1
|
Koo J, Palli SR. Recent advances in understanding of the mechanisms of RNA interference in insects. INSECT MOLECULAR BIOLOGY 2024:10.1111/imb.12941. [PMID: 38957135 PMCID: PMC11695441 DOI: 10.1111/imb.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
We highlight the recent 5 years of research that contributed to our understanding of the mechanisms of RNA interference (RNAi) in insects. Since its first discovery, RNAi has contributed enormously as a reverse genetic tool for functional genomic studies. RNAi is also being used in therapeutics, as well as agricultural crop and livestock production and protection. Yet, for the wider application of RNAi, improvement of its potency and delivery technologies is needed. A mechanistic understanding of every step of RNAi, from cellular uptake of RNAi trigger molecules to targeted mRNA degradation, is key for developing an efficient strategy to improve RNAi technology. Insects provide an excellent model for studying the mechanism of RNAi due to species-specific variations in RNAi efficiency. This allows us to perform comparative studies in insect species with different RNAi sensitivity. Understanding the mechanisms of RNAi in different insects can lead to the development of better strategies to improve RNAi and its application to manage agriculturally and medically important insects.
Collapse
Affiliation(s)
- Jinmo Koo
- Department of Entomology, Gatton-Martin College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
- Current address: Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Subba Reddy Palli
- Department of Entomology, Gatton-Martin College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
2
|
Ortolá B, Daròs JA. RNA Interference in Insects: From a Natural Mechanism of Gene Expression Regulation to a Biotechnological Crop Protection Promise. BIOLOGY 2024; 13:137. [PMID: 38534407 DOI: 10.3390/biology13030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Insect pests rank among the major limiting factors in agricultural production worldwide. In addition to direct effect on crops, some phytophagous insects are efficient vectors for plant disease transmission. Large amounts of conventional insecticides are required to secure food production worldwide, with a high impact on the economy and environment, particularly when beneficial insects are also affected by chemicals that frequently lack the desired specificity. RNA interference (RNAi) is a natural mechanism gene expression regulation and protection against exogenous and endogenous genetic elements present in most eukaryotes, including insects. Molecules of double-stranded RNA (dsRNA) or highly structured RNA are the substrates of cellular enzymes to produce several types of small RNAs (sRNAs), which play a crucial role in targeting sequences for transcriptional or post-transcriptional gene silencing. The relatively simple rules that underlie RNAi regulation, mainly based in Watson-Crick complementarity, have facilitated biotechnological applications based on these cellular mechanisms. This includes the promise of using engineered dsRNA molecules, either endogenously produced in crop plants or exogenously synthesized and applied onto crops, as a new generation of highly specific, sustainable, and environmentally friendly insecticides. Fueled on this expectation, this article reviews current knowledge about the RNAi pathways in insects, and some other applied questions such as production and delivery of recombinant RNA, which are critical to establish RNAi as a reliable technology for insect control in crop plants.
Collapse
Affiliation(s)
- Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
3
|
Lucena-Leandro VS, Abreu EFA, Vidal LA, Torres CR, Junqueira CICVF, Dantas J, Albuquerque ÉVS. Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application. Int J Mol Sci 2022; 23:ijms232415836. [PMID: 36555476 PMCID: PMC9785151 DOI: 10.3390/ijms232415836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Invasive insects cost the global economy around USD 70 billion per year. Moreover, increasing agricultural insect pests raise concerns about global food security constraining and infestation rising after climate changes. Current agricultural pest management largely relies on plant breeding-with or without transgenes-and chemical pesticides. Both approaches face serious technological obsolescence in the field due to plant resistance breakdown or development of insecticide resistance. The need for new modes of action (MoA) for managing crop health is growing each year, driven by market demands to reduce economic losses and by consumer demand for phytosanitary measures. The disabling of pest genes through sequence-specific expression silencing is a promising tool in the development of environmentally-friendly and safe biopesticides. The specificity conferred by long dsRNA-base solutions helps minimize effects on off-target genes in the insect pest genome and the target gene in non-target organisms (NTOs). In this review, we summarize the status of gene silencing by RNA interference (RNAi) for agricultural control. More specifically, we focus on the engineering, development and application of gene silencing to control Lepidoptera through non-transforming dsRNA technologies. Despite some delivery and stability drawbacks of topical applications, we reviewed works showing convincing proof-of-concept results that point to innovative solutions. Considerations about the regulation of the ongoing research on dsRNA-based pesticides to produce commercialized products for exogenous application are discussed. Academic and industry initiatives have revealed a worthy effort to control Lepidoptera pests with this new mode of action, which provides more sustainable and reliable technologies for field management. New data on the genomics of this taxon may contribute to a future customized target gene portfolio. As a case study, we illustrate how dsRNA and associated methodologies could be applied to control an important lepidopteran coffee pest.
