1
|
Wang Y, Na Y, Huang YQ, Zhou JF, Li SH, Liu QL, Li LT, Chen YG, Tian W, Chi H, Li XC, Fang WH. Paospora carinifang n. gen., n. sp. (Microsporidia: Spragueidae), a parasite of the ridgetail white prawn, Palaemon carinicauda. J Invertebr Pathol 2024; 206:108180. [PMID: 39154989 DOI: 10.1016/j.jip.2024.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
A new microsporidian disease of the pond-reared ridgetail white prawn, Palaemon carinicauda, was found in China. Light microscopy, pathology, and scanning electron microscopy showed that the parasite infected the host's skeletal muscle tissue and formed spherical sporophorous vesicles (SPOVs). Electron microscopy revealed that its merogonic life stages developed in direct contact with the host cytoplasm. The sporogonic life stages underwent octosporoblastic sporogony with the formation of eight uninucleate spores in each SPOV. Fresh SPOVs were 5.4 ± 0.55 µm in diameter. The octospores were oval and measured 2.3 × 1.5 μm (fresh) and 1.96 × 1.17 μm (fixed). The isofilar polar filament was coiled with 9-10 turns and arranged in two rows. Phylogenetic analysis based on the SSU rRNA gene suggests that this microsporidium has close affinities with members of the genera Potaspora and Apotaspora, but represents an independent generic taxon. We therefore propose the establishment of a new genus and species (Paospora carinifang n. gen., n. sp.) within the family Spragueidae. We also propose a taxonomic revision to transfer Potaspora macrobrachium to this new genus and reclassify it as Paospora macrobrachium comb. nov.
Collapse
Affiliation(s)
- Yuan Wang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Ying Na
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Yan-Qing Huang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Jun-Fang Zhou
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Shou-Hu Li
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Quan-Lin Liu
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Le-Tian Li
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Yuan-Ge Chen
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Wei Tian
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Hai Chi
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China.
| | - Wen-Hong Fang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China.
| |
Collapse
|
2
|
Bacela-Spychalska K, Wattier R, Teixeira M, Cordaux R, Quiles A, Grabowski M, Wroblewski P, Ovcharenko M, Grabner D, Weber D, Weigand AM, Rigaud T. Widespread infection, diversification and old host associations of Nosema Microsporidia in European freshwater gammarids (Amphipoda). PLoS Pathog 2023; 19:e1011560. [PMID: 37603557 PMCID: PMC10470943 DOI: 10.1371/journal.ppat.1011560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/31/2023] [Accepted: 07/14/2023] [Indexed: 08/23/2023] Open
Abstract
The microsporidian genus Nosema is primarily known to infect insects of economic importance stimulating high research interest, while other hosts remain understudied. Nosema granulosis is one of the formally described Nosema species infecting amphipod crustaceans, being known to infect only two host species. Our first aim was to characterize Nosema spp. infections in different amphipod species from various European localities using the small subunit ribosomal DNA (SSU) marker. Second, we aimed to assess the phylogenetic diversity, host specificity and to explore the evolutionary history that may explain the diversity of gammarid-infecting Nosema lineages by performing a phylogenetic reconstruction based on RNA polymerase II subunit B1 (RPB1) gene sequences. For the host species Gammarus balcanicus, we also analyzed whether parasites were in excess in females to test for sex ratio distortion in relation with Nosema infection. We identified Nosema spp. in 316 individuals from nine amphipod species being widespread in Europe. The RPB1-based phylogenetic reconstruction using newly reported sequences and available data from other invertebrates identified 39 haplogroups being associated with amphipods. These haplogroups clustered into five clades (A-E) that did not form a single amphipod-infecting monophyletic group. Closely related sister clades C and D correspond to Nosema granulosis. Clades A, B and E might represent unknown Nosema species infecting amphipods. Host specificity seemed to be variable with some clades being restricted to single hosts, and some that could be found in several host species. We show that Nosema parasite richness in gammarid hosts is much higher than expected, illustrating the advantage of the use of RPB1 marker over SSU. Finally, we found no hint of sex ratio distortion in Nosema clade A infecting G. balcanicus. This study shows that Nosema spp. are abundant, widespread and diverse in European gammarids. Thus, Nosema is as diverse in aquatic as in terrestrial hosts.
