1
|
Peñalver-Cruz A, Satour P, Jaloux B, Lavandero B. Honeydew Is a Food Source and a Contact Kairomone for Aphelinus mali. INSECTS 2023; 14:insects14050426. [PMID: 37233054 DOI: 10.3390/insects14050426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Many parasitoids need to feed on sugar sources at the adult stage. Although nectar has been proven to be a source of higher nutritional quality compared to honeydew excreted by phloem feeders, the latter can provide the necessary carbohydrates for parasitoids and increase their longevity, fecundity and host searching time. Honeydew is not only a trophic resource for parasitoids, but it can also constitute an olfactory stimulus involved in host searching. In this study, we combined longevity measurements in the laboratory, olfactometry and feeding history inference of individuals caught in the field to test the hypothesis that honeydew excreted by the aphid Eriosoma lanigerum could serve as a trophic resource for its parasitoid Aphelinus mali as well as a kairomone used by the parasitoid to discover its hosts. Results indicate that honeydew increased longevity of A. mali females if water was provided. Water could be necessary to feed on this food source because of its viscosity and its coating by wax. The presence of honeydew allowed longer stinging events by A. mali on E. lanigerum. However, no preference towards honeydew was observed, when given the choice. The role of honeydew excreted by E. lanigerum on A. mali feeding and searching behavior to increase its efficiency as a biological control agent is discussed.
Collapse
Affiliation(s)
- Ainara Peñalver-Cruz
- Instituto de Investigación y Tecnología Agroalimentaria (IRTA)-Campus de la Escola Tècnica Superior d'Enginyeria Agrària (ETSEA), Protecció Vegetal Sostenible, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Pascale Satour
- IRHS, INRAE, Institut Agro, Université d'Angers, 49071 Beaucouzé, France
| | - Bruno Jaloux
- IGEPP, INRAE, Institut Agro, Université de Rennes, 49000 Angers, France
| | - Blas Lavandero
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3465548, Chile
| |
Collapse
|
2
|
Manzano C, Fernandez PC, Hill JG, Luft Albarracin E, Virla EG, Coll Aráoz MV. Chemical Ecology of the host searching behavior in an Egg Parasitoid: are Common Chemical Cues exploited to locate hosts in Taxonomically Distant Plant Species? J Chem Ecol 2022; 48:650-659. [PMID: 35921017 DOI: 10.1007/s10886-022-01373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/10/2022] [Accepted: 07/02/2022] [Indexed: 10/16/2022]
Abstract
Parasitoids are known to exploit volatile cues emitted by plants after herbivore attack to locate their hosts. Feeding and oviposition of a polyphagous herbivore can induce the emission of odor blends that differ among distant plant species, and parasitoids have evolved an incredible ability to discriminate them and locate their hosts relying on olfactive cues. We evaluated the host searching behavior of the egg parasitoid Cosmocomoidea annulicornis (Ogloblin) (Hymenoptera: Mymaridae) in response to odors emitted by two taxonomically distant host plants, citrus and Johnson grass, after infestation by the sharpshooter Tapajosa rubromarginata (Signoret) (Hemiptera: Cicadellidae), vector of Citrus Variegated Chlorosis. Olfactory response of female parasitoids toward plants with no herbivore damage and plants with feeding damage, oviposition damage, and parasitized eggs was tested in a Y-tube olfactometer. In addition, volatiles released by the two host plant species constitutively and under herbivore attack were characterized. Females of C. annulicornis were able to detect and significantly preferred plants with host eggs, irrespectively of plant species. However, wasps were unable to discriminate between plants with healthy eggs and those with eggs previously parasitized by conspecifics. Analysis of plant volatiles induced after sharpshooter attack showed only two common volatiles between the two plant species, indole and β-caryophyllene. Our results suggest that this parasitoid wasp uses common chemical cues released by many different plants after herbivory at long range and, once on the plant, other more specific chemical cues could trigger the final decision to oviposit.
Collapse
Affiliation(s)
- C Manzano
- PROIMI - CONICET, Av. Belgrano y Pje. Caseros (T4001MVB), Tucumán, Argentina
| | - P C Fernandez
- Centro de Investigaciones en Hidratos de Carbono, CIHIDECAR-CONICET, Buenos Aires, Argentina.,Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453, Buenos Aires, Argentina
| | - J G Hill
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, Av. Kirchner 1.900, Tucumán, Argentina
| | - E Luft Albarracin
- PROIMI - CONICET, Av. Belgrano y Pje. Caseros (T4001MVB), Tucumán, Argentina
| | - E G Virla
- PROIMI - CONICET, Av. Belgrano y Pje. Caseros (T4001MVB), Tucumán, Argentina.,Instituto de Entomología, Fundación Miguel Lillo. Miguel Lillo 251, (4000), Tucumán, Argentina
| | - M V Coll Aráoz
- PROIMI - CONICET, Av. Belgrano y Pje. Caseros (T4001MVB), Tucumán, Argentina. .,Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Miguel Lillo 205, (4000), Tucumán, Argentina.
| |
Collapse
|
3
|
Ayelo PM, Yusuf AA, Chailleux A, Mohamed SA, Pirk CWW, Deletre E. Chemical Cues From Honeydew and Cuticular Extracts of Trialeurodes Vaporariorum Serve as Kairomones for The Parasitoid Encarsia Formosa. J Chem Ecol 2022; 48:370-383. [PMID: 35257255 DOI: 10.1007/s10886-022-01354-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
Kairomones are semiochemicals that are emitted by an organism and which mediate interspecific interaction that is of benefit to an organism of another species that receives these chemical substances. Parasitoids find and recognize their hosts through eavesdropping on the kairomones emitted from the by-products or the body of the host. Hemipteran insect pests feed on plant sap and excrete the digested plant materials as honeydew. Honeydew serves as a nutritional food source for parasitoids and a medium for micro-organisms whose activity induces the release of volatiles exploited by parasitoids for host location. The parasitoid Encarsia formosa preferentially parasitizes its host, the greenhouse whitefly, Trialeurodes vaporariorum, on tomato Solanum lycopersicum, but little is known about the chemicals that mediate these interactions. We investigated the olfactory responses of the parasitoid E. formosa to odours from honeydew and nymphs of T. vaporariorum in a Y-tube olfactometer. Arrestment behaviour of the parasitoid to honeydew and nymph extracts, as well as to synthetic hydrocarbons, was also observed in Petri-dish bioassays. We found that T. vaporariorum honeydew volatiles attracted the parasitoid E. formosa but odours from the whitefly nymphs did not. We also found that the parasitoid spent more time searching on areas treated with extracts of honeydew and nymphs than on untreated areas. Gas-chromatography-mass spectrometric analysis revealed that the honeydew volatiles contained compounds such as (Z)-3-hexenol, δ-3-carene, 3-octanone, α-phellandrene, methyl salicylate, β-ocimene, β-myrcene, and (E)-β-caryophyllene which are known to be attractive to E. formosa. The cuticular extracts of the nymphs predominantly contained alkanes, alkenes, and esters. Among the alkanes, synthetic nonacosane arrested the parasitoid. Our findings are discussed in relation to how the parasitoid E. formosa uses these chemicals to locate its host, T. vaporariorum.
Collapse
Affiliation(s)
- Pascal Mahukpe Ayelo
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| | - Abdullahi A Yusuf
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Anaïs Chailleux
- CIRAD-UPR HORTSYS, University of Montpellier, Montpellier, France
- Biopass2, Cirad-IRD-ISRA-UGB, Dakar, Senegal
| | - Samira A Mohamed
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Christian W W Pirk
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Emilie Deletre
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
- CIRAD-UPR HORTSYS, University of Montpellier, Montpellier, France.
| |
Collapse
|
4
|
Komatsuzaki S, Piyasaengthong N, Matsuyama S, Kainoh Y. Effect of Leaf Maturity on Host Habitat Location by the Egg-Larval Parasitoid Ascogaster reticulata. J Chem Ecol 2021; 47:294-302. [PMID: 33523390 DOI: 10.1007/s10886-021-01250-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 11/27/2022]
Abstract
Adoxophyes honmai, a serious pest of tea plants, prefers to lay eggs on mature tea leaves rather than young leaves. Here, we examined a hypothesis that Ascogaster reticulata, an egg-larval parasitoid of A. honmai, increases the likelihood of encountering host egg masses by searching mature tea leaves when host-derived cues are not available. In a dual-choice bioassay using a four-arm olfactometer, A. reticulata preferred odor from intact, mature leaves versus young leaves. Based on volatile analysis with gas chromatography-mass spectrometry (GC-MS), we identified 5 and 10 compounds from mature and young leaf volatiles, respectively. The 5 components in the extract from intact mature leaves included (Z)-3-hexenyl acetate, (E)-β-ocimene, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and methyl salicylate. When each individual compound, or quaternary and quintenary blends of them, ratios of which were adjusted to match those of mature leaf volatiles, were provided, parasitoids preferred the full mixture and the quaternary blend devoid of DMNT to the solvent control. Methyl salicylate, one of the components of preferred blends, was not detected among young leaf volatiles. We concluded that the volatile composition of tea leaves changes, depending on their maturity, and that this composition affects foraging behavior of the parasitoid, which is closely related to the host herbivore's oviposition preference.
Collapse
Affiliation(s)
- Suguru Komatsuzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Narisara Piyasaengthong
- Department of Zoology, Faculty of Science, Kasetsart University, Phahonyothin Rd., Bangkok, 10900, Thailand
| | - Shigeru Matsuyama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Yooichi Kainoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
5
|
Taste recognition through tarsal gustatory sensilla potentially important for host selection in leaf beetles (Coleoptera: Chrysomelidae). Sci Rep 2020; 10:4931. [PMID: 32188903 PMCID: PMC7080798 DOI: 10.1038/s41598-020-61935-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/05/2020] [Indexed: 11/25/2022] Open
Abstract
It is well known that Diptera and Lepidoptera can recognize tastes through their legs, which allows them to select suitable hosts. In Coleoptera, the largest insect order, however, the role of the legs in taste recognition to aid in host selection is unclear. In the present study, we investigated taste recognition through the legs of Chrysomelidae, Coleoptera. Through morphological observations, we found that all subfamilies of Chrysomelidae exhibit gustatory sensilla in the distal leg segment, i.e., the tarsus. In contrast, we did not find evidence of these sensilla in the species that we examined from four families of Coleoptera. We confirmed that different tastes, i.e., sweet, bitter, and leaf surface wax, were received through the tarsal sensilla of Chrysomelidae by recording the electrophysiological responses of the sensilla. Further, we found that Galerucella grisescens (Chrysomelidae) can respond to different tastes used in the electrophysiological tests using only their tarsi, whereas Henosepilachna vigintioctomaculata (Coccinellidae), lacking tarsal gustatory sensilla, did not exhibit similar responses. Our results suggest that although tarsal taste recognition is not common throughout Coleopteran species, it may be a common feature in Chrysomelidae, and tarsal gustation may play an important role in host selection in this family.
Collapse
|
6
|
Wang SN, Shan S, Liu JT, Li RJ, Lu ZY, Dhiloo KH, Khashaveh A, Zhang YJ. Characterization of antennal chemosensilla and associated odorant binding as well as chemosensory proteins in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae). Sci Rep 2018; 8:7649. [PMID: 29769575 PMCID: PMC5955942 DOI: 10.1038/s41598-018-25996-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/03/2018] [Indexed: 12/23/2022] Open
Abstract
Odorant binding proteins (OBPs) and chemosensory proteins (CSPs) expressed in antennal chemosensilla are believed to be important in insect chemoreception. In the current study, we fully described the morphological characteristics of the antennal sensilla in parasitoid wasp Microplitis mediator and analyzed the expression patterns of OBPs and CSPs within the antennae. In M. mediator, eight types of sensilla were observed on the antennae. Sensilla basiconica type 2 and s. placodea with wall pores may be involved in olfactory perception, whereas s. basiconica type 1 and type 3 with tip pores may play gustatory functions. Among the 18 OBPs and 3 CSPs in M. mediator, 10 OBPs and 2 CSPs were exclusively or primarily expressed in the antennae. In situ hybridization experiments indicated that the 12 antennae-enriched OBPs and CSPs were mapped to five morphological classes of antennal sensilla, including s. basiconica (type 1-3), s. placodea and s. coeloconica. Within the antennae, most of OBP and CSP genes were expressed only in one type of sensilla indicating their differentiated roles in detection of special type of chemical molecules. Our data will lay a foundation to further study the physiological roles of OBPs and CSPs in antennae of parasitoid wasps.
Collapse
Affiliation(s)
- Shan-Ning Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jing-Tao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, 071000, China
| | - Zi-Yun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei, 071000, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University Tandojam, Hyderabad, 70060, Pakistan
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
7
|
González JM, Camino D, Simon S, Cusumano A. Semiochemical Exploitation of Host-Associated Cues by Seven Melittobia Parasitoid Species: Behavioral and Phylogenetic Implications. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2017.00172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Fürstenau B, Hilker M. Cuticular Hydrocarbons of Tribolium confusum Larvae Mediate Trail Following and Host Recognition in the Ectoparasitoid Holepyris sylvanidis. J Chem Ecol 2017; 43:858-868. [DOI: 10.1007/s10886-017-0885-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 11/30/2022]
|