1
|
Hu Y, Crabtree JR, Macagno ALM, Moczek AP. Histone deacetylases regulate organ-specific growth in a horned beetle. EvoDevo 2024; 15:4. [PMID: 38575982 PMCID: PMC10996171 DOI: 10.1186/s13227-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Nutrient availability is among the most widespread means by which environmental variability affects developmental outcomes. Because almost all cells within an individual organism share the same genome, structure-specific growth responses must result from changes in gene regulation. Earlier work suggested that histone deacetylases (HDACs) may serve as epigenetic regulators linking nutritional conditions to trait-specific development. Here we expand on this work by assessing the function of diverse HDACs in the structure-specific growth of both sex-shared and sex-specific traits including evolutionarily novel structures in the horned dung beetle Onthophagus taurus. RESULTS We identified five HDAC members whose downregulation yielded highly variable mortality depending on which HDAC member was targeted. We then show that HDAC1, 3, and 4 operate in both a gene- and trait-specific manner in the regulation of nutrition-responsiveness of appendage size and shape. Specifically, HDAC 1, 3, or 4 knockdown diminished wing size similarly while leg development was differentially affected by RNAi targeting HDAC3 and HDAC4. In addition, depletion of HDAC3 transcript resulted in a more rounded shape of genitalia at the pupal stage and decreased the length of adult aedeagus across all body sizes. Most importantly, we find that HDAC3 and HDAC4 pattern the morphology and regulate the scaling of evolutionarily novel head and thoracic horns as a function of nutritional variation. CONCLUSION Collectively, our results suggest that both functional overlap and division of labor among HDAC members contribute to morphological diversification of both conventional and recently evolved appendages. More generally, our work raises the possibility that HDAC-mediated scaling relationships and their evolution may underpin morphological diversification within and across insect species broadly.
Collapse
Affiliation(s)
- Yonggang Hu
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN, 47405, USA.
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| | - Jordan R Crabtree
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN, 47405, USA
| | - Anna L M Macagno
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN, 47405, USA
- Biostatistics Consulting Center, Department of Epidemiology and Biostatistics, School of Public Health Bloomington, Indiana University, 2719 E. 10th Street, Bloomington, IN, 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN, 47405, USA
| |
Collapse
|
2
|
Pyenson BC, Rehan SM. Gene regulation supporting sociality shared across lineages and variation in complexity. Genome 2024; 67:99-108. [PMID: 38096504 DOI: 10.1139/gen-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Across evolutionary lineages, insects vary in social complexity, from those that exhibit extended parental care to those with elaborate divisions of labor. Here, we synthesize the sociogenomic resources from hundreds of species to describe common gene regulatory mechanisms in insects that regulate social organization across phylogeny and levels of social complexity. Different social phenotypes expressed by insects can be linked to the organization of co-expressing gene networks and features of the epigenetic landscape. Insect sociality also stems from processes like the emergence of parental care and the decoupling of ancestral genetic programs. One underexplored avenue is how variation in a group's social environment affects the gene expression of individuals. Additionally, an experimental reduction of gene expression would demonstrate how the activity of specific genes contributes to insect social phenotypes. While tissue specificity provides greater localization of the gene expression underlying social complexity, emerging transcriptomic analysis of insect brains at the cellular level provides even greater resolution to understand the molecular basis of social insect evolution.
Collapse
Affiliation(s)
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
3
|
Okwaro LA, Korb J. Epigenetic regulation and division of labor in social insects. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101051. [PMID: 37164259 DOI: 10.1016/j.cois.2023.101051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Analogous to multicellular organisms, social insect colonies are characterized by division of labor with queens and workers reflecting germline and soma, respectively. In multicellular organisms, such division is achieved through epigenetic factors regulating cell differentiation during development. Analogously, epigenetic regulation is postulated to regulate caste differences in social insects. We summarize recent findings about the role of epigenetics in social insects, focusing on DNA methylation and histone modifications. We specifically address (i) queen versus worker caste differentiation, (ii) queen versus worker caste differences, and (iii) division of labor among workers. Our review provides an overview of an exciting and controversially discussed field in developmental and molecular biology. It shows that our current understanding about the role of epigenetics in regulating division of labor in social insects is still fragmentary but that refined methods with well-replicated samples and targeted questions offer promising insights into this emerging field of socio-epigenomics.
