1
|
Sorensen RM, Savić-Zdravković D, Jovanović B. Changes in the wing shape and size in fruit flies exposed to micro and nanoplastics. CHEMOSPHERE 2024; 363:142821. [PMID: 38986775 DOI: 10.1016/j.chemosphere.2024.142821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Geometric morphometrics analysis (GMA) is a well-known technique to identify minute changes in Drosophila wings. This study aimed to determine potential changes in Drosophila wings shape and size after exposure to polystyrene nanoplastics (NPs) (50 nm) and microplastics (MPs) (1 μm). Flies were exposed from eggs to pupal eclosion and analyzed using GMA. Results revealed a difference in shape and size between male and female wings, as expected, due to sexual dimorphism. Therefore, wings were analyzed by sex. Wings of MPs and NPs treated females were elongated compared to controls and had a constriction of the wing joint. Additionally, MPs treated female flies had the most dissimilar shape compared to controls. In male flies, NPs flies had smaller wings compared to MPs and control flies. Compared to control, NPs wings of males were shrunken at the joint and in the entire proximal region of the wing. However, male MPs wings had a narrower anal region and were slightly elongated. These results reveal that wing shape and size can change in a different way based on the sex of the flies and size of plastic particles that larvae interacted with. All the changes in the wings occurred only within the normally allowed wing variation and treatment with NPs/MPs did not cause development of the aberrant phenotypes. Results can pave the way for further understanding of how MPs and NPs can alter phenotypes of flies.
Collapse
Affiliation(s)
- Rachel M Sorensen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Dimitrija Savić-Zdravković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, 18000, Serbia.
| | - Boris Jovanović
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
2
|
Dos Santos CH, Gustani EC, Machado LPDB, Mateus RP. Dietary Variation Effect on Life History Traits and Energy Storage in Neotropical Species of Drosophila (Diptera; Drosophilidae). NEOTROPICAL ENTOMOLOGY 2024; 53:578-595. [PMID: 38687423 DOI: 10.1007/s13744-024-01147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
The ability of an organism to respond to nutritional stress can be a plastic character under the action of natural selection, affecting several characteristics, including life history and energy storage. The genus Drosophila (Diptera; Drosophilidae) presents high variability regarding natural resource exploration. However, most works on this theme have studied the model species D. melanogaster Meigen, 1830 and little is known about Neotropical drosophilids. Here we evaluate the effects of three diets, with different carbohydrate-to-protein ratios, on life history (viability and development time) and metabolic pools (triglycerides, glycogen, and total soluble protein contents) of three Neotropical species of Drosophila: D. maculifrons Duda, 1927; D. ornatifrons Duda, 1927, both of the subgenus Drosophila Sturtevant, 1939, and D. willistoni Sturtevant, 1916 of the subgenus Sophophora Sturtevant, 1939. Our results showed that only D. willistoni was viable on all diets, D. maculifrons was not viable on the sugary diet, while D. ornatifrons was barely viable on this diet. The sugary diet increased the development time of D. willistoni and D. ornatifrons, and D. willistoni glycogen content. Thus, the viability of D. maculifrons and D. ornatifrons seems to depend on a certain amount of protein and/or a low concentration of carbohydrate in the diet. A more evident effect of the diets on triglyceride and protein pools was detected in D. ornatifrons, which could be related to the adult attraction to dung and carrion baited pitfall as food resource tested in nature. Our results demonstrated that the evolutionary history and differential adaptations to natural macronutrient resources are important to define the amplitude of response that a species can present when faced with dietary variation.
Collapse
Affiliation(s)
- Camila Heloise Dos Santos
- Evolutionary Biology Graduate Program, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil
| | | | - Luciana Paes de Barros Machado
- Evolutionary Biology Graduate Program, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil
- Laboratory of Genetics and Evolution, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil
| | - Rogério Pincela Mateus
- Evolutionary Biology Graduate Program, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil.
