1
|
Liao A, Cavigliasso F, Savary L, Kawecki TJ. Effects of an entomopathogenic fungus on the reproductive potential of Drosophila males. Ecol Evol 2024; 14:e11242. [PMID: 38590549 PMCID: PMC10999951 DOI: 10.1002/ece3.11242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
While mortality is often the primary focus of pathogen virulence, non-lethal consequences, particularly for male reproductive fitness, are less understood; however, they are essential for understanding how sexual selection contributes to promoting resistance. We investigated how the fungal pathogen Metarhizium brunneum affects mating ability, fertility, and seminal fluid protein (SFP) expression of male Drosophila melanogaster paired with highly receptive virgin females in non-competitive settings. Depending on sex and dose, there was a 3-6-day incubation period after infection, followed by an abrupt onset of mortality. Meanwhile, the immune response was strongly induced already 38 h after infection and continued to increase as infection progressed. Latency to mate somewhat increased during the incubation period compared to sham-treated males, but even on Day 5 post infection >90% of infected males mated within 2 h. During the incubation period, M. brunneum infection reduced male reproductive potential (the number of offspring sired without mate limitation) by 11%, with no clear increase over time. Approaching the end of the incubation period, infected males had lower ability to convert number of mating opportunities into number of offspring. After repeated mating, infected males had lower SFP expression than sham controls, more so in males that mated with few mates 24 h earlier. Overall, despite strong activation of the immune response, males' mating ability and fertility remained surprisingly little affected by the fungal infection, even shortly before the onset of mortality. This suggests that the selection for resistance acts mainly through mortality, and the scope for fertility selection to enhance resistance in non-competing settings is rather limited.
Collapse
Affiliation(s)
- Aijuan Liao
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Fanny Cavigliasso
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Loriane Savary
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| |
Collapse
|
2
|
Zhang W, Chen X, Eleftherianos I, Mohamed A, Bastin A, Keyhani NO. Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts. FEMS Microbiol Rev 2024; 48:fuae003. [PMID: 38341280 PMCID: PMC10883697 DOI: 10.1093/femsre/fuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024] Open
Abstract
Insects are one of the most successful animals in nature, and entomopathogenic fungi play a significant role in the natural epizootic control of insect populations in many ecosystems. The interaction between insects and entomopathogenic fungi has continuously coevolved over hundreds of millions of years. Many components of the insect innate immune responses against fungal infection are conserved across phyla. Additionally, behavioral responses, which include avoidance, grooming, and/or modulation of body temperature, have been recognized as important mechanisms for opposing fungal pathogens. In an effort to investigate possible cross-talk and mediating mechanisms between these fundamental biological processes, recent studies have integrated and/or explored immune and behavioral responses. Current information indicates that during discrete stages of fungal infection, several insect behavioral and immune responses are altered simultaneously, suggesting important connections between the two systems. This review synthesizes recent advances in our understanding of the physiological and molecular aspects influencing cross-talk between behavioral and innate immune antifungal reactions, including chemical perception and olfactory pathways.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Xuanyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
- Research fellow, King Saud University Museum of Arthropods, Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Saudi Arabia
| | - Ashley Bastin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, United States
| |
Collapse
|
3
|
Půža V, Tarasco E. Interactions between Entomopathogenic Fungi and Entomopathogenic Nematodes. Microorganisms 2023; 11:microorganisms11010163. [PMID: 36677455 PMCID: PMC9864569 DOI: 10.3390/microorganisms11010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Entomopathogenic fungi and entomopathogenic nematodes are globally distributed soil organisms capable of infecting and killing a vast variety of insects. Therefore, these organisms are frequently used as biocontrol agents in insect pest management. Both entomopathogenic fungi and nematodes share the soil environment and thus can infest and compete for the same insect host; however, natural co-infections are rarely found due to the cryptic soil environment. Our current knowledge on their interactions within hosts mainly comes from laboratory experiments. Because of the recent trend of combining biocontrol agents to increase their efficacy, many studies have focused on the co-application of different species of EPF and EPNs against various insect pests with variable outcomes ranging from synergistic effects and additive effects to antagonism. In addition, the effect on the development and reproduction of each pathogen varies from normal reproduction to exclusion, and generally the outcomes of the interactions are dependent on pathogen and host species, pathogen doses, and the timing of infection. The present review aims to summarize the current knowledge on the interactions of entomopathogenic fungi and nematodes within an insect host and to estimate the possible effects of the interactions on natural pathogen populations and on their use in biocontrol.
Collapse
Affiliation(s)
- Vladimír Půža
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic
- Correspondence:
| | - Eustachio Tarasco
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via G. Amendola, 165/a, 70126 Bari, Italy
| |
Collapse
|
4
|
Zaman K, Hubert MK, Schoville SD. Testing the role of ecological selection on colour pattern variation in the butterfly
Parnassius clodius. Mol Ecol 2019; 28:5086-5102. [DOI: 10.1111/mec.15279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Khuram Zaman
- Department of Entomology University of Wisconsin‐Madison Madison WI USA
| | - Mryia K. Hubert
- Department of Entomology University of Wisconsin‐Madison Madison WI USA
| | - Sean D. Schoville
- Department of Entomology University of Wisconsin‐Madison Madison WI USA
| |
Collapse
|
5
|
Keppanan R, Sivaperumal S, Hussain M, Bamisile BS, Aguila LCR, Qasim M, Mekchay S, Wang L, Krutmuang P. Molecular characterization of pathogenesis involving the GAS 1 gene from Entomopathogenic fungus Lecanicillium lecanii and its virulence against the insect host Diaphorina citri. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:99-107. [PMID: 31153482 DOI: 10.1016/j.pestbp.2019.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The entmopathogenic fungus Lecaniicillium lecanii is a naturally available biological control and it is considered to be one of the best mycoinsecticide agents against the destructive insect pest Diaphorina citri Kuwayama. The present study aimed to extract and characterize the toxic insecticidal protein from L. lecanii and to assess the toxicity level against the Asian citrus psyllid the vector of Huanglongbing disease (HLB), also called citrus greening. Extracts of a toxic substance from submerged batch culture examined by sodium dodecyl sulfate-poly-acrylamide (SDS-PAGE), had a molecular weight of 45 kDa. The most abundant toxic metabolite was subjected to HPLC to purify and identified it by mass spectrometry. Subsequently, metabolite toxicity was tested against D. citri at three different concentrations (1%, 2%, and 3%). The results showed that the highest concentration had a significant maximum mortality at 120 h post application. Furthermore, we investigated the expression of the GAS1 gene which was previously identified to have a role in pathogenicity in in vivo studies in adult insect psyllids. Results of this study indicated that expression of the virulence factor gene was present at three concentrations of the fungal suspension post inoculation. This is the first study to provide this novel approach for the characterization of fungal mediated synthesis of a cuticle degrading soluble protein against the insect D. citri. The present results provide strong information on the in vivo expression of the GAS1 gene involved in fungal virulence pertaining to penetration of the insect cuticle, but not to inhibiting the growth of the host.