Collapse
Affiliation(s)
- Karolina Bacela-Spychalska
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Remi Wattier
- Laboratoire Biogéosciences, UMR CNRS 6282, Université de Bourgogne, Dijon, France
| | - Maria Teixeira
- Laboratoire Biogéosciences, UMR CNRS 6282, Université de Bourgogne, Dijon, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Adrien Quiles
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Laboratoire Biogéosciences, UMR CNRS 6282, Université de Bourgogne, Dijon, France
| | - Michal Grabowski
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Piotr Wroblewski
- Department of Ecology and Evolution of Parasitism, Witold Stefanski Institute of Parasitology, Polish Academy of Science, Warsaw, Poland
| | - Mykola Ovcharenko
- Department of Ecology and Evolution of Parasitism, Witold Stefanski Institute of Parasitology, Polish Academy of Science, Warsaw, Poland
- Institute of Biology and Earth Sciences, Pomeranian University in Slupsk, Slupsk, Poland
| | - Daniel Grabner
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Dieter Weber
- Senckenberg Deutsches Entomologisches Institut Müncheberg, Germany
- Musée National d’Histoire Naturelle Luxembourg, Luxembourg, Luxembourg
| | | | - Thierry Rigaud
- Laboratoire Biogéosciences, UMR CNRS 6282, Université de Bourgogne, Dijon, France
| |
Collapse
|
3
|
Stratton CE, Reisinger LS, Behringer DC, Reinke AW, Bojko J. Alternosema astaquatica n. sp. (Microsporidia: Enterocytozoonida), a systemic parasite of the crayfish Faxonius virilis. J Invertebr Pathol 2023:107948. [PMID: 37276935 DOI: 10.1016/j.jip.2023.107948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Crayfish have strong ecological impacts in freshwater systems, yet our knowledge of their parasites is limited. This study describes the first systemic microsporidium (infects multiple tissue types) Alternosema astaquatica n. sp. (Enterocytozoonida) isolated from a crayfish host, Faxonius virilis, using histopathology, transmission electron microscopy, gene sequencing, and phylogenetics. The parasite develops in direct contact with the host cell cytoplasm producing mature spores that are monokaryotic and ellipsoid in shape. Spores have 9-10 coils of the polar filament and measure 3.07 ± 0.26 µm (SD) in length and 0.93 ± 0.08 µm (SD) in width. Our novel isolate has high genetic similarity to Alternosema bostrichidis isolated from terrestrial beetles; however, genetic data from this parasite is restricted to a small fragment (396bp) of the SSU gene. Additional data related to spore morphology and development, host, environment, and ecology indicate that our novel isolate is distinct from A. bostrichidis, which supports a new species description. Alternosema astaquatica n. sp. represents a novel member of the Orthosomella-like group which appears to be a set of opportunists within the Enterocytozoonida. The presence of this microsporidium in F. virilis could be relevant for freshwater ecosystems across this crayfish's broad geographic range in North America and may affect interactions between F. virilis and invasive rusty crayfish Faxonius rusticus in the Midwest USA.
Collapse
Affiliation(s)
- Cheyenne E Stratton
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA.
| | - Lindsey S Reisinger
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA
| | - Donald C Behringer
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA; Emerging Pathogens Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
4
|
Stratton CE, Kabalan BA, Bolds SA, Reisinger LS, Behringer DC, Bojko J. Cambaraspora faxoni n. sp. (Microsporidia: Glugeida) from native and invasive crayfish in the USA and a novel host of Cambaraspora floridanus. J Invertebr Pathol 2023:107949. [PMID: 37276936 DOI: 10.1016/j.jip.2023.107949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Crayfishes are among the most widely introduced freshwater taxa and can have extensive ecological impacts. Knowledge of the parasites crayfish harbor is limited, yet co-invasion of parasites is a significant risk associated with invasions. In this study, we describe a novel microsporidium, Cambaraspora faxoni n. sp. (Glugeida: Tuzetiidae), from two crayfish hosts in the Midwest USA, Faxonius virilis and Faxonius rusticus. We also expand the known host range of Cambaraspora floridanus to include Procambarus spiculifer. Cambaraspora faxoni infects muscle and heart tissue of F. rusticus and develops within a sporophorous vesicle. The mature spore measures 3.22 ± 0.14 μm in length and 1.45 ± 0.13 μm in width, with 8-9 turns of the polar filament. SSU sequencing indicates the isolates from F. virilis and F. rusticus were identical (100%) and 93.49% similar to C. floridanus, supporting the erection of a new species within the Cambaraspora genus. The novel parasite was discovered within the native range of F. rusticus (Ohio, USA) and within a native congeneric (F. virilis) in the invasive range of F. rusticus (Wisconsin, USA). Faxonius virilis is invasive in other regions. This new parasite could have been introduced to Wisconsin with F. rusticus or it may be a generalist species with a broad distribution. In either case, this parasite infects two crayfish species that have been widely introduced to new drainages throughout North America and could have future effects on invasion dynamics or impacts.