- Laboratory of Genetics and Evolution, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil.
| |
Collapse
|
3
|
Krejčová G, Danielová A, Sehadová H, Dyčka F, Kubásek J, Moos M, Bajgar A. Macrophages play a nutritive role in post-metamorphic maturation in Drosophila. Development 2024; 151:dev202492. [PMID: 38456486 DOI: 10.1242/dev.202492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
In the body of multicellular organisms, macrophages play an indispensable role in maintaining tissue homeostasis by removing old, apoptotic and damaged cells. In addition, macrophages allow significant remodeling of body plans during embryonic morphogenesis, regeneration and metamorphosis. Although the huge amount of organic matter that must be removed during these processes represents a potential source of nutrients, their further use by the organism has not yet been addressed. Here, we document that, during metamorphosis, Drosophila larval adipose tissue is infiltrated by macrophages, which remove dying adipocytes by efferocytosis and engulf leaking RNA-protein granules and lipids. Consequently, the infiltrating macrophages transiently adopt the adipocyte-like metabolic profile to convert remnants of dying adipocytes to lipoproteins and storage peptides that nutritionally support post-metamorphic development. This process is fundamental for the full maturation of ovaries and the achievement of early fecundity of individuals. Whether macrophages play an analogous role in other situations of apoptotic cell removal remains to be elucidated.
Collapse
Affiliation(s)
- Gabriela Krejčová
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Adéla Danielová
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Hana Sehadová
- Institute of Entomology , Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| | - Filip Dyčka
- Department of Chemistry, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Jiří Kubásek
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Martin Moos
- Institute of Entomology , Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
- Institute of Entomology , Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| |
Collapse
|
4
|
Giannopoulos AS, Giannakou L, Gourgoulianni N, Pitaraki E, Jagirdar R, Marnas P, Tzamalas PI, Rouka E, Livanou E, Hatzoglou C, Gourgoulianis K, Lüpold S, Blanckenhorn WU, Zarogiannis SG. The effect of cigarette smoke extract exposure on the size and sexual behaviour of Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104325. [PMID: 37995887 DOI: 10.1016/j.etap.2023.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Drosophila melanogaster is a widely used animal model in human diseases and to date it has not been applied to the study of the impact of tobacco use on human sexual function. Hence, this report examines the effects of different concentrations of cigarette smoke extract (CSE) exposure on the size and sexual behavior of D. melanogaster. Wild-type flies were held in vials containing CSE-infused culture media at concentrations of 10%, 25%, and 50% for three days, and their offspring were reared under the same conditions before measuring their body size and mating behavior. CSE exposure during development reduced the tibia length and body mass of emerging adult flies and prolonged the time required for successful courtship copulation success, while courtship behaviors (wing extension, tapping, abdomen bending, attempted copulation) remained largely unchanged. Our findings indicate that CSE exposure negatively affects the development of flies and their subsequent reproductive success. Future experiments should investigate the CSE effect on male female fertility.
Collapse
Affiliation(s)
- Athanasios-Stefanos Giannopoulos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Lydia Giannakou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Natalia Gourgoulianni
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Eleanna Pitaraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Rajesh Jagirdar
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Periklis Marnas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Panagiotis I Tzamalas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Erasmia Rouka
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Eleni Livanou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Konstantinos Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
| |
Collapse
|
5
|
Buchner S, Hsu S, Nolte V, Otte KA, Schlötterer C. Effects of larval crowding on the transcriptome of Drosophila simulans. Evol Appl 2023; 16:1671-1679. [PMID: 38020870 PMCID: PMC10660784 DOI: 10.1111/eva.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/21/2023] [Indexed: 12/01/2023] Open
Abstract
Larval crowding is one common ecological stressor for many insect species. In Drosophila, high larval density alters multiple widely-studied phenotypes including life-history traits, morphology and behavior. Nevertheless, we still miss a holistic view of the full range of phenotypic changes and the underlying molecular mechanisms. In this study, we analyzed the adult transcriptomes of high and low larval density fly cohorts, and highlighted the molecular basis of the plastic traits. Increased cellular energy metabolism and locomotion, along with reduced reproductive investment, are key responses to high larval density. Moreover, we compared the expression changes among cohorts with different developmental delays caused by larval crowding. The majority of genes induced by larval crowding showed the strongest expression alterations in cohorts with intermediate delay. Furthermore, linear expression changes were observed in genes related to nutrition and detoxification. Comparing different high-density cohorts could provide insights into the varied responses to distinct larval crowding-induced stresses such as space competition, food degradation and waste accumulation.