Collapse
Affiliation(s)
- Ravindran Keppanan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China; Department of Biotechnology and Genetic Engineering, School of Life Sciences, Bharathidasan University, Tamil Nadu, India
| | - Sivaramakrishnan Sivaperumal
- Department of Biotechnology and Genetic Engineering, School of Life Sciences, Bharathidasan University, Tamil Nadu, India
| | - Mubasher Hussain
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bamisope Steve Bamisile
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Qasim
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Supamit Mekchay
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
| | | |
Collapse
|
6
|
Martínez-Barrera OY, Toledo J, Liedo P, Gómez J, Valle-Mora J, Cancino J, Montoya P. Does Beauveria bassiana (Hypocreales: Cordycipitaceae) Affect the Survival and Fecundity of the Parasitoid Coptera haywardi (Hymenoptera: Diapriidae)? ENVIRONMENTAL ENTOMOLOGY 2019; 48:156-162. [PMID: 30624686 DOI: 10.1093/ee/nvy182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Indexed: 06/09/2023]
Abstract
The effect of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin on the development of immature stages, and survival and fecundity of Coptera haywardi (Oglobin) adults was studied under laboratory conditions. The fungus was applied as dry conidia on parasitized pupae of Anastrepha obliqua (Macquart) (Diptera: Tephritidae) and on parasitoid adults of two different age groups (1- to 4-d-old, and 5- to 10-d-old). The fungus caused no negative effects on the development of the immature stages, since there were no differences on the emergence of adults compared with the untreated control. Adults were susceptible to the fungus on both sexes and age groups. Males showed shorter lifespan than females, even in untreated individuals. Despite the increased adult mortality produced by the fungus there was no effect on fecundity during first 18 d of adult life, as the net fecundity was 26.7 and 26.3 parasitoids per female treated and untreated, respectively. Our results suggest that, given the low susceptibility of parasitized pupae and the no effect on fecundity during the first 18 d of adult life, it is possible to develop management strategies using these two natural enemies in the biological control against A. obliqua.
Collapse
Affiliation(s)
- Olga Yaneth Martínez-Barrera
- Departamento de Agricultura, Sociedad y Ambiente. El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, México
| | - Jorge Toledo
- Departamento de Agricultura, Sociedad y Ambiente. El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, México
| | - Pablo Liedo
- Departamento de Agricultura, Sociedad y Ambiente. El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, México
| | - Jaime Gómez
- Departamento de Agricultura, Sociedad y Ambiente. El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, México
| | - Javier Valle-Mora
- Departamento de Agricultura, Sociedad y Ambiente. El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, México
| | - Jorge Cancino
- Programa Moscafrut SAGARPA-IICA, Camino a los Cacaotales S/N, C.P., Metapa de Domínguez, Chiapas, México
| | - Pablo Montoya
- Programa Moscafrut SAGARPA-IICA, Camino a los Cacaotales S/N, C.P., Metapa de Domínguez, Chiapas, México
| |
Collapse
|
7
|
Davari A, Skinner M, Parker B. Cell electrofusion to improve efficacy and thermotolerance of the entomopathogenic fungus,
Beauveria bassiana. J Appl Microbiol 2018; 125:1482-1493. [DOI: 10.1111/jam.14031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 01/19/2023]
Affiliation(s)
- A. Davari
- Entomology Research Laboratory University of Vermont Burlington VT 05405‐0105 USA
| | - M. Skinner
- Entomology Research Laboratory University of Vermont Burlington VT 05405‐0105 USA
| | - B.L. Parker
- Entomology Research Laboratory University of Vermont Burlington VT 05405‐0105 USA
| |
Collapse
|
8
|
Boguś MI, Wieloch W, Ligęza-Żuber M. Coronatin-2 from the entomopathogenic fungus Conidiobolus coronatus kills Galleria mellonella larvae and incapacitates hemocytes. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:66-76. [PMID: 27444104 DOI: 10.1017/s0007485316000638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Coronatin-2, a 14.5 kDa protein, was isolated from culture filtrates of the entomopathogenic fungus Conidiobolus coronatus (Costantin) Batko (Entomophthoramycota: Entomophthorales). After LC-MS/MS (liquid chromatography tandem mass spectrometry) analysis of the tryptic peptide digest of coronatin-2 and a mass spectra database search no orthologs of this protein could be found in fungi. The highest homology was observed to the partial translation elongation factor 1a from Sphaerosporium equinum (protein sequence coverage, 21%), with only one peptide sequence, suggesting that coronatin-2 is a novel fungal protein that has not yet been described. In contrast to coronatin-1, an insecticidal 36 kDa protein, which shows both elastolytic and chitinolytic activity, coronatin-2 showed no enzymatic activity. Addition of coronatin-2 into cultures of hemocytes taken from larvae of Galleria mellonella Linnaeus (Lepidoptera: Pyralidae), resulted in progressive disintegration of nets formed by granulocytes and plasmatocytes due to rapid degranulation of granulocytes, extensive vacuolization of plasmatocytes accompanied by cytoplasm expulsion, and cell disintegration. Spherulocytes remained intact, while oenocytes rapidly disintegrated. Coronatin-2 produced 80% mortality when injected into G. mellonella at 5 µg larva-1. Further study is warranted to determine the relevance of the acute toxicity of coronatin-2 and its effects on hemocytes in vitro to virulence of C. coronatus against its hosts.
