hormone (PTTH)-stimulated prothoracic glands (PGs) of Bombyx mori were evaluated. Immunoblotting analysis showed that Bombyx PGs contained a structural A subunit (A), a regulatory B subunit (B), and a catalytic C subunit (C), with each subunit undergoing development-specific changes. The protein levels of each subunit were not affected by PTTH treatment. However, the highly conserved tyrosine dephosphorylation of PP2A C subunit (PP2Ac), which appears to be related to activity, was increased by PTTH treatment in a time-dependent manner. We further demonstrated that phospholipase C (PLC), Ca2+, and reactive oxygen species (ROS) are upstream signaling for the PTTH-stimulated dephosphorylation of PP2Ac. The determination of PP2A enzymatic activity showed that PP2A enzymatic activity was stimulated by PTTH treatment both in vitro and in vivo. Okadaic acid (OA), a specific PP2A inhibitor, prevented the PTTH-stimulated dephosphorylation of PP2Ac and reduced both basal and PTTH-stimulated PP2A enzymatic activity. The determination of ecdysteroid secretion showed that treatment with OA did not affect basal ecdysteroid secretion but did significantly inhibit PTTH-stimulated ecdysteroid secretion, indicating that PTTH-stimulated PP2A activity is involved in ecdysteroidogenesis. Treatment with OA stimulated the basal phosphorylation of the extracellular signal-regulated kinase (ERK) and 4E-binding protein (4E-BP) without affecting PTTH-stimulated ERK and 4E-BP phosphorylation. From these results, we hypothesize that PTTH-regulated PP2A signaling is a necessary component for the stimulation of ecdysteroidogenesis, potentially by mediating the link between ERK and TOR signaling pathways.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County 717, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| | - Hsiao-Yen Hsieh
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
6
|
Gassias E, Durand N, Demondion E, Bourgeois T, Bozzolan F, Debernard S. The insect HR38 nuclear receptor, a member of the NR4A subfamily, is a synchronizer of reproductive activity in a moth. FEBS J 2018; 285:4019-4040. [DOI: 10.1111/febs.14648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/28/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | - Nicolas Durand
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris Université Paris VI France
| | - Elodie Demondion
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris INRA Versailles France
| | - Thomas Bourgeois
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris INRA Versailles France
| | - Françoise Bozzolan
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris Université Paris VI France
| | - Stéphane Debernard
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris Université Paris VI France
| |
Collapse
|
7
|
Wang P, Qiu Z, Xia D, Tang S, Shen X, Zhao Q. Transcriptome analysis of the epidermis of the purple quail-like (q-lp) mutant of silkworm, Bombyx mori. PLoS One 2017; 12:e0175994. [PMID: 28414820 PMCID: PMC5393886 DOI: 10.1371/journal.pone.0175994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/04/2017] [Indexed: 01/08/2023] Open
Abstract
A new purple quail-like (q-lp) mutant found from the plain silkworm strain 932VR has pigment dots on the epidermis similar to the pigment mutant quail (q). In addition, q-lp mutant larvae are inactive, consume little and grow slowly, with a high death rate and other developmental abnormalities. Pigmentation of the silkworm epidermis consists of melanin, ommochrome and pteridine. Silkworm development is regulated by ecdysone and juvenile hormone. In this study, we performed RNA-Seq on the epidermis of the q-lp mutant in the 4th instar during molting, with 932VR serving as the control. The results showed 515 differentially expressed genes, of which 234 were upregulated and 281 downregulated in q-lp. BLASTGO analysis indicated that the downregulated genes mainly encode protein-binding proteins, membrane components, oxidation/reduction enzymes, and proteolytic enzymes, whereas the upregulated genes largely encode cuticle structural constituents, membrane components, transport related proteins, and protein-binding proteins. Quantitative reverse transcription PCR was used to verify the accuracy of the RNA-Seq data, focusing on key genes for biosynthesis of the three pigments and chitin as well as genes encoding cuticular proteins and several related nuclear receptors, which are thought to play key roles in the q-lp mutant. We drew three conclusions based on the results: 1) melanin, ommochrome and pteridine pigments are all increased in the q-lp mutant; 2) more cuticle proteins are expressed in q-lp than in 932VR, and the number of upregulated cuticular genes is significantly greater than downregulated genes; 3) the downstream pathway regulated by ecdysone is blocked in the q-lp mutant. Our research findings lay the foundation for further research on the developmental changes responsible for the q-lp mutant.
Collapse
Affiliation(s)
- Pingyang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Zhiyong Qiu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dingguo Xia
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Shunming Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xingjia Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- * E-mail:
| |
Collapse
|