Collapse
Affiliation(s)
- Stephan Buchner
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
| | - Sheng‐Kai Hsu
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population GeneticsVetmeduni ViennaViennaAustria
| | - Viola Nolte
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
| | - Kathrin A. Otte
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Present address:
Institute for ZoologyUniversity of CologneCologneGermany
| | | |
Collapse
|
6
|
Evans JP, Turnbull EJ, Lymbery RA. Testing for age-dependent effects of dietary restriction on the strength of condition dependence in ejaculate traits in the guppy ( Poecilia reticulata). ROYAL SOCIETY OPEN SCIENCE 2023; 10:230805. [PMID: 37650067 PMCID: PMC10465203 DOI: 10.1098/rsos.230805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Ejaculates can be costly to produce and depend on an individual's condition, defined as the pool of resources allocated to fitness. A method for assessing condition dependence is to manipulate resource availability and test for a reduction in trait expression. Here, we assess the effects of dietary restriction on two determinants of reproductive fitness in the guppy Poecilia reticulata-sperm production and sperm motility. Importantly, we administered dietary restriction at distinct developmental stages to test: (1) whether dietary restriction, when applied exclusively to juveniles, compromised the ejaculates of newly mature males; (2) whether any observed effects of dietary restriction seen in (1) were reversible when fish returned to an unrestricted diet; and (3) whether dietary restriction applied exclusively to adults influenced ejaculates. We found detrimental effects of resource limitation on both traits, and these were consistent across the three developmental stages tested. Furthermore, dietary restriction reduced male body weight, but this was partially reversed when diet-stressed juveniles (i.e. group 2) returned to unrestricted diets. This latter result suggests that diet-stressed males may sacrifice growth in order to maintain their investment in ejaculates. Together these findings underscore the importance of resource acquisition in determining the expression of ejaculate traits.
Collapse
Affiliation(s)
- Jonathan P. Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth 6009, WA, Australia
| | - Elizabeth J. Turnbull
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth 6009, WA, Australia
| | - Rowan A. Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth 6009, WA, Australia
| |
Collapse
|
7
|
Amanullah A, Arzoo S, Aslam A, Qureshi IW, Hussain M. Inbreeding-Driven Innate Behavioral Changes in Drosophila melanogaster. BIOLOGY 2023; 12:926. [PMID: 37508357 PMCID: PMC10376054 DOI: 10.3390/biology12070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Drosophila melanogaster has long been used to demonstrate the effect of inbreeding, particularly in relation to reproductive fitness and stress tolerance. In comparison, less attention has been given to exploring the influence of inbreeding on the innate behavior of D. melanogaster. In this study, multiple replicates of six different types of crosses were set in pair conformation of the laboratory-maintained wild-type D. melanogaster. This resulted in progeny with six different levels of inbreeding coefficients. Larvae and adult flies of varied inbreeding coefficients were subjected to different behavioral assays. In addition to the expected inbreeding depression in the-egg to-adult viability, noticeable aberrations were observed in the crawling and phototaxis behaviors of larvae. Negative geotactic behavior as well as positive phototactic behavior of the flies were also found to be adversely affected with increasing levels of inbreeding. Interestingly, positively phototactic inbred flies demonstrated improved learning compared to outbred flies, potentially the consequence of purging. Flies with higher levels of inbreeding exhibited a delay in the manifestation of aggression and courtship. In summary, our findings demonstrate that inbreeding influences the innate behaviors in D. melanogaster, which in turn may affect the overall biological fitness of the flies.