Collapse
Affiliation(s)
| | | | - Leonardo A. Vidal
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Cellular Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Caroline R. Torres
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Camila I. C. V. F. Junqueira
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Juliana Dantas
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
| | | |
Collapse
|
4
|
Fan Y, Song H, Abbas M, Wang Y, Liu X, Li T, Ma E, Zhu KY, Zhang J. The stability and sequence cleavage preference of dsRNA are key factors differentiating RNAi efficiency between migratory locust and Asian corn borer. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103738. [PMID: 35134534 DOI: 10.1016/j.ibmb.2022.103738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
We compared the stability of double-stranded RNA (dsRNA) in each of two body fluids (hemolymph, midgut fluid) and in each of two tissues (integument, midgut), and the uptake of dsRNA in each of two cultured tissues (integument, midgut) between the migratory locust (Locusta migratoria) and the Asian corn borer (Ostrinia furnacalis). We further compared the abundance of putative small interfering RNAs (siRNAs) generated from each of two dsRNAs (dsβ-actin, dsEf1α) and the preference of dsRNA cleavages between the two insect species. Our studies showed a rapid degradation of dsRNA in the midgut fluids of both insect species and in O. furnacalis hemolymph. However, dsRNA remained reasonably stable in L. migratoria hemolymph. When nuclease degradation of dsRNA in cultured tissues was inhibited, dsRNA uptake was not significantly different between the two species. We further showed that the silencing efficiency against target genes was consistent with the abundance of putative siRNAs processed from the dsRNA. In addition, O. furnacalis showed a strong preference in cleaving dsRNA when the nucleotide G was in the position of "1" at 5'-end whereas L. migratoria showed broad spectrum in cleavage sites to generate siRNA. Taken together, our study revealed that silencing efficiency of a target gene by RNAi was directly related to the dsRNA degradation by nucleases and the abundance of siRNAs generated from the dsRNA.
Collapse
Affiliation(s)
- Yunhe Fan
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Huifang Song
- Faculty of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, 046000, China
| | - Mureed Abbas
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China; Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yanli Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xiaojian Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Tao Li
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS, 66506, USA.
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
5
|
Fan Y, Abbas M, Liu X, Wang Y, Song H, Li T, Ma E, Zhu KY, Zhang J. Increased RNAi Efficiency by dsEGFP-Induced Up-Regulation of Two Core RNAi Pathway Genes (OfDicer2 and OfAgo2) in the Asian Corn Borer (Ostrinia furnacalis). INSECTS 2022; 13:insects13030274. [PMID: 35323572 PMCID: PMC8948962 DOI: 10.3390/insects13030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/07/2022]
Abstract
Simple Summary RNA interference (RNAi) has shown great potentials as a novel technology for insect pest management. However, numerous studies have shown that the efficiency of RNAi varies substantially among different insect species. For example, as a major insect pest of corn, the Asian corn borer (Ostrinia furnacalis) showed very low RNAi efficiency. Therefore, it is necessary to develop new strategies for enhancing RNAi efficiency in insects with low RNAi efficiency. In this study, six core RNAi pathway genes were identified and characterized from O. furnacalis transcriptome database. After dsEGFP was injected into O. furnacalis, the expression of the core RNAi pathway genes (OfDicer2 and OfAgo2) was significantly up-regulated in response to the exposure of dsEGFP. As a result, the RNAi efficiency against the target genes in certain tissues of O. furnacalis was significantly improved. These results suggest that RNAi efficiency can be improved by inducing the expression of key RNAi pathway genes in O. furnacalis. Abstract RNA interference (RNAi) is a sequence-specific gene silencing mechanism that holds great promise for effective management of agricultural pests. Previous studies have shown that the efficacy of RNAi varies among different insect species, which limits its wide