1
|
Boraldi F, Lofaro FD, Bergamini G, Ferrari A, Malagoli D. Pomacea canaliculata Ampullar Proteome: A Nematode-Based Bio-Pesticide Induces Changes in Metabolic and Stress-Related Pathways. BIOLOGY 2021; 10:1049. [PMID: 34681148 PMCID: PMC8533556 DOI: 10.3390/biology10101049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022]
Abstract
Pomacea canaliculata is a freshwater gastropod known for being both a highly invasive species and one of the possible intermediate hosts of the mammalian parasite Angiostrongylus cantonensis. With the aim of providing new information concerning P. canaliculata biology and adaptability, the first proteome of the ampulla, i.e., a small organ associated with the circulatory system and known as a reservoir of nitrogen-containing compounds, was obtained. The ampullar proteome was derived from ampullae of control snails or after exposure to a nematode-based molluscicide, known for killing snails in a dose- and temperature-dependent fashion. Proteome analysis revealed that the composition of connective ampulla walls, cell metabolism and oxidative stress response were affected by the bio-pesticide. Ultrastructural investigations have highlighted the presence of rhogocytes within the ampullar walls, as it has been reported for other organs containing nitrogen storage tissue. Collected data suggested that the ampulla may belong to a network of organs involved in controlling and facing oxidative stress in different situations. The response against the nematode-based molluscicide recalled the response set up during early arousal after aestivation and hibernation, thus encouraging the hypothesis that metabolic pathways and antioxidant defences promoting amphibiousness could also prove useful in facing other challenges stimulating an oxidative stress response, e.g., immune challenges or biocide exposure. Targeting the oxidative stress resistance of P. canaliculata may prove helpful for increasing its susceptibility to bio-pesticides and may help the sustainable control of this pest's diffusion.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (A.F.)
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (A.F.)
| | - Giulia Bergamini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Agnese Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (A.F.)
| | - Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (A.F.)
| |
Collapse
|
2
|
Zheng X, Lei S, Zhao S, Ye G, Ma R, Liu L, Xie Y, Shi X, Chen J. Temperature elevation and acidification damage microstructure of abalone via expression change of crystal induction genes. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105114. [PMID: 32892151 DOI: 10.1016/j.marenvres.2020.105114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Ocean warming and acidification caused by global climate change interferes with the shell growth of mollusks. In abalone Haliotis discus hannai, the microstructural changes in the shell under stress are unclear, and the effect of thermal stress on biomineralization is unknown. The lack of gene information has also hampered the study of abalone biomineralization mechanisms. In this study, the microstructure of reconstructed shell in H. discus hannai was observed to determine the effects of thermal and acidification stress on shell growth. Three nacre protein genes, Hdh-AP7, Hdh-AP24, and Hdh-perlustrin, were characterized, and their expression pattern during shell repair was measured under thermal and acidification stress and compared with those of two known biomineralization-related genes, Hdh-AP-1 and Hdh-defensin. The stress resulted in aragonite plates with corroded or irregular microstructures. The gene expression of two nacre proteins (Hdh-AP7 and Hdh-AP24), which directly induce crystal formation, were more sensitive to thermal stress than to acidification, but the expression of the regulatory nacre protein (Hdh-perlustrin) and the two known genes (Hdh-AP-1 and Hdh-defensin), which are also related to immunity, showed an interlinked, complex pattern change. We concluded that high temperature and acidification damages the shell microstructure by disturbing the expression pattern of biomineralization-related genes.