Collapse
Affiliation(s)
- Anusha Amanullah
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Shabana Arzoo
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Ayesha Aslam
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Iffat Waqar Qureshi
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Mushtaq Hussain
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| |
Collapse
|
8
|
Zúñiga-Hernández JM, Olivares GH, Olguín P, Glavic A. Low-nutrient diet in Drosophila larvae stage causes enhancement in dopamine modulation in adult brain due epigenetic imprinting. Open Biol 2023; 13:230049. [PMID: 37161288 PMCID: PMC10170216 DOI: 10.1098/rsob.230049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Nutrient scarcity is a frequent adverse condition that organisms face during their development. This condition may lead to long-lasting effects on the metabolism and behaviour of adults due to developmental epigenetic modifications. Here, we show that reducing nutrient availability during larval development affects adult spontaneous activity and sleep behaviour, together with changes in gene expression and epigenetic marks in the mushroom bodies (MBs). We found that open chromatin regions map to 100 of 241 transcriptionally upregulated genes in the adult MBs, these new opening zones are preferentially located in regulatory zones such as promoter-TSS and introns. Importantly, opened chromatin at the Dopamine 1-like receptor 2 regulatory zones correlate with increased expression. In consequence, adult administration of a dopamine antagonist reverses increased spontaneous activity and diminished sleep time observed in response to early-life nutrient restriction. In comparison, reducing dop1R2 expression in MBs also ameliorates these effects, albeit to a lesser degree. These results lead to the conclusion that increased dopamine signalling in the MBs of flies reared in a poor nutritional environment underlies the behavioural changes observed due to this condition during development.
Collapse
Affiliation(s)
- J M Zúñiga-Hernández
- Laboratorio Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Gonzalo H Olivares
- Escuela de Kinesiología, Facultad de Medicina, Center of Integrative Biology (CIB), Universidad Mayor, Chile
| | - Patricio Olguín
- Programa de Genética Humana, ICBM, Biomedical Neuroscience Institute, Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Chile
| | - Alvaro Glavic
- Laboratorio Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| |
Collapse
|
9
|
Dinh H, Lundbäck I, Kumar S, Than AT, Morimoto J, Ponton F. Sugar-rich larval diet promotes lower adult pathogen load and higher survival after infection in a polyphagous fly. J Exp Biol 2022; 225:276376. [PMID: 35904096 DOI: 10.1242/jeb.243910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022]
Abstract
Nutrition is a central factor influencing immunity and resistance to infection, but the extent to which nutrition during development affects adult responses to infections is poorly understood. Our study investigated how the nutritional composition of the larval diet affects the survival, pathogen load, and food intake of adult fruit flies, Bactrocera tryoni, after septic bacterial infection. We found a sex-specific effect of larval diet composition on survival post-infection: survival rate was higher and bacterial load was lower for infected females fed sugar-rich larval diet compared with females fed protein-rich larval diet, an effect that was absent in males. Both males and females were heavier when fed a balanced larval diet compared to protein- or sugar-rich diet, while body lipid reserves were higher in the sugar-rich larval diet compared with other diets. Body protein reserve was lower for sugar-rich larval diets compared to other diets in males, but not females. Both females and males shifted their nutrient intake to ingest a sugar-rich diet when infected compared with sham-infected flies without any effect of the larval diet, suggesting that sugar-rich diets can be beneficial to fight off bacterial infection as shown in previous literature. Overall, our findings show that nutrition during early life can shape individual fitness in adulthood.