Collapse
Affiliation(s)
- Cheyenne E Stratton
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA.
| | - Bana A Kabalan
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA
| | - Sara A Bolds
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA
| | - Lindsey S Reisinger
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA
| | - Donald C Behringer
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA; Emerging Pathogens Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
5
|
Calabon MS, Hyde KD, Jones EBG, Luo ZL, Dong W, Hurdeal VG, Gentekaki E, Rossi W, Leonardi M, Thiyagaraja V, Lestari AS, Shen HW, Bao DF, Boonyuen N, Zeng M. Freshwater fungal numbers. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Stratton CE, Reisinger LS, Behringer DC, Bojko J. Revising the Freshwater Thelohania to Astathelohania gen. et comb. nov., and Description of Two New Species. Microorganisms 2022; 10:636. [PMID: 35336214 PMCID: PMC8951847 DOI: 10.3390/microorganisms10030636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/25/2023] Open
Abstract
Crayfish are common hosts of microsporidian parasites, prominently from the genus Thelohania. Thelohania is a polyphyletic genus, with multiple genetically distinct lineages found from freshwater and marine environments. Researchers have been calling for a revision of this group for over a decade. We provide evidence that crayfish-infecting freshwater Thelohania are genetically and phylogenetically distinct from the marine Thelohania (Clade V/Glugeida), whilst also describing two new species that give further support to the taxonomic revision. We propose that the freshwater Thelohania should be transferred to their own genus, Astathelohania gen. et comb. nov., in a new family (Astathelohaniidae n. fam.). This results in the revision of Thelohania contejeani (Astathelohania contejeani), Thelohania montirivulorum (Astathelohania montirivulorum), and Thelohania parastaci (Astathelohania parastaci). We also describe two novel muscle-infecting Astathelohania species, A. virili n. sp. and A. rusti n. sp., from North American crayfishes (Faxonius sp.). We used histological, molecular, and ultrastructural data to formally describe the novel isolates. Our data suggest that the Astathelohania are genetically distinct from other known microsporidian genera, outside any described family, and that their SSU rRNA gene sequence diversity follows their host species and native geographic location. The range of this genus currently includes North America, Europe, and Australia.
Collapse
Affiliation(s)
- Cheyenne E. Stratton
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL 32653, USA; (C.E.S.); (L.S.R.); (D.C.B.)
| | - Lindsey S. Reisinger
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL 32653, USA; (C.E.S.); (L.S.R.); (D.C.B.)
| | - Donald C. Behringer
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL 32653, USA; (C.E.S.); (L.S.R.); (D.C.B.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
7
|
Patterns of infection in a native and an invasive crayfish across the UK. J Invertebr Pathol 2021; 184:107595. [PMID: 33878331 DOI: 10.1016/j.jip.2021.107595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
Invasive crayfish and the introduction of non-native diseases pose a significant risk for the conservation of endangered, white-clawed crayfish (Austropotamobius pallipes). Continued pollution of waterways is also of concern for native species and may be linked with crayfish disease dynamics. We explore whether crayfish species or environmental quality are predictors of infection presence and prevalence in native A. pallipes and invasive signal crayfish (Pacifastacus leniusculus). We use a seven-year dataset of histology records, and a field survey comparing the presence and prevalence of infectious agents in three isolated A. pallipes populations; three isolated P. leniusculus populations, and three populations where the two species had overlapped in the past. We note a lower diversity of parasites (Simpson's Index) in P. leniusculus ('Pacifastacus leniusculus Bacilliform Virus' - PlBV) (n = 1 parasite) relative to native A. pallipes (n = 4 parasites), which host Thelohania contejeani, 'Austropotamobius pallipes bacilliform virus' (ApBV), Psorospermium haeckeli and Branchiobdella astaci, at the sites studied. The infectious group present in both species was an intranuclear bacilliform virus of the hepatopancreas. The prevalence of A. astaci in A. pallipes populations was higher in more polluted water bodies, which may reflect an effect of water quality, or may be due to increased chance of transmission from nearby P. leniusculus, a species commonly found in poor quality habitats.