Collapse
Affiliation(s)
- Xiangnan Zheng
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Shanshan Lei
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Shuxian Zhao
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Ganping Ye
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Ruijuan Ma
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Lemian Liu
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Youping Xie
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Xinguo Shi
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China.
| | - Jianfeng Chen
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China.
| |
Collapse
|
3
|
Smits M, Artigaud S, Bernay B, Pichereau V, Bargelloni L, Paillard C. A proteomic study of resistance to Brown Ring disease in the Manila clam, Ruditapes philippinarum. FISH & SHELLFISH IMMUNOLOGY 2020; 99:641-653. [PMID: 32044464 DOI: 10.1016/j.fsi.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023]
Abstract
Marine mollusk aquaculture has more than doubled over the past twenty years, accounting for over 15% of total aquaculture production in 2016. Infectious disease is one of the main limiting factors to the development of mollusk aquaculture, and the difficulties inherent to combating pathogens through antibiotic therapies or disinfection have led to extensive research on host defense mechanisms and host-pathogen relationships. It has become increasingly clear that characterizing the functional profiles of response to a disease is an essential step in understanding resistance mechanisms and moving towards more effective disease control. The Manila clam, Ruditapes philippinarum, is a main cultured bivalve species of economic importance which is affected by Brown Ring disease (BRD), an infection induced by the bacterium Vibrio tapetis. In this study, juvenile Manila clams were subjected to a 28-day controlled challenge with Vibrio tapetis, and visual and molecular diagnoses were carried out to distinguish two extreme phenotypes within the experimental clams: uninfected ("RES", resistant) and infected ("DIS", diseased) post-challenge. Total protein extractions were carried out for resistant and diseased clams, and proteins were identified using LC-MS/MS. Protein sequences were matched against a reference transcriptome of the Manila clam, and protein intensities based on label-free quantification were compared to reveal 49 significantly accumulated proteins in resistant and diseased clams. Proteins with known roles in pathogen recognition, lysosome trafficking, and various aspects of the energy metabolism were more abundant in diseased clams, whereas those with roles in redox homeostasis and protein recycling were more abundant in resistant clams. Overall, the comparison of the proteomic profiles of resistant and diseased clams after a month-long controlled challenge to induce the onset of Brown Ring disease suggests that redox homeostasis and maintenance of protein structure by chaperone proteins may play important and interrelated roles in resistance to infection by Vibrio tapetis in the Manila clam.
Collapse
Affiliation(s)
- M Smits
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France; Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis Campus, Viale dell'Universita', 16, 35020, Legnaro (PD), Italy.
| | - S Artigaud
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France.
| | - B Bernay
- Plateforme Proteogen, SFR ICORE 4206, Université de Caen Basse-Normandie, Esplanade de la paix, 14032, Caen cedex, France.
| | - V Pichereau
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France.
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis Campus, Viale dell'Universita', 16, 35020, Legnaro (PD), Italy.
| | - C Paillard
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France.
| |
Collapse
|
4
|
Mao J, Zhang W, Zhang X, Tian Y, Wang X, Hao Z, Chang Y. Transcriptional changes in the Japanese scallop (Mizuhopecten yessoensis) shellinfested by Polydora provide insights into the molecular mechanism of shell formation and immunomodulation. Sci Rep 2018; 8:17664. [PMID: 30518937 PMCID: PMC6281612 DOI: 10.1038/s41598-018-35749-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/07/2018] [Indexed: 01/19/2023] Open
Abstract
The Japanese scallop (Mizuhopecten yessoensis) is one of the most important aquaculture species in Asian countries; however, it has suffered severe infection by Polydora in northern China in recent years, causing great economic losses. The Polydora parasitizes the shell of scallops, badly destroying the shell's structure. To investigate the molecular response mechanism of M. yessoensis to Polydora infestion, a comprehensive and niche-targeted cDNA sequence database for diseased scallops was constructed. Additionally, the transcriptional changes in the edge mantle, central mantle and hemocytes, tissues directly related to the disease, were first described in this study. The results showed that genes involved in shell formation and immunomodulation were significantly differentially expressed due to the infestation. Different transcriptional changes existed between the two mantle regions, indicating the different molecular functions likely responsible for the formation of different shell layers. The differential expression of genes for immune recognition, signal transduction and pathogen elimination presented an integrated immune response process in scallops. Moreover, neuromodulation and glycometabolism involved in the regulation process with relevant function significantly enriched. The study provides valuable information for mechanism study of shell formation and immunomodulation in scallops.