Collapse
Affiliation(s)
- Hue Dinh
- School of Natural Sciences, Macquarie University, Australia
| | - Ida Lundbäck
- School of Natural Sciences, Macquarie University, Australia
| | - Sheemal Kumar
- School of Natural Sciences, Macquarie University, Australia
| | - Anh The Than
- School of Natural Sciences, Macquarie University, Australia.,Department of Entomology, Vietnam National University of Agriculture, Vietnam
| | - Juliano Morimoto
- School of Natural Sciences, Macquarie University, Australia.,School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, UK.,Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, 82590-300, Brazil
| | - Fleur Ponton
- School of Natural Sciences, Macquarie University, Australia
| |
Collapse
|
10
|
Pupal size as a proxy for fat content in laboratory-reared and field-collected Drosophila species. Sci Rep 2022; 12:12855. [PMID: 35896578 PMCID: PMC9329298 DOI: 10.1038/s41598-022-15325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
In arthropods, larger individuals tend to have more fat reserves, but data for many taxa are still missing. For the vinegar fly Drosophila melanogaster, only few studies have provided experimental data linking body size to fat content. This is rather surprising considering the widespread use of D. melanogaster as a model system in biology. Here, we hypothesized that fat content in D. melanogaster is positively correlated with body size. To test this, we manipulated the developmental environment of D. melanogaster by decreasing food availability. We then measured pupal size and quantified fat content of laboratory-reared D. melanogaster. We subsequently measured pupal size and fat content of several field-caught Drosophila species. Starvation, crowding, and reduced nutrient content led to smaller laboratory-reared pupae that contained less fat. Pupal size was indeed found to be positively correlated with fat content. The same correlation was found for field-caught Drosophila pupae belonging to different species. As fat reserves are often strongly linked to fitness in insects, further knowledge on the relationship between body size and fat content can provide important information for studies on insect ecology and physiology.
Collapse
|
11
|
Hanna L, Lamouret T, Poças GM, Mirth CK, Moczek AP, Nijhout F, Abouheif E. Evaluating old truths: Final adult size in holometabolous insects is set by the end of larval development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B: MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 340:270-276. [PMID: 35676886 DOI: 10.1002/jez.b.23165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
For centuries, it has been understood that the final size of adult holometabolous insects is determined by the end of the larval stage, and that once they transform to adults, holometabolous insects do not grow. Despite this, no previous study has directly tested these "old truths" across holometabolous insects. Here, we demonstrate that final adult size is set at the end of the last larval stage in species representing each of the four orders of holometabolous insects: the fruit fly Drosophila melanogaster (Diptera), the tobacco hornworm Manduca sexta (Lepidoptera), the dung beetle Onthophagus taurus (Coleoptera), and the Florida carpenter ant Camponotus floridanus (Hymenoptera). Furthermore, in both D. melanogaster and C. floridanus, we show that the size of adult individuals fluctuates but does not significantly change. Therefore, our study finally confirms these two basic assumptions in the biology of insects, which have for centuries served as the foundation for studies of insect growth, size, and allometry.
Collapse
Affiliation(s)
- Lisa Hanna
- Department of Biology McGill University Montreal Quebec Canada
| | - Tom Lamouret
- Department of Biology McGill University Montreal Quebec Canada
| | - Gonçalo M. Poças
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa (ITQB NOVA) Oeiras Lisbon Portugal
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Christen K. Mirth
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Armin P. Moczek
- Department of Biology Indiana University Bloomington Indiana USA
| | | | - Ehab Abouheif
- Department of Biology McGill University Montreal Quebec Canada
| |
Collapse
|
12
|
Raubenheimer D, Senior AM, Mirth C, Cui Z, Hou R, Le Couteur DG, Solon-Biet SM, Léopold P, Simpson SJ. An integrative approach to dietary balance across the life course. iScience 2022; 25:104315. [PMID: 35602946 PMCID: PMC9117877 DOI: 10.1016/j.isci.2022.104315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animals require specific blends of nutrients that vary across the life course and with circumstances, e.g., health and activity levels. Underpinning and complicating these requirements is that individual traits may be optimized on different dietary compositions leading to nutrition-mediated trade-offs among outcomes. Additionally, the food environment may constrain which nutrient mixtures are achievable. Natural selection has equipped animals for solving such multi-dimensional, dynamic challenges of nutrition, but little is understood about the details and their theoretical and practical implications. We present an integrative framework, nutritional geometry, which models complex nutritional interactions in the context of multiple nutrients and across levels of biological organization (e.g., cellular, individual, and population) and levels of analysis (e.g., mechanistic, developmental, ecological, and evolutionary). The framework is generalizable across different situations and taxa. We illustrate this using examples spanning insects to primates and settings (laboratory, and the wild), and demonstrate its relevance for human health.