Collapse
|
8
|
Bojko J, Behringer DC, Moler P, Stratton CE, Reisinger L. A new lineage of crayfish-infecting Microsporidia: The Cambaraspora floridanus n. gen. n. sp. (Glugeida: Glugeidae) complex from Floridian freshwaters (USA). J Invertebr Pathol 2020; 171:107345. [DOI: 10.1016/j.jip.2020.107345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/26/2022]
|
9
|
Tokarev YS, Huang WF, Solter LF, Malysh JM, Becnel JJ, Vossbrinck CR. A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. J Invertebr Pathol 2019; 169:107279. [PMID: 31738888 DOI: 10.1016/j.jip.2019.107279] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/01/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
The microsporidian genera Nosema and Vairimorpha comprise a clade described from insects. Currently the genus Nosema is defined as having a dimorphic life cycle characterized by diplokaryotic stages and diplosporoblastic sporogony with two functionally and morphologically distinct spore types ("early" or "primary" and "environmental"). The Vairimorpha life cycle, in addition to a Nosema-type diplokaryotic sporogony, includes an octosporoblastic sporogony producing eight uninucleate spores (octospores) within a sporophorous vesicle. Molecular phylogeny, however, has clearly demonstrated that the genera Nosema and Vairimorpha, characterized by the absence or presence of uninucleate octospores, respectively, represent two polyphyletic taxa, and that octosporogony is turned on and off frequently within taxa, depending on environmental factors such as host species and rearing temperature. In addition, recent studies have shown that both branches of the Vairimorpha-Nosema clade contain species that are uninucleate throughout their life cycle. The SSU rRNA gene sequence data reveal two distinct clades, those closely related to Vairimorpha necatrix, the type species for the genus Vairimorpha, and those closely related to Nosema bombycis, the type species for the genus Nosema. Here, we redefine the two genera, giving priority to molecular character states over those observed at the developmental, structural or ultrastructural levels and present a list of revised species designations. Using this approach, a series of species are renamed (combination novum) and members of two genera, Rugispora and Oligosporidium, are reassigned to Vairimorpha because of their phylogenetic position. Moreover, the family Nosematidae is redefined and includes the genera Nosema and Vairimorpha comprising a monophyletic lineage of Microsporidia.
Collapse
Affiliation(s)
- Yuri S Tokarev
- All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Podbelskogo 3, 196608, Russia
| | - Wei-Fone Huang
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Leellen F Solter
- Illinois Natural History Survey, Prairie Research Institute at the University of Illinois, Champaign, IL 61820, USA
| | - Julia M Malysh
- All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Podbelskogo 3, 196608, Russia
| | - James J Becnel
- Center for Medical, Agricultural and Veterinary Entomology - CMAVE (USDA, ARS), Gainesville, FL, USA
| | - Charles R Vossbrinck
- Department of Environmental Science, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA.
| |
Collapse
|
10
|
Al Quraishy S, Abdel-Gaber R, El Deeb N, Maher S, Al-Shaebi E, Abdel-Ghaffar F. Ultrastructure and phylogenetic characterization of the microsporidian parasite Heterosporis lessepsianus n. sp. (Microsporidia: Glugeidae) infecting the lizardfish Saurida lessepsianus (Pisces: Synodontidae) inhabiting the Red Sea. Microb Pathog 2019; 130:10-18. [DOI: 10.1016/j.micpath.2019.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 11/30/2022]
|
11
|
Ultrastructural and molecular characterization of Vairimorpha austropotamobii sp. nov. (Microsporidia: Burenellidae) and Thelohania contejeani (Microsporidia: Thelohaniidae), two parasites of the white-clawed crayfish, Austropotamobius pallipes complex (Decapoda: Astacidae). J Invertebr Pathol 2018; 151:59-75. [DOI: 10.1016/j.jip.2017.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/24/2017] [Accepted: 11/02/2017] [Indexed: 11/17/2022]
|
12
|
Hajek AE, Solter LF, Maddox JV, Huang WF, Estep AS, Krawczyk G, Weber DC, Hoelmer KA, Sanscrainte ND, Becnel JJ. Nosema maddoxi sp. nov. (Microsporidia, Nosematidae), a Widespread Pathogen of the Green Stink Bug Chinavia hilaris (Say) and the Brown Marmorated Stink Bug Halyomorpha halys (Stål). J Eukaryot Microbiol 2017; 65:315-330. [PMID: 28984006 DOI: 10.1111/jeu.12475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/21/2017] [Accepted: 08/11/2017] [Indexed: 11/28/2022]
Abstract
We describe a unique microsporidian species that infects the green stink bug, Chinavia hilaris; the brown marmorated stink bug, Halyomorpha halys; the brown stink bug, Euschistus servus; and the dusky stink bug, Euschistus tristigmus. All life stages are unikaryotic, but analysis of the consensus small subunit region of the ribosomal gene places this microsporidium in the genus Nosema, which historically has been characterized by diplokaryotic life stages. It is also characterized by having the reversed arrangement of the ribosomal gene (LSU -ITS- SSU) found in species within the "true Nosema" clade. This microsporidium is apparently Holarctic in distribution. It is present in H. halys both where it is native in Asia and where it is invasive in North America, as well as in samples of North American native C. hilaris collected prior to the introduction of H. halys from Asia. Prevalence in H. halys from mid-Atlantic, North America in 2015-2016 ranged from 0.0% to 28.3%, while prevalence in C. hilaris collected in Illinois in 1970-1972 ranged from 14.3% to 58.8%. Oral infectivity and pathogenicity were confirmed in H. halys and C. hilaris. Morphological, ultrastructural, and ecological features of the microsporidium, together with a molecular phylogeny, establish a new species named Nosema maddoxi sp. nov.
Collapse
Affiliation(s)
- Ann E Hajek
- Department of Entomology, Cornell University, Ithaca, New York, 14853-2601, USA
| | - Leellen F Solter
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, 61820, USA
| | - Joseph V Maddox
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, 61820, USA
| | - Wei-Fone Huang
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
| | - Alden S Estep
- Navy Entomology Center of Excellence, Naval Air Station, Jacksonville, Florida, 32212, USA.,Center for Medical, Agricultural and Veterinary Entomology - CMAVE (USDA, ARS), Gainesville, Florida, 32608, USA
| | - Grzegorz Krawczyk
- Department of Entomology, Fruit Research and Extension Center, Pennsylvania State University, Biglerville, Pennsylvania, 17307, USA
| | - Donald C Weber
- USDA ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, 20705, USA
| | - Kim A Hoelmer
- USDA ARS Beneficial Insect Introduction Research Unit, Newark, Delaware, 19713, USA
| | - Neil D Sanscrainte
- Center for Medical, Agricultural and Veterinary Entomology - CMAVE (USDA, ARS), Gainesville, Florida, 32608, USA
| | - James J Becnel
- Center for Medical, Agricultural and Veterinary Entomology - CMAVE (USDA, ARS), Gainesville, Florida, 32608, USA
| |
Collapse
|
13
|
Wang TC, Nai YS, Wang CY, Solter LF, Hsu HC, Wang CH, Lo CF. A new microsporidium, Triwangia caridinae gen. nov., sp. nov. parasitizing fresh water shrimp, Caridina formosae (Decapoda: Atyidae) in Taiwan. J Invertebr Pathol 2013; 112:281-93. [PMID: 23318886 DOI: 10.1016/j.jip.2012.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
Abstract
A new microsporidium was isolated from the endemic, Taiwanese shrimp, Caridina formosae (Decapoda, Atyidae) from northern Taiwan. A conspicuous symptom of infection was presence of opaque white xenomas located in the proximity of the alimentary tract, the surface of the hepatopancreas, and the gills. A fully developed xenoma consisted of a hard, thick capsule filled with sporophorous vesicles containing multiple spores. Microsporidia developed synchronously within the same sporophorous vesicle, although the stage of parasite development differed among the vesicles. Fresh spores were pyriform, mononucleated and measured 6.53 × 4.38 μm. The polar filament was anisofilar with 9-11 coils. Phylogenetic analysis based on the small subunit ribosomal DNA sequence showed that the isolate is most similar to the fish microsporidian clade containing the genera Kabatana, Microgemma, Potaspora, Spraguea, and Teramicra. The highest sequence identity, 80%, was with Spraguea spp. Based on pathogenesis, life cycle and phylogenetic analysis, we erect a new genus and species, Triwangia caridinae for the novel microsporidium.