Collapse
Affiliation(s)
- Louis A Okwaro
- University of Freiburg, Evolutionary Biology and Ecology D-79104 Freiburg, Germany
| | - Judith Korb
- University of Freiburg, Evolutionary Biology and Ecology D-79104 Freiburg, Germany.
| |
Collapse
|
4
|
Suzuki R, Masuoka Y, Suzuki RH, Maekawa K. Efficient RNA interference method during caste differentiation with hormone treatment in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). FRONTIERS IN INSECT SCIENCE 2023; 3:1188343. [PMID: 38469474 PMCID: PMC10926471 DOI: 10.3389/finsc.2023.1188343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 03/13/2024]
Abstract
Unveiling the proximate mechanism of caste differentiation is crucial for understanding insect social evolution, and gene function analysis is an important tool in this endeavor. The RNA interference (RNAi) technique is useful in termites, but its knockdown effects may differ among species. One of the most important model species in the field of termite sociogenomics is Reticulitermes speratus Kolbe (Isoptera: Rhinotermitidae). Presoldier and worker differentiation of this species can be artificially induced by juvenile hormone and 20-hydroxyecdysone application, respectively. However, appropriate RNAi technique of genes expressed during caste differentiation has never been considered. To clarify this issue, first, we injected nine different volumes of nuclease-free water (NFW, 0-404.8 nL) into workers and found that survival and caste differentiation rates were strongly reduced by the application of the top three largest volumes. Second, we injected double-stranded (ds) RNA of ecdysone receptor homolog (RsEcR) (2.0 µg/151.8 nL NFW) into workers with hormone treatments. The expression levels of RsEcR were significantly reduced at 9 days after dsRNA injection. RsEcR RNAi strongly affected both molting events during presoldier and worker differentiation induced by hormone treatments. The present results highlight the need for caution regarding injection volumes for RNAi experiments using hormone treatments. We suggest that the injection of dsRNA solution (2 µg; approximately 100-200 nL) is suitable for RNAi experiments during caste differentiation induced by hormone application in R. speratus.
Collapse
Affiliation(s)
- Ryutaro Suzuki
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Ishikawa Insect Museum, Hakusan, Japan
| | - Yudai Masuoka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ryohei H. Suzuki
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Research and Development Headquarters, Earth Corporation, Ltd. Ako, Japan
| | | |
Collapse
|
5
|
Maekawa K, Hayashi Y, Lo N. Termite sociogenomics: evolution and regulation of caste-specific expressed genes. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100880. [PMID: 35123120 DOI: 10.1016/j.cois.2022.100880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Termite genomes have been sequenced in at least five species from four different families. Genome-based transcriptome analyses have identified large numbers of protein-coding genes with caste-specific expression patterns. These genes include those involved in caste-specific morphologies and roles, for example high fecundity and longevity in reproductives. Some caste-specific expressed genes belong to multi-gene families, and their genetic architecture and expression profiles indicate they have evolved via tandem gene duplication. Candidate regulatory mechanisms of caste-specific expression include epigenetic regulation (e.g. histone modification and non-coding RNA) and diversification of transcription factors and cis-regulatory elements. We review current knowledge in the area of termite sociogenomics, focussing on the evolution and regulation of caste-specific expressed genes, and discuss future research directions.
Collapse
Affiliation(s)
- Kiyoto Maekawa
- Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yoshinobu Hayashi
- Department of Biology, Keio University, Hiyoshi, Yokohama 223-8521, Japan
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, NSW, Australia
| |
Collapse
|
6
|
Sieber KR, Dorman T, Newell N, Yan H. (Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. INSECTS 2021; 12:498. [PMID: 34071806 PMCID: PMC8229086 DOI: 10.3390/insects12060498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the Blattodea, are able to generate remarkable diversity in morphology and behavior despite being genetically uniform within a colony. Most eusocial insect species display caste structures in which reproductive ability is possessed by a single or a few queens while all other colony members act as workers. However, in some species, caste structure is somewhat plastic, and individuals may switch from one caste or behavioral phenotype to another in response to certain environmental cues. As different castes normally share a common genetic background, it is believed that much of this observed within-colony diversity results from transcriptional differences between individuals. This suggests that epigenetic mechanisms, featured by modified gene expression without changing genes themselves, may play an important role in eusocial insects. Indeed, epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs, have been shown to influence eusocial insects in multiple aspects, along with typical genetic regulation. This review summarizes the most recent findings regarding such mechanisms and their diverse roles in eusocial insects.
Collapse
Affiliation(s)
- Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Taylor Dorman
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Nicholas Newell
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
- Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
8
|
Matsuda N, Numata H, Udaka H. Transcriptomic changes in the pea aphid, Acyrthosiphon pisum: Effects of the seasonal timer and photoperiod. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100740. [PMID: 32906053 DOI: 10.1016/j.cbd.2020.100740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Many insect species use photoperiod as a cue for induction of seasonal responses, including seasonal polyphenism. Although most aphid species viviparously produce parthenogenetic and sexual morphs under long and short days, respectively, a seasonal timer suppresses the sexual morph production over several successive generations during a few months following hatching of a sexually produced diapause egg. To reveal the relative influences of photoperiod and the seasonal timer on the reproductive polyphenism at the gene expression level, we performed RNA sequencing-based transcriptome analyses in the pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae). Under short days, aphids with an expired seasonal timer showed a higher expression level in hundreds of genes than those with an operative seasonal timer. In contrast, aphids with an operative seasonal timer did not show upregulation in most of these genes. Functional annotations based on gene ontology showed that histone modifications and small non-coding RNA pathways were enriched in aphids with an expired seasonal timer under short-day conditions, suggesting that these epigenetic regulations on gene expression might be involved in a mechanism of maternal switching from the parthenogenetic to sexual morph production.
Collapse
Affiliation(s)
- Naoki Matsuda
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hideharu Numata
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroko Udaka
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| |
Collapse
|
9
|
Miura T, Maekawa K. The making of the defensive caste: Physiology, development, and evolution of the soldier differentiation in termites. Evol Dev 2020; 22:425-437. [PMID: 32291940 DOI: 10.1111/ede.12335] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/11/2020] [Accepted: 03/08/2020] [Indexed: 12/29/2022]
Abstract
Termites (Blattodea, Termitoidea, or Isoptera) constitute one of the major lineages of eusocial insects. In termite societies, multiple types of functional individuals, that is, castes, perform divisions of labors to coordinate social behaviors. Among other castes, the soldier caste is distinctive since it is sterile and exclusively specialized into defensive behavior with largely modified morphological features. Therefore, many of the previous studies have been focused on soldiers, in terms of ecology, behavior, and evolution as well as developmental and physiological mechanisms. This article overviews the accumulation of studies especially focusing on the developmental and physiological mechanisms underlying the soldier differentiation in termites. Furthermore, the evolutionary trajectories that have led the acquisition of soldier caste and have diversified the soldier characteristics in association with the social evolution are discussed.
Collapse
Affiliation(s)
- Toru Miura
- Department of Biological Sciences, Misaki Marine Biological Station, School of Science, The University of Tokyo, Japan
| | - Kiyoto Maekawa
- Department of Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
10
|
Methoprene-Induced Genes in Workers of Formosan Subterranean Termites ( Coptotermes formosanus Shiraki). INSECTS 2020; 11:insects11020071. [PMID: 31973177 PMCID: PMC7074503 DOI: 10.3390/insects11020071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 11/30/2022]
Abstract
Termites have a distinct polyphenism controlled by concise hormonal and molecular mechanisms. Workers undergo double molts to transform into soldiers (worker–presoldier–soldier). Juvenile hormone analogs, such as methoprene, can induce workers to transform into presoldiers. However, the molecular mechanism underlying the worker-to-presoldier transformation in Coptotermes formosanus Shiraki is still not clear. We sequenced the transcriptome of workers four days after they had fed on methoprene-treated filter paper and control group workers, which fed on acetone-treated filter paper. The transcriptome of C. formosanus was assembled using the de novo assembly method. Expression levels of unigenes in the methoprene-treated group and the control group were compared. The differentially expressed genes were further analyzed by Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Tetrapyrrole binding, oxidoreductase activity, and metal ion binding were the only three enriched GO terms. Juvenile hormone synthesis was the first ranked enriched pathway. Carbohydrate, amino acid, and lipid metabolism pathways were also enriched. These three pathways may be related to fat body development, which is critical for presoldier formation. Our results have demonstrated the significance of JH synthesis pathways, and pathways related to fat body development in the artificial induction of presoldiers.
Collapse
|