Collapse
Affiliation(s)
- David Raubenheimer
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
- Zhengzhou University, Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou, China
| | - Alistair M. Senior
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
- The University of Sydney, School of Mathematics and Statistics, Sydney, Australia
| | - Christen Mirth
- Monash University, School of Biological Science, Melbourne, Australia
| | - Zhenwei Cui
- Zhengzhou University, Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou, China
| | - Rong Hou
- Northwest University, Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Xi’an, China
| | - David G. Le Couteur
- The University of Sydney, Charles Perkins Centre and Faculty of Medicine and Health, Concord Clinical School, ANZAC Research Institute, Centre for Education and Research on Ageing, Sydney, Australia
| | - Samantha M. Solon-Biet
- The University of Sydney, Charles Perkins Centre and School of Medical Sciences, Sydney, Australia
| | - Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, Paris, France
| | - Stephen J. Simpson
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
| |
Collapse
|
13
|
Dehnen T, Arbon JJ, Farine DR, Boogert NJ. How feedback and feed-forward mechanisms link determinants of social dominance. Biol Rev Camb Philos Soc 2022; 97:1210-1230. [PMID: 35150197 DOI: 10.1111/brv.12838] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/21/2022]
Abstract
In many animal societies, individuals differ consistently in their ability to win agonistic interactions, resulting in dominance hierarchies. These differences arise due to a range of factors that can influence individuals' abilities to win agonistic interactions, spanning from genetically driven traits through to individuals' recent interaction history. Yet, despite a century of study since Schjelderup-Ebbe's seminal paper on social dominance, we still lack a general understanding of how these different factors work together to determine individuals' positions in hierarchies. Here, we first outline five widely studied factors that can influence interaction outcomes: intrinsic attributes, resource value asymmetry, winner-loser effects, dyadic interaction-outcome history and third-party support. A review of the evidence shows that a variety of factors are likely important to interaction outcomes, and thereby individuals' positions in dominance hierarchies, in diverse species. We propose that such factors are unlikely to determine dominance outcomes independently, but rather form part of feedback loops whereby the outcomes of previous agonistic interactions (e.g. access to food) impact factors that might be important in subsequent interactions (e.g. body condition). We provide a conceptual framework that illustrates the multitude potential routes through which such feedbacks can occur, and how the factors that determine the outcomes of dominance interactions are highly intertwined and thus rarely act independently of one another. Further, we generalise our framework to include multi-generational feed-forward mechanisms: how interaction outcomes in one generation can influence the factors determining interaction outcomes in the next generation via a range of parental effects. This general framework describes how interaction outcomes and the factors determining them are linked within generations via feedback loops, and between generations via feed-forward mechanisms. We then highlight methodological approaches that will facilitate the study of feedback loops and dominance dynamics. Lastly, we discuss how our framework could shape future research, including: how feedbacks generate variation in the factors discussed, and how this might be studied experimentally; how the relative importance of different feedback mechanisms varies across timescales; the role of social structure in modulating the effect of feedbacks on hierarchy structure and stability; and the routes of parental influence on the dominance status of offspring. Ultimately, by considering dominance interactions as part of a dynamic feedback system that also feeds forward into subsequent generations, we will understand better the factors that structure dominance hierarchies in animal groups.
Collapse
Affiliation(s)
- Tobit Dehnen
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, 78464, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Josh J Arbon
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K
| | - Damien R Farine
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, 78464, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, Konstanz, 78464, Germany
| | - Neeltje J Boogert
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K
| |
Collapse
|
14
|
Kapila R, Poddar S, Meena N, Prasad NG. Investment in adult reproductive tissues is affected by larval growth conditions but not by evolution under poor larval growth conditions in Drosophila melanogaster. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100027. [PMID: 36003263 PMCID: PMC9387493 DOI: 10.1016/j.cris.2021.100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
Growing at different larval densities affect the investment in reproductive tissues Increased larval density negatively affects the testis and accessory gland size Relative investment in testis is not affected by larval densities Increased larval densities affect relative accessory gland size negatively Adaptation to high larval crowding does not affect investment in reproductive tissues
In many insects, the larval environment is confined to the egg-laying site, which often leads to crowded larval conditions, exposing the developing larvae to poor resource availability and toxic metabolic wastes. Larval crowding imposes two opposing selection pressures. On one hand, due to poor nutritional resources during developmental stages, adults from the crowded larval environment have reduced investment in reproductive tissues. On the other hand, a crowded larval environment acts as a cue for future reproductive competition inducing increased investment in reproductive tissues. Both these selection pressures are likely affected by the level of crowding. The evolutionary consequence of adaptation to larval crowding environment on adult reproductive investment is bound to be a result of the interaction of these two opposing forces. In this study, we used experimentally evolved populations of Drosophila melanogaster adapted to larval crowding to investigate the effect of adaptation to larval crowding on investment in reproductive organs (testes and accessory glands) of males. Our results show that there is a strong effect of larval developmental environment on absolute sizes of testes and accessory glands. However, there was no effect of the developmental environment when testis size was scaled by body size. We also found that flies from crowded cultures had smaller accessory gland sizes relative to body size. Moreover, the sizes of the reproductive organs were not affected by the selection histories of the populations. This study highlights that adaptation to two extremely different developmental environments does not affect the patterns of reproductive investment. We discuss the possibility that differential investment in reproductive tissues could be influenced by the mating dynamics and/or investment in larval survival traits, rather than just the developmental environment of the populations.
Collapse
|
15
|
Perdigón Ferreira J, Lüpold S. Condition- and context-dependent alternative reproductive tactic in Drosophila prolongata. Behav Ecol 2021. [DOI: 10.1093/beheco/arab127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Species with intense male–male competition for access to females often show alternative reproductive tactics (ARTs) where males of lower competitive ability adopt a sneaky behavior to gain access to mates. These ARTs are usually associated with intrasexual dimorphisms, in that males with distinct morphologies show different tactics. In some cases, however, males adopt different tactics without being dimorphic. Male Drosophila prolongata exhibit continuous variation in body size and shape, with enlarged forelegs that they use in male-male contests and in courtship, including stimulation of the female’s abdomen. During this “leg vibration,” however, nearby males can intercept the courted female and mate without their own courtship. Here, we studied the causes and consequences of these different mating tactics in competitive mating trials between males varying in their size and shape. We found that male mating tactics were condition-dependent. Whereas large, high-condition males were more likely to show leg vibration in their courtship, smaller, lower-condition males were more likely to intercept. However, the number of offspring produced was independent of male condition and reproductive tactic. We discuss possible scenarios for the evolution and maintenance of the ARTs and some future directions for the study of ARTs in this species and in general.
Collapse
Affiliation(s)
- Jhoniel Perdigón Ferreira
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
16
|
Edmunds D, Wigby S, Perry JC. 'Hangry' Drosophila: food deprivation increases male aggression. Anim Behav 2021; 177:183-190. [PMID: 34290451 PMCID: PMC8274700 DOI: 10.1016/j.anbehav.2021.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022]
Abstract
Aggressive interactions are costly, such that individuals should display modified aggression in response to environmental stress. Many organisms experience frequent periods of food deprivation, which can influence an individual's capacity and motivation to engage in aggression. However, because food deprivation can simultaneously decrease an individual's resource-holding potential and increase its valuation of food resources, its net impact on aggression is unclear. Here, we tested the influence of increasingly prolonged periods of adult food deprivation on intermale aggression in pairs of fruit flies, Drosophila melanogaster. We found that males displayed increased aggression following periods of food deprivation longer than a day. Increased aggression in food-deprived flies occurred despite their reduced mass. This result is probably explained by an increased attraction to food resources, as food deprivation increased male occupancy of central food patches, and food patch occupancy was positively associated with aggression. Our findings demonstrate that aggressive strategies in male D. melanogaster are influenced by nutritional experience, highlighting the need to consider past nutritional stresses to understand variation in aggression.