Collapse
Affiliation(s)
- M I Boguś
- W. Stefański Institute of Parasitology,Polish Academy of Sciences,Twarda 51/55,00-818 Warszawa,Poland
| | - W Wieloch
- W. Stefański Institute of Parasitology,Polish Academy of Sciences,Twarda 51/55,00-818 Warszawa,Poland
| | - M Ligęza-Żuber
- W. Stefański Institute of Parasitology,Polish Academy of Sciences,Twarda 51/55,00-818 Warszawa,Poland
| |
Collapse
|
9
|
Jin K, Peng G, Liu Y, Xia Y. The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Fungal Genet Biol 2015; 77:61-7. [DOI: 10.1016/j.fgb.2015.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/05/2015] [Accepted: 03/25/2015] [Indexed: 12/22/2022]
|
10
|
Hajjar MJ, Ajlan AM, Al-Ahmad MH. New Approach of Beauveria bassiana to Control the Red Palm Weevil (Coleoptera: Curculionidae) by Trapping Technique. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:425-432. [PMID: 26470153 DOI: 10.1093/jee/tou055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 11/24/2014] [Indexed: 06/05/2023]
Abstract
This work is the first study to investigate the efficacy of the commercial formulation of Beauveria bassiana (Broadband) to control adults of red palm weevil (Rhynchophorus ferrugineus (Olivier)). This fungus could be applied as one of the biological tactics in controlling red palm weevil. Bioassay experiments for medium lethal concentrate and medium time to cause death of 50% of red palm weevil adults were carried out. The result showed that the LC50 of B. bassiana (Broadband) was 2.19×10(7) and 2.76×10(6) spores/ml at 9 and 23 d of treatment, respectively. The LT50 was 13.95 and 4.15 d for concentration of 1×10(7) and 1×10(8) spores/ml, respectively, whereas 1×10(9) spores/ml caused 100% mortality after 24 h. Additionally, a red palm weevil pheromone trap was designed to attract the adults to be contaminated with spores of Broadband, which was applied to the sackcloth fabric that coated the internal surfaces of the bucket trap. The mating behavior was studied to determine direct and indirect infection of the spores from male to female and vice versa. The results showed a high efficacy of Broadband suspension at 1×10(9) spores/ml; 40 ml of suspension at this concentration treated to cloth in a trap caused death of contaminated adults with B. bassiana spores directly and indirectly. The 100% mortality was obtained even after 13 d of traps treatment with 40 ml of the suspension at 1×10(9) spores/ml.
Collapse
Affiliation(s)
| | - A M Ajlan
- College of Agricultural and Food Sciences, Department of Arid Land Agriculture, King Feisal University, Alhasa 31982, Saudi Arabia
| | | |
Collapse
|
11
|
Gibson DM, Donzelli BGG, Krasnoff SB, Keyhani NO. Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Nat Prod Rep 2014; 31:1287-305. [DOI: 10.1039/c4np00054d] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This highlight discusses the secondary metabolite potential of the insect pathogensMetarhiziumandBeauveria, including a bioinformatics analysis of secondary metabolite genes for which no products are yet identified. (Top picture is a mole cricket infected withBeauveria bassianaand the bottom picture is a wasp infected withBeauveria bassiana.)