Collapse
Affiliation(s)
- Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wenjing Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiaosen Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
5
|
Stefani F, Casatta N, Ferrarin C, Izzotti A, Maicu F, Viganò L. Gene expression and genotoxicity in Manila clam (Ruditapes philippinarum) modulated by sediment contamination and lagoon dynamics in the Po river delta. MARINE ENVIRONMENTAL RESEARCH 2018; 142:257-274. [PMID: 30389237 DOI: 10.1016/j.marenvres.2018.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/18/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
The lagoons of the Po River delta are potentially exposed to complex mixtures of contaminants, nevertheless, there is a substantial lack of information about the biological effects of these contaminants in the Po delta lagoons. These environments are highly dynamic and the interactions between chemical and environmental stressors could prevent the proper identification of biological effects and their causes. In this study, we aimed to disentangle such interactions focusing on Manila clams, previously exposed to six lagoons of the Po delta, adopting three complementary tools: a) the detailed description via modelling techniques of lagoon dynamics for salinity and water temperature; b) the response sensitivity of a number of target genes (ahr, cyp4, ρ-gst, σ-gst, hsp22, hsp70, hsp90, ikb, dbh, ach, cat, Mn-sod, Cu/Zn-sod, cyp-a, flp, grx, TrxP) investigated in clam digestive glands by Real Time PCR; and c) the relevance of DNA adducts determined in clams as markers of exposure to genotoxic chemicals. The lagoons showed specific dynamics, and two of them (Marinetta and Canarin) could induce osmotic stress. A group of genes (ahr, cyp4, Mn-sod, σ-gst, hsp-22, cyp-a, TrxP) seemed to be associated with overall lagoon characteristics as may be described by salinity and its variations. Lagoon modelling and a second group of genes (hsp70, hsp90, cat, ikb, ach, grx, Cu/Zn-sod) also suggested that moderate increases of river discharge may imply worse exposure conditions. Oxidative stress seemed to be associated with such events but it was slightly evident also under normal exposure conditions. DNA adduct formation was mainly associated with overwhelmed antioxidant defences (e.g. low Cu/Zn-sod) or seemingly with their lack of response in due time. In Po delta lagoons, Manila clam can be affected by chemical and environmental factors which can contribute to induce oxidative stress, DNA adduct formation and, ultimately, to affect clam condition and health.
Collapse
Affiliation(s)
- Fabrizio Stefani
- CNR- National Research Council of Italy, IRSA - Water Research Institute, Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Nadia Casatta
- CNR- National Research Council of Italy, IRSA - Water Research Institute, Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Christian Ferrarin
- CNR- National Research Council of Italy, ISMAR - Marine Sciences Institute in Venice, Castello 2737/f, 30122 Venezia, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132, Genoa, Italy; IRCCS Policlinico San Martino, Genoa, Italy
| | - Francesco Maicu
- CNR- National Research Council of Italy, ISMAR - Marine Sciences Institute in Venice, Castello 2737/f, 30122 Venezia, Italy
| | - Luigi Viganò
- CNR- National Research Council of Italy, IRSA - Water Research Institute, Via del Mulino 19, 20861, Brugherio, MB, Italy.
| |
Collapse
|
6
|
Almeida Â, Freitas R, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Figueira E, Campos B, Barata C. Effects of carbamazepine and cetirizine under an ocean acidification scenario on the biochemical and transcriptome responses of the clam Ruditapes philippinarum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:857-868. [PMID: 29353802 DOI: 10.1016/j.envpol.2017.12.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/20/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Several works evaluated the toxicity of pharmaceutical drugs and climate related changes in invertebrates but few explored the combined effects of both stressors, namely considering their mode of action (MoA). Carbamazepine (CBZ) and cetirizine (CