1
|
Jiang S, Zhang C, Pan X, Storey KB, Zhang W. Distinct metabolic responses to thermal stress between invasive freshwater turtle Trachemys scripta elegans and native freshwater turtles in China. Integr Zool 2024; 19:1057-1075. [PMID: 38169086 DOI: 10.1111/1749-4877.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Different responses or tolerance to thermal stress between invasive and native species can affect the outcome of interactions between climate change and biological invasion. However, knowledge about the physiological mechanisms that modulate the interspecific differences in thermal tolerance is limited. The present study analyzes the metabolic responses to thermal stress by the globally invasive turtle, Trachemys scripta elegans, as compared with two co-occurring native turtle species in China, Pelodiscus sinensis and Mauremys reevesii. Changes in metabolite contents and the expression or enzyme activities of genes involved in energy sensing, glucose metabolism, lipid metabolism, and tricarboxylic acid (TCA) cycle after exposure to gradient temperatures were assessed in turtle juveniles. Invasive and native turtles showed distinct metabolic responses to thermal stress. T. scripta elegans showed greater transcriptional regulation of energy sensors than the native turtles. Enhanced anaerobic metabolism was needed by all three species under extreme heat conditions, but phosphoenolpyruvate carboxykinase and lactate dehydrogenase in the invader showed stronger upregulation or stable responses than the native species, which showed inhibition by high temperatures. These contrasts were pronounced in the muscles of the three species. Regulation of lipid metabolism was observed in both T. scripta elegans and P. sinensis but not in M. reevesii under thermal stress. Thermal stress did not inhibit the TCA cycle in turtles. Different metabolic responses to thermal stress may contribute to interspecific differences in thermal tolerance. Overall, our study further suggested the potential role of physiological differences in mediating interactions between climate change and biological invasion.
Collapse
Affiliation(s)
- Shufen Jiang
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Changyi Zhang
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Xiao Pan
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Wenyi Zhang
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Li Q, Gao L, Liu L, Wang L, Hu L, Wang L, Song L. Marine thermal fluctuation induced gluconeogenesis by the transcriptional regulation of CgCREBL2 in Pacific oysters. MARINE POLLUTION BULLETIN 2024; 207:116906. [PMID: 39217871 DOI: 10.1016/j.marpolbul.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Marine thermal fluctuation profoundly influences energy metabolism, physiology, and survival of marine life. In the present study, short-term and long-term high-temperature stresses were found to affect gluconeogenesis by inhibiting PEPCK activity in the Pacific oyster (Crassostrea gigas), which is a globally distributed species that encounters significant marine thermal fluctuations in intertidal zones worldwide. CgCREBL2, a key molecule in the regulation of gluconeogenesis, plays a critical role in the transcriptional regulation of PEPCK in gluconeogenesis against high-temperature stress. CgCREBL2 was able to increase the transcription of CgPEPCK by either binding the promoter of CgPEPCK gene or activating CgPGC-1α and CgHNF-4α after short-term (6 h) high-temperature stress, while only by binding CgPEPCK after long-term (60 h) high-temperature stress. These findings will further our understanding of the effect of marine thermal fluctuation on energy metabolism on marine organisms.
Collapse
Affiliation(s)
- Qingsong Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Lu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Ling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Li Hu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
3
|
Wei X, Lee K, Mullassery N, Dhungana P, Kang DS, Sim C. Transcription profiling reveals tissue-specific metabolic pathways in the fat body and ovary of the diapausing mosquito Culex pipiens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101260. [PMID: 38820803 PMCID: PMC11529574 DOI: 10.1016/j.cbd.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
The northern house mosquito, Culex pipiens, employs diapause as an essential survival strategy during winter, inducing important phenotypic changes such as enhanced stress tolerance, lipid accumulation, and extended longevity. During diapause, the cessation of reproductive development represents another distinctive phenotypic change, underlining the need for adjusted modulation of gene expressions within the ovary. Although considerable advancements in screening gene expression profiles in diapausing and non-diapausing mosquitoes, there remains a gap in tissue-specific transcriptomic profiling that could elucidate the complicated formation of diverse diapause features in Cx. pipiens. Here, we filled this gap by utilizing RNA sequencing, providing a detailed examination of gene expression patterns in the fat body and ovary during diapause compared to non-diapause conditions. Functional annotation of upregulated genes identified associations with carbohydrate metabolism, stress tolerance, immunity, and epigenetic regulation. The validation of candidate genes using quantitative real-time PCR verified the differentially expressed genes identified in diapausing mosquitoes. Our findings contribute novel insights into potential regulators during diapause in Cx. pipiens, thereby opening possible avenues for developing innovative vector control strategies.
Collapse
Affiliation(s)
- Xueyan Wei
- Department of Biology, Baylor University, Waco, TX, USA. https://twitter.com/XueyanWei
| | - Karina Lee
- Department of Biology, Baylor University, Waco, TX, USA
| | | | - Prabin Dhungana
- Department of Biology, Baylor University, Waco, TX, USA. https://twitter.com/Prabin_988
| | - David S Kang
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX, USA.
| |
Collapse
|
4
|
Verble KM, Keaveny EC, Rahman SR, Jenny MJ, Dillon ME, Lozier JD. A rapid return to normal: temporal gene expression patterns following cold exposure in the bumble bee Bombus impatiens. J Exp Biol 2024; 227:jeb247040. [PMID: 38629177 DOI: 10.1242/jeb.247040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Bumble bees are common in cooler climates and many species likely experience periodic exposure to very cold temperatures, but little is known about the temporal dynamics of cold response mechanisms following chill exposure, especially how persistent effects of cold exposure may facilitate tolerance of future events. To investigate molecular processes involved in the temporal response by bumble bees to acute cold exposure, we compared mRNA transcript abundance in Bombus impatiens workers exposed to 0°C for 75 min (inducing chill coma) and control bees maintained at a constant ambient temperature (28°C). We sequenced the 3' end of mRNA transcripts (TagSeq) to quantify gene expression in thoracic tissue of bees at several time points (0, 10, 30, 120 and 720 min) following cold exposure. Significant differences from control bees were only detectable within 30 min after the treatment, with most occurring at the 10 min recovery time point. Genes associated with gluconeogenesis and glycolysis were most notably upregulated, while genes related to lipid and purine metabolism were downregulated. The observed patterns of expression indicate a rapid recovery after chill coma, suggesting an acute differential transcriptional response during recovery from chill coma and return to baseline expression levels within an hour, with no long-term gene expression markers of this cold exposure. Our work highlights the functions and pathways important for acute cold recovery, provides an estimated time frame for recovery from cold exposure in bumble bees, and suggests that cold hardening may be less important for these heterothermic insects.
Collapse
Affiliation(s)
- Kelton M Verble
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ellen C Keaveny
- Department of Zoology & Physiology and Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82072, USA
| | | | - Matthew J Jenny
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82072, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
5
|
Martins da Silva R, de Oliveira Daumas Filho CR, Calixto C, Nascimento da Silva J, Lopes C, da Silva Vaz I, Logullo C. PEPCK and glucose metabolism homeostasis in arthropods. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 160:103986. [PMID: 37454751 DOI: 10.1016/j.ibmb.2023.103986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The fat body is responsible for a variety of functions related to energy metabolism in arthropods, by controlling the processes of de novo glucose production (gluconeogenesis) and glycogen metabolism. The rate-limiting factor of gluconeogenesis is the enzyme phosphoenolpyruvate carboxykinase (PEPCK), generally considered to be the first committed step in this pathway. Although the study of PEPCK and gluconeogenesis has been for decades restricted to mammalian models, especially focusing on muscle and liver tissue, current research has demonstrated particularities about the regulation of this enzyme in arthropods, and described new functions. This review will focus on arthropod PEPCK, discuss different aspects to PEPCK regulation and function, its general role in the regulation of gluconeogenesis and other pathways. The text also presents our views on potentially important new directions for research involving this enzyme in a variety of metabolic adaptations (e.g. diapause), discussing enzyme isoforms, roles during arthropod embryogenesis, as well as involvement in vector-pathogen interactions, contributing to a better understanding of insect vectors of diseases and their control.
Collapse
Affiliation(s)
- Renato Martins da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Carlos Renato de Oliveira Daumas Filho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Christiano Calixto
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Jhenifer Nascimento da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Cintia Lopes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil; Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Yin X, Qiu L, Long D, Lv Z, Liu Q, Wang S, Zhang W, Zhang K, Xie M. The ancient CgPEPCK-1, not CgPECK-2, evolved into a multifunctional molecule as an intracellular enzyme and extracellular PRR. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104722. [PMID: 37116769 DOI: 10.1016/j.dci.2023.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is a well-known lyase involved in gluconeogenesis, while their evolution and function differentiation have not been fully understood. In this study, by constructing a phylogenetic tree to examine PEPCKs throughout the evolution from poriferans to vertebrates, Mollusk was highlighted as the only phylum to exhibit two distinct lineages, Mollusca_PEPCK-1 and Mollusca_PEPCK-2. Further study of two representative members from Crassostrea gigas (CgPEPCK-1 and CgPEPCK-2) showed that they both shared conserved sequences and structural characteristics of the catalytic enzyme, while CgPEPCK-2 displayed a higher expression level than CgPEPCK-1 in all tested tissues, and CgPEPCK-1 was specifically implicated in the immune defense against LPS stimulation and Vibrio splendidus infection. Functional analysis revealed that CgPEPCK-2 had stronger enzymatic activity than CgPEPCK-1, while CgPEPCK-1 exhibited stronger binding activity with various PAMPs, and only the protein of CgPEPCK-1 increased significantly in hemolymph during immune stimulation. All results supported that distinct sequence and function differentiations of the PEPCK gene family should have occurred since Mollusk. The more advanced evolutionary branch Mollusca_PEPCK-2 should preserve its essential function as a catalytic enzyme to be more specialized and efficient, while the ancient branch Mollusca_PEPCK-1 probably contained some members, such as CgPEPCK-1, that should be integrated into the immune system as an extracellular immune recognition receptor.
Collapse
Affiliation(s)
- Xiaoting Yin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limei Qiu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Dandan Long
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Zhao Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Qing Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Senyu Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Weiqian Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Kexin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengxi Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
7
|
Yang XJ, Zhao ZS, Zhang YM, Ying JP, Wang SH, Yuan ML, Zhang QL. A method for isolating highly purified and active mitochondria from insects. JOURNAL OF INSECT PHYSIOLOGY 2022; 140:104402. [PMID: 35679991 DOI: 10.1016/j.jinsphys.2022.104402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
So far, methods that yield the high purity and activity of the isolated mitochondria from insects have not been reported and determined. Here, we develop methods that combine differential centrifugation and discontinuous Nycodenz density gradient centrifugation to isolate highly purified mitochondria from the thorax muscle of insects, and the methods were widely validated across three orders (Coleoptera, Hymenoptera, and Blattaria) covering four insect species using Western blot and transmission electron microscopy (TEM) analysis. The results showed the removal of the residual contamination with nonmitochondrial components such as nucleus, sarcolemma, cytosol, and endoplasmic reticulum. Furthermore, TEM, mitochondria staining, fluorescence detection, and flow cytometry analyses were employed to assess membrane integrity and activity of the isolated mitochondria. The results showed no loss of mitochondria activity/integrity after isolation. In addition, temporal dynamics in activity of the isolated mitochondria under commonly used laboratory temperature (-20 °C, 4 °C, and 25 °C) were respectively detected using a fluorescence microplate reader. The results showed that it should be avoided to store the isolated mitochondria at room temperature, and the mitochondria can meet the requirements of the most downstream experiments when they were stored at -20 °C. Overall, the study presented a method for isolating highly purified and active mitochondria from insects. This study firstly described a high-speed discontinuous density gradient centrifugation-based method that could be widely applied for mitochondria isolation in insects. The present study also provided an example to assess purity and integrity/activity of the isolated mitochondria.
Collapse
Affiliation(s)
- Xiao-Jie Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zi-Shun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yan-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian-Ping Ying
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Su-Hao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
8
|
Treanore ED, Kiner JM, Kerner ME, Amsalem E. Shift in worker physiology and gene expression pattern from reproductive to diapause-like with colony age in the bumble bee Bombus impatiens. J Exp Biol 2020; 223:jeb218768. [PMID: 32205359 DOI: 10.1242/jeb.218768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/17/2020] [Indexed: 08/26/2023]
Abstract
Insects maximize their fitness by exhibiting predictable and adaptive seasonal patterns in response to changing environmental conditions. These seasonal patterns are often expressed even when insects are kept in captivity, suggesting they are functionally and evolutionarily important. In this study, we examined whether workers of the eusocial bumble bee Bombus impatiens maintained a seasonal signature when kept in captivity. We used an integrative approach and compared worker egg laying, ovarian activation, body size and mass, lipid content in the fat body, cold tolerance and expression of genes related to cold tolerance, metabolism and stress throughout colony development. We found that bumble bee worker physiology and gene expression patterns shift from reproductive-like to diapause-like as the colony ages. Workers eclosing early in the colony cycle had increased egg laying and ovarian activation, and reduced cold tolerance, body size, mass and lipid content in the fat body, in line with a reproductive-like profile, while late-eclosing workers exhibited the opposite characteristics. Furthermore, expression patterns of genes associated with reproduction and diapause differed between early- and late-eclosing workers, partially following the physiological patterns. We suggest that a seasonal signature, innate to individual workers, the queen or the colony, is used by workers as a social cue determining the phenology of the colony and discuss possible implications for understanding reproductive division of labor in bumble bee colonies and the evolutionary divergence of female castes in the genus Bombus.
Collapse
Affiliation(s)
- Erin D Treanore
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jacklyn M Kiner
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie E Kerner
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Reynolds JA. Noncoding RNA Regulation of Dormant States in Evolutionarily Diverse Animals. THE BIOLOGICAL BULLETIN 2019; 237:192-209. [PMID: 31714856 DOI: 10.1086/705484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dormancy is evolutionarily widespread and can take many forms, including diapause, dauer formation, estivation, and hibernation. Each type of dormancy is characterized by distinct features; but accumulating evidence suggests that each is regulated by some common processes, often referred to as a common "toolkit" of regulatory mechanisms, that likely include noncoding RNAs that regulate gene expression. Noncoding RNAs, especially microRNAs, are well-known regulators of biological processes associated with numerous dormancy-related processes, including cell cycle progression, cell growth and proliferation, developmental timing, metabolism, and environmental stress tolerance. This review provides a summary of our current understanding of noncoding RNAs and their involvement in regulating dormancy.
Collapse
|
10
|
Genome and Ontogenetic-Based Transcriptomic Analyses of the Flesh Fly, Sarcophaga bullata. G3-GENES GENOMES GENETICS 2019; 9:1313-1320. [PMID: 30926723 PMCID: PMC6505164 DOI: 10.1534/g3.119.400148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The flesh fly, Sarcophaga bullata, is a widely-used model for examining the physiology of insect diapause, development, stress tolerance, neurobiology, and host-parasitoid interactions. Flies in this taxon are implicated in myiasis (larval infection of vertebrates) and feed on carrion, aspects that are important in forensic studies. Here we present the genome of S. bullata, along with developmental- and reproduction-based RNA-Seq analyses. We predict 15,768 protein coding genes, identify orthology in relation to closely related flies, and establish sex and developmental-specific gene sets based on our RNA-Seq analyses. Genomic sequences, predicted genes, and sequencing data sets have been deposited at the National Center for Biotechnology Information. Our results provide groundwork for genomic studies that will expand the flesh fly’s utility as a model system.
Collapse
|