Collapse
Affiliation(s)
- Tai-Chuan Wang
- Institute of Entomology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
14
|
Longshaw M, Feist SW, Bateman KS. Parasites and pathogens of the endosymbiotic pea crab (Pinnotheres pisum) from blue mussels (Mytilus edulis) in England. J Invertebr Pathol 2012; 109:235-42. [DOI: 10.1016/j.jip.2011.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 11/25/2022]
|
15
|
Abdel-Ghaffar F, Bashtar AR, Morsy K, Mehlhorn H, Al Quraishy S, Al-Rasheid K, Abdel-Gaber R. Morphological and molecular biological characterization of Pleistophora aegyptiaca sp. nov. infecting the Red Sea fish Saurida tumbil. Parasitol Res 2011; 110:741-52. [PMID: 21858478 DOI: 10.1007/s00436-011-2597-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 07/03/2011] [Indexed: 11/25/2022]
Abstract
One hundred three out of 225 (45.8%) of the Red Sea fish Saurida tumbil were infected with microsporidian parasites. The infection was recorded as tumor-like masses (whitish macroscopic cysts) or xenomas often up to 2 cm in diameter and embedded in the peritoneal cavity. Generally, the infection was increased during winter 63.8% (86 out of 135) and fall to 18.9% (17 out of 90) in summer. Light microscopic study revealed that xenomas were encapsulated by a fibrous layer encircling numerous sporophorous vesicles filled with mature spores measuring 1.7 ± 0.6 (1.5-2.7 μm) × 1.5 ± 0.3 μm (1.2-1.8 μm) in size. Ultrastructural microscopic study showed the presence of smooth membranes of the sarcoplasmic reticulum forming a thick, amorphous coat surrounding various developmental stages of the parasite. The various recognizable stages of the parasite were uninuclear, binucleated, and multinucleated meronts followed by detachment of the plasmalemma of the sporont from the sporophorous vesicle producing sporoblasts. Mature spores consist of a spore coat and spore contents. The spore contents consist of the uninucleated sporoplasm and a posterior vacuole located at the posterior end. The polar tube consists of a straight shaft and a coiled region (26-32 coils) arranged in many rows along the inside periphery of the spore. The polaroplast consisted of an anterior region of closely and loosely packed membranes. Molecular analysis based on the small subunit rDNA gene was performed to determine the phylogenetic position of the present species. The percentage identity between this species and a range of other microsporidia predominantly from aquatic hosts demonstrated a high degree of similarity (>92%) with eight Pleistophora species. Comparison of the nucleotide sequences and divergence showed that the sequence of the present microsporidium was most similar to that of Pleistophora anguillarum (99.8% identity) differing in 13 nucleotide positions. So, the present species was recorded and phylogenetically positioned as a new species of Pleistophora.
Collapse
|
16
|
Affiliation(s)
- Matt Longshaw
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
17
|
Vossbrinck CR, Debrunner-Vossbrinck BA. Molecular phylogeny of the Microsporidia: ecological, ultrastructural and taxonomic considerations. Folia Parasitol (Praha) 2005; 52:131-42; discussion 130. [PMID: 16004372 DOI: 10.14411/fp.2005.017] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Microsporidia are a group of obligate intracellular parasites, now thought to be derived fungi. Presented here is a comparative small subunit rDNA (ssrDNA) analysis of 125 species of Microsporidia (sequences obtained from GenBank). This analysis shows that groups or clades are formed based largely on habitat and host. This result is supported by comparative molecular analyses of the past decade, and indicates that structural and ultrastructural characters are unreliable for distinguishing among higher-level microsporidian taxa. Our findings indicate the presence of five major clades of Microsporidia which group according to habitat. We present three new classes of Microsporidia based on natural phylogenetic groupings as illustrated by the ssrDNA analysis: Aquasporidia, Marinosporidia and Terresporidia. The names of the proposed classes reflect the habitat of each group. The class Aquasporidia, found primarily in freshwater habitats, is a paraphyletic group consisting of three clades. The Marinosporidia are found in hosts of marine origin and the Terresporidia are primarily from terrestrial environments.
Collapse
Affiliation(s)
- Charles R Vossbrinck
- Department of Soil and Water, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511, USA.
| | | |
Collapse
|