spread application in the field of crop protection. In this study, we identified and characterized six core RNAi pathway genes including OfDicer1, OfDicer2, OfR2D2, OfAgo1, OfAgo2, and OfAgo3 from the transcriptomic database of the Asian corn borer (Ostrinia furnacalis). Domain analysis showed that the six deduced proteins contained the necessary functional domains. Insect developmental stage- and tissue-specific expression analysis showed that five genes were expressed in all the stages and tissues examined except OfAgo3, which showed low expression in larvae, and high expression in pupae and adults and in the midgut. RT-qPCR was performed to examine the response of these six genes to exogenous double-stranded RNA (dsRNA). Interestingly, the transcript levels of OfDicer2 and OfAgo2 were significantly enhanced after the injection of dsEGFP at different time points and tissues investigated. Consequently, the RNAi efficiency in targeting the insect endogenous genes can be greatly enhanced in the hemolymph or midgut. Taken together, our investigations suggest that RNAi efficiency can be enhanced by pre-injection of dsRNA to induce the RNAi core machinery genes, which could be a useful strategy to improving RNAi efficiency for studying gene functions under laboratory conditions.
Collapse
Affiliation(s)
- Yunhe Fan
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.F.); (M.A.); (X.L.); (Y.W.); (T.L.); (E.M.)
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Mureed Abbas
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.F.); (M.A.); (X.L.); (Y.W.); (T.L.); (E.M.)
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiaojian Liu
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.F.); (M.A.); (X.L.); (Y.W.); (T.L.); (E.M.)
| | - Yanli Wang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.F.); (M.A.); (X.L.); (Y.W.); (T.L.); (E.M.)
| | - Huifang Song
- Faculty of Biological Science and Technology, Changzhi University, Changzhi 046000, China;
| | - Tao Li
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.F.); (M.A.); (X.L.); (Y.W.); (T.L.); (E.M.)
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.F.); (M.A.); (X.L.); (Y.W.); (T.L.); (E.M.)
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (K.Y.Z.); (J.Z.)
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.F.); (M.A.); (X.L.); (Y.W.); (T.L.); (E.M.)
- Correspondence: (K.Y.Z.); (J.Z.)
| |
Collapse
|
6
|
Ben Youssef M, Christelle Ouédraogo B, Bastarache P, Dumas P, Moffat CE, Vickruck JL, Morin PJ. Exposure to Temperature and Insecticides Modulates the Expression of Small Noncoding RNA-Associated Transcripts in the Colorado Potato Beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:23. [PMID: 35172010 PMCID: PMC8849280 DOI: 10.1093/jisesa/ieac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 06/14/2023]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an insect that can adapt to various challenges, including temperature fluctuations or select insecticide treatments. This pest is also an ongoing threat to the potato industry. Small noncoding RNAs such as miRNAs, which can control posttranscriptionally the expression of various genes, and piRNAs, which can notably impact mRNA turnover, are modulated in insects under different conditions. Unfortunately, information regarding the expression status of key players involved in their synthesis and function is for the most part lacking. The current study thus aims at assessing the levels of such targets in L. decemlineata exposed to hot and cold temperatures as well as treated to the insecticides chlorantraniliprole, clothianidin, imidacloprid, and spinosad. Transcript expression levels of Ago1, Ago2, Ago3, Dcr2a, Dcr2b, Expo-5, Siwi-1, and Siwi-2, components of pathways associated with small noncoding RNA production or function, were measured by qRT-PCR and revealed modulation of select transcripts in response to temperature challenges and to select insecticides. RNAi-mediated reduction of Ago2 transcript levels in L. decemlineata injected with Ago2-targeting dsRNA and exposed to cold and warm temperatures was also conducted. Changes in survival rates were observed for the latter condition in dsRNA- versus saline-injected insects. These results showcase the differential expression of select targets involved in small noncoding RNA homeostasis and provide leads for the subsequent assessment of their involvement during stress response in L. decemlineata using RNAi-based approaches.
Collapse
Affiliation(s)
- Mariem Ben Youssef
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Brigitte Christelle Ouédraogo
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Pierre Bastarache
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Pascal Dumas
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Chandra E Moffat
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Jessica L Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| |
Collapse
|
7
|
Hu L, Zhao L, Zhuang Z, Wang X, Fu Q, Huang H, Lin L, Huang L, Qin Y, Zhang J, Yan Q. The Effect of tonB Gene on the Virulence of Pseudomonas plecoglossicida and the Immune Response of Epinephelus coioides. Front Microbiol 2021; 12:720967. [PMID: 34484162 PMCID: PMC8415555 DOI: 10.3389/fmicb.2021.720967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023] Open
Abstract
Pseudomonas plecoglossicida is the causative agent of "visceral white spot disease" in cultured fish and has resulted in serious economic losses. tonB gene plays a crucial role in the uptake of nutrients from the outer membranes in Gram-negative bacteria. The previous results of our lab showed that the expression of tonB gene of P. plecoglossicida was significantly upregulated in the spleens of infected Epinephelus coioides. To explore the effect of tonB gene on the virulence of P. plecoglossicida and the immune response of E. coioides, tonB gene of P. plecoglossicida was knocked down by RNAi; and the differences between the wild-type strain and the tonB-RNAi strain of P. plecoglossicida were investigated. The results showed that all of the four mutants of P. plecoglossicida exhibited significant decreases in mRNA of tonB gene, and the best knockdown efficiency was 94.0%; the survival rate of E. coioides infected with the tonB-RNAi strain was 20% higher than of the counterpart infected with the wild strain of P. plecoglossicida. Meanwhile, the E. coioides infected with the tonB-RNAi strain of P. plecoglossicida carried less pathogens in the spleen and less white spots on the surface of the spleen; compared with the wild-type strain, the motility, chemotaxis, adhesion, and biofilm formation of the tonB-RNAi strain were significantly attenuated; the transcriptome data of E. coioides infected with the tonB-RNAi strain were different from the counterpart infected with the wild strain of P. plecoglossicida; the antigen processing and presentation pathway and the complement and coagulation cascade pathway were the most enriched immune pathways. The results indicated that tonB was a virulence gene of P. plecoglossicida; tonB gene was involved in the regulation of motility, chemotaxis, adhesion, and biofilm formation; tonB gene affected the immune response of E. coioides to P. plecoglossicida infection.
Collapse
Affiliation(s)
- Lingfei Hu
- Fisheries College, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Qi Fu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Lili Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China.,College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China.,Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, China
| |
Collapse
|
8
|
Cooper AMW, Song H, Shi X, Yu Z, Kim YH, Silver K, Zhang J, Zhu KY. Molecular characterization and RNA interference responses of the lethal giant larvae gene in Diabrotica virgifera virgifera adults. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21787. [PMID: 33871104 DOI: 10.1002/arch.21787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
High specificity for silencing target genes and single-copy target genes that yield clear phenotypes are two important factors for the success of RNA interference (RNAi). The lethal giant larvae (Lgl) gene appears to be an ideal gene for RNAi because RNAi can effectively suppress its expression and results in molting defects and mortality in Tribolium castaneum. To investigate the suitability of this gene for RNAi in other insects, we identified and characterized DvLgl from the western corn rootworm, Diabrotica virgifera virgifera, a species exhibiting high RNAi efficiency. DvLgl was expressed in all developmental stages and tissues investigated. The deduced DvLgl protein showed high amino-acid sequence identities and similar domain architecture to Lgls from other insect species. Despite many similarities among insect Lgls, RNAi-mediated suppression of DvLgl failed to produce a phenotype in D. v. virgifera adults. The difference in developing phenotypes could be attributed greatly to the level of gene suppression and the insect developmental stages for RNAi. These results highlight the variability in RNAi response among insects and showcase the importance of screening multiple target genes when conducting RNAi studies. Our findings are expected to help the design of future RNAi studies and future investigations of Lgl in insects.
Collapse
Affiliation(s)
| | - Huifang Song
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Xuekai Shi
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Zhitao Yu
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Young Ho Kim
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Department of Applied Biology, Kyungpook National University, Sangju, Gyeongbuk, South Korea
| | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Jianzhen Zhang
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|