Collapse
Affiliation(s)
- Donna M. Gibson
- USDA-ARS
- Biological Integrated Pest Management Research Unit
- Robert W. Holley Center for Agriculture and Health
- Ithaca, USA
| | - Bruno G. G. Donzelli
- Dept. of Plant Pathology and Plant Molecular Biology
- Cornell University
- Ithaca, USA
| | - Stuart B. Krasnoff
- USDA-ARS
- Biological Integrated Pest Management Research Unit
- Robert W. Holley Center for Agriculture and Health
- Ithaca, USA
| | - Nemat O. Keyhani
- Dept. of Microbiology and Cell Science
- University of Florida
- Gainesville, USA
| |
Collapse
|
12
|
Tragust S, Ugelvig LV, Chapuisat M, Heinze J, Cremer S. Pupal cocoons affect sanitary brood care and limit fungal infections in ant colonies. BMC Evol Biol 2013; 13:225. [PMID: 24125481 PMCID: PMC3854126 DOI: 10.1186/1471-2148-13-225] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/29/2013] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The brood of ants and other social insects is highly susceptible to pathogens, particularly those that penetrate the soft larval and pupal cuticle. We here test whether the presence of a pupal cocoon, which occurs in some ant species but not in others, affects the sanitary brood care and fungal infection patterns after exposure to the entomopathogenic fungus Metarhizium brunneum. We use a) a comparative approach analysing four species with either naked or cocooned pupae and b) a within-species analysis of a single ant species, in which both pupal types co-exist in the same colony. RESULTS We found that the presence of a cocoon did not compromise fungal pathogen detection by the ants and that species with cocooned pupae increased brood grooming after pathogen exposure. All tested ant species further removed brood from their nests, which was predominantly expressed towards larvae and naked pupae treated with the live fungal pathogen. In contrast, cocooned pupae exposed to live fungus were not removed at higher rates than cocooned pupae exposed to dead fungus or a sham control. Consistent with this, exposure to the live fungus caused high numbers of infections and fungal outgrowth in larvae and naked pupae, but not in cocooned pupae. Moreover, the ants consistently removed the brood prior to fungal outgrowth, ensuring a clean brood chamber. CONCLUSION Our study suggests that the pupal cocoon has a protective effect against fungal infection, causing an adaptive change in sanitary behaviours by the ants. It further demonstrates that brood removal-originally described for honeybees as "hygienic behaviour"-is a widespread sanitary behaviour in ants, which likely has important implications on disease dynamics in social insect colonies.
Collapse
Affiliation(s)
- Simon Tragust
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
- Evolution, Behaviour and Genetics, Biology I, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
- Animal Ecology I, University of Bayreuth, 95440 Bayreuth, Germany
| | - Line V Ugelvig
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
- Evolution, Behaviour and Genetics, Biology I, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Michel Chapuisat
- Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jürgen Heinze
- Evolution, Behaviour and Genetics, Biology I, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Sylvia Cremer
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
- Evolution, Behaviour and Genetics, Biology I, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| |
Collapse
|
13
|
Su Y, Guo Q, Tu J, Li X, Meng L, Cao L, Dong D, Qiu J, Guan X. Proteins differentially expressed in conidia and mycelia of the entomopathogenic fungus Metarhizium anisopliae sensu stricto. Can J Microbiol 2013; 59:443-8. [PMID: 23826952 DOI: 10.1139/cjm-2013-0096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Metarhizium anisopliae is a well-characterized entomopathogenic fungus that attacks a variety of insects. Its conidia are involved in its propagation and also in its infection of host insects. To investigate the protein expression profiles and to identify the proteins related to development and pathogenesis, we performed a comparative proteomic analysis of the conidia and mycelia of an M. anisopliae strain (Ma1291). The analysis used 2-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. We detected 898 ± 37 protein spots in conidia and 1072 ± 24 in mycelia of strain Ma1291. A comparison of the 2 protein-expression profiles indicated that only 28% of protein spots were common to both developmental stages. Finally, we identified 30 proteins (19 from conidia and 11 from mycelia). The identified proteins exclusive to conidia were those involved in protective processes, appressorium formation, and degradation of the host cuticle (protease PR1H). The identified proteins exclusive to mycelia included major proteins participating in biosynthetic and energy metabolism, such as UTP-glucose-1-phosphate uridylyltransferase and heat shock protein 70. This research provides the first proteomic analysis of different developmental stages of M. anisopliae, and the results should facilitate clarification of the molecular basis of these epigenetic variations.
Collapse
Affiliation(s)
- Yubin Su
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Neutral lipid composition changes in the fat bodies of engorged females Rhipicephalus microplus ticks in response to fungal infections. Parasitol Res 2012; 112:501-9. [PMID: 23138474 DOI: 10.1007/s00436-012-3159-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
The tick's fat body plays an essential role in energy storage and utilization. This study aimed to analyze the fat body neutral lipid composition in Rhipicephalus microplus engorged females. In the first study (physiological profile of untreated ticks), the lipid analysis took place over the course of 4 days; the engorged females were incubated at optimal conditions and their fat bodies were dissected daily. Fat body lipid analysis after fungal infection with Metarhizium anisopliae sensu lato (s.l.) or Beauveria bassiana s.l. was performed with four groups: one without any treatment, one that was inoculated with a solution of 0.1 % Tween 80 in water, and two groups that were inoculated with M. anisopliae or B. bassiana conidial suspensions. The fat bodies were dissected 24 and 48 h after infection. Lipid analysis was conducted by thin-layer chromatography on a silica plate. The results of the physiological profile showed that the amounts of triacylglycerol (TAG) and free cholesterol (CHO) decreased with time, whereas cholesterol ester (CHOE) increased on the second and fourth days. Following M. anisopliae or B. bassiana infection, there was an increase in the amount of CHO after 24 h, whereas the other lipid classes were not altered. M. anisopliae caused an increase in CHOE and TAG and a reduction in CHO at 48 h after infection; however, B. bassiana infection did not cause significant alterations in the concentrations of these lipids. M. anisopliae and B. bassiana infection changed the fat body metabolism of engorged female R. microplus ticks. This study provides the first report of changes in the neutral lipid composition of the R. microplus fat body.
Collapse
|
15
|
Nussenbaum A, Lecuona R. Selection of Beauveria bassiana sensu lato and Metarhizium anisopliae sensu lato isolates as microbial control agents against the boll weevil (Anthonomus grandis) in Argentina. J Invertebr Pathol 2012; 110:1-7. [DOI: 10.1016/j.jip.2012.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/25/2011] [Accepted: 01/25/2012] [Indexed: 11/28/2022]
|
16
|
Sevim A, Donzelli BGG, Wu D, Demirbag Z, Gibson DM, Turgeon BG. Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence. Curr Genet 2012; 58:79-92. [PMID: 22388867 DOI: 10.1007/s00294-012-0366-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 02/02/2012] [Accepted: 02/04/2012] [Indexed: 10/28/2022]
Abstract
Hydrophobins are small, cysteine-rich, secreted proteins, ubiquitously produced by filamentous fungi that are speculated to function in fungal growth, cell surface properties, and development, although this has been rigorously tested for only a few species. Herein, we report identification of three hydrophobin genes from the entomopathogenic fungus, Metarhizium brunneum, and functional characterization of strains lacking these genes. One gene (HYD1/ssgA) encodes a class I hydrophobin identified previously. Two new genes, HYD3 and HYD2, encode a class I and class II hydrophobin, respectively. To examine function, we deleted all three separately, from the M. brunneum strain KTU-60 genome, using Agrobacterium tumefaciens-mediated transformation. Deletion strains were screened for alterations in developmental phenotypes including growth, sporulation, pigmentation, colony surface properties, and virulence to insects. All deletion strains were reduced in their ability to sporulate and showed alterations in wild-type pigmentation, but all retained wild-type hydrophobicity, except for one individual hyd3 mutant. Complementation with the wild-type HYD3 gene restored hydrophobicity. Each gene, present as a single copy in the genome, showed differential expression patterns dependent on the developmental stage of the fungus. When Spodoptera exigua (beet armyworm) larvae were treated with either conidia or blastospores of each hyd mutant, reductions in virulence and delayed mortality were observed as compared to WT. Together, these results suggest that hydrophobins are differentially expressed and may have distinct, but compensating roles, in conidiation, pigmentation, hydrophobicity, and virulence.
Collapse
Affiliation(s)
- Ali Sevim
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, 344 Plant Science Building, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
17
|
Wieloch W, Boguś MI, Ligęza M, Koszela-Piotrowska I, Szewczyk A. Coronatin-1 isolated from entomopathogenic fungus Conidiobolus coronatus kills Galleria mellonella hemocytes in vitro and forms potassium channels in planar lipid membrane. Toxicon 2011; 58:369-79. [PMID: 21798278 DOI: 10.1016/j.toxicon.2011.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/05/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
Abstract
Entomopathogenic fungi are important natural regulatory factors of insect populations and have potential as biological control agents of insect pests. The cosmopolitan soil fungus Conidiobolus coronatus (Entomopthorales) easily attacks Galleria mellonella (Lepidoptera) larvae. Prompt death of invaded insects is attributed to the action of toxic metabolites released by the invader. Effect of fungal metabolites on hemocytes, insect blood cells involved in innate defense response, remains underexplored to date. C. coronatus isolate 3491 inducing 100% mortality of G. mellonella last instar larvae exposed to sporulating colonies, was cultivated at 20 °C in minimal medium. Post-incubation filtrates were used as a source of fungal metabolites. A two-step HPLC (1 step: Shodex KW-803 column eluted with 50 mM KH(2)PO(4) supplemented with 0.1 M KCl, pH 6.5; 2 step: ProteinPak™ CM 8HR column equilibrated with 5 mM KH(2)PO(4), pH 6.5, proteins eluted with a linear gradient of 0.5 M KCl) allowed the isolation of coronatin-1, an insecticidal 36 kDa protein showing both elastolytic and chitinolytic activities. Addition of coronatin-1 into primary in vitro cultures of G. mellonella hemocytes resulted in rapid disintegration of spherulocytes freely floating in culture medium and shrinkage of plasmatocytes adhering to the bottom of culture well. Coronatin-1 stimulated pseudopodia atrophy and, in consequence, disintegration of nets formed by cultured hemocytes. After incorporation of coronatin-1 into planar lipid membrane (PLM) ion channels selective for K(+) ions in 50/450 mM KCl solutions were observed. Potassium current flows were recorded in nearly 70% of experiments with conductance from 300 pS up to 1 nS. All observed channels were active at both positive and negative membrane potentials. Under experimental conditions incorporated coronatin-1 exhibited a zero current potential (E(rev)) of 47.7 mV, which indicates K(+)-selectivity of this protein. The success of the purification of coronatin-1 will allow further characterization of the mode of action of this molecule, including ability of coronatin-1 to form potassium channels in immunocompetent hemocytes.
Collapse
Affiliation(s)
- Wioletta Wieloch
- Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
| | | | | | | | | |
Collapse
|
18
|
Montesinos-Matías R, Viniegra-González G, Alatorre-Rosas R, Loera O. Relationship between virulence and enzymatic profiles in the cuticle of Tenebrio molitor by 2-deoxy-d-glucose-resistant mutants of Beauveria bassiana (Bals.) Vuill. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0672-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Defense mechanism of the termite, Coptotermes formosanus Shiraki, to entomopathogenic fungi. J Invertebr Pathol 2007; 97:165-70. [PMID: 17949740 DOI: 10.1016/j.jip.2007.09.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/21/2007] [Accepted: 09/05/2007] [Indexed: 11/23/2022]
Abstract
Termites, Coptotermes formosanus Shiraki, reared individually, were highly susceptible to entomopathogenic fungi, Paecilomyces fumosoroseus and Beauveria brongniartii and Metarhizium anisopliae, while termites reared in groups were highly resistant. Quantitative assays with an epifluoresent microscope revealed a significant difference in the number of conidia attachments among three entomopathogenic fungi. The conidia of B. brongniartii and P. fumosoroseus bound to termite cuticles more effectively than M. anisopliae conidia. Our results also suggested that self-grooming behavior is less effective, but mutual grooming is very effective in the removal of conidia from cuticles of their nestmates. Statistical analysis of removal rates indicated that conidia of P. fumosoroseus and B. brongniartii were removed more rapidly than M. anisopliae conidia from termite cuticles.
Collapse
|
20
|
Boguś MI, Kedra E, Bania J, Szczepanik M, Czygier M, Jabłoński P, Pasztaleniec A, Samborski J, Mazgajska J, Polanowski A. Different defense strategies of Dendrolimus pini, Galleria mellonella, and Calliphora vicina against fungal infection. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:909-22. [PMID: 17512001 DOI: 10.1016/j.jinsphys.2007.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 05/15/2023]
Abstract
The resistance of Galleria mellonella, Dendrolimus pini, and Calliphora vicina larvae against infection by the enthomopathogen Conidiobolus coronatus was shown to vary among the studied species. Exposure of both G. mellonella and D. pini larvae to the fungus resulted in rapid insect death, while all the C. vicina larvae remained unharmed. Microscopic studies revealed diverse responses of the three species to the fungal pathogen: (1) the body cavities of D. pini larvae were completely overgrown by fungal hyphae, with no signs of hemocyte response, (2) infected G. mellonella larvae formed melanotic capsules surrounding the fungal pathogen, and (3) the conidia of C. coronatus did not germinate on the cuticle of C. vicina larvae. The in vitro study on the degradation of the insect cuticle by proteases secreted by C. coronatus revealed that the G. mellonella cuticle degraded at the highest rate. The antiproteolytic capacities of insect hemolymph against fungal proteases correlated well with the insects' susceptibility to fungal infection. The antiproteolytic capacities of insect hemolymph against fungal proteases correlated well with the insects' susceptibility to fungal infection. Of all the tested species, only plasmatocytes exhibited phagocytic potential. Exposure to the fungal pathogen resulted in elevated phagocytic activity, found to be the highest in the infected G. mellonella. The incubation of insect hemolymph with fungal conidia and hyphae revealed diverse reactions of hemocytes of the studied insect species. The encapsulation potential of D. pini hemocytes was low. Hemocytes of G. mellonella showed a high ability to attach and encapsulate fungal structures. Incubation of C. vicina hemolymph with C. coronatus did not result in any hemocytic response. Phenoloxidase (PO) activity was found to be highest in D. pini hemolymph, moderate in G. mellonella, and lowest in the hemolymph of C. vicina. Fungal infection resulted in a significant decrease of PO activity in G. mellonela larvae, while that in the larvae of D. pini remained unchanged. PO activity in C. vicina exposed to fungus slightly increased. The lysozyme-like activity increased in the plasma of all three insect species after contact with the fungal pathogen. Anti E. coli activity was detected neither in control nor in infected D. pini larvae. No detectable anti E. coli activity was found in the control larvae of G. mellonella; however, its exposure to C. coronatus resulted in an increase in the activity to detectable level. In the case of C. vicina exposure to the fungus, the anti E. coli activity was significantly higher than in control larvae. The defense mechanisms of D. pini (species of economic importance in Europe) are presented for the first time.
Collapse
Affiliation(s)
- M I Boguś
- W. Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warszawa, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|