Collapse
Affiliation(s)
| | - Stuart Wigby
- Department of Zoology, University of Oxford, U.K
- Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, U.K
| | - Jennifer C. Perry
- Department of Zoology, University of Oxford, U.K
- School of Biological Sciences, University of East Anglia, U.K
| |
Collapse
|
17
|
May CM, Van den Akker EB, Zwaan BJ. The Transcriptome in Transition: Global Gene Expression Profiles of Young Adult Fruit Flies Depend More Strongly on Developmental Than Adult Diet. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developmental diet is known to exert long-term effects on adult phenotypes in many animal species as well as disease risk in humans, purportedly mediated through long-term changes in gene expression. However, there are few studies linking developmental diet to adult gene expression. Here, we use a full-factorial design to address how three different larval and adult diets interact to affect gene expression in 1-day-old adult fruit flies (Drosophila melanogaster) of both sexes. We found that the largest contributor to transcriptional variation in young adult flies is larval, and not adult diet, particularly in females. We further characterized gene expression variation by applying weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. In adult female flies, the caloric content of the larval diet associated with two strongly negatively correlated modules, one of which was highly enriched for reproduction-related processes. This suggests that gene expression in young adult female flies is in large part related to investment into reproduction-related processes, and that the level of expression is affected by dietary conditions during development. In males, most modules had expression patterns independent of developmental or adult diet. However, the modules that did correlate with larval and/or adult dietary regimes related primarily to nutrient sensing and metabolic functions, and contained genes highly expressed in the gut and fat body. The gut and fat body are among the most important nutrient sensing tissues, and are also the only tissues known to avoid histolysis during pupation. This suggests that correlations between larval diet and gene expression in male flies may be mediated by the carry-over of these tissues into young adulthood. Our results show that developmental diet can have profound effects on gene expression in early life and warrant future research into how they correlate with actual fitness related traits in early adulthood.
Collapse
|
18
|
Collie J, Granela O, Brown EB, Keene AC. Aggression Is Induced by Resource Limitation in the Monarch Caterpillar. iScience 2020; 23:101791. [PMID: 33376972 PMCID: PMC7756136 DOI: 10.1016/j.isci.2020.101791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/27/2020] [Accepted: 11/06/2020] [Indexed: 11/17/2022] Open
Abstract
Food represents a limiting resource for the growth and developmental progression of many animal species. As a consequence, competition over food, space, or other resources can trigger territoriality and aggressive behavior. In the monarch butterfly, Danaus plexippus, caterpillars feed predominantly on milkweed, raising the possibility that access to milkweed is critical for growth and survival. Here, we characterize the role of food availability on aggression in monarch caterpillars and find that monarch caterpillars display stereotyped aggressive lunges that increase during development, peaking during the fourth and fifth instar stages. The number of lunges toward a conspecific caterpillar was significantly increased under conditions of low food availability, suggesting resource defense may trigger aggression. These findings establish monarch caterpillars as a model for investigating interactions between resource availability and aggressive behavior under ecologically relevant conditions and set the stage for future investigations into the neuroethology of aggression in this system.
Collapse
Affiliation(s)
- Joseph Collie
- Department of Biological Sciences, and the Program in Neurogenetics, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Odelvys Granela
- Department of Biological Sciences, and the Program in Neurogenetics, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Elizabeth B. Brown
- Department of Biological Sciences, and the Program in Neurogenetics, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
- Corresponding author
| | - Alex C. Keene
- Department of Biological Sciences, and the Program in Neurogenetics, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
- Corresponding author
| |
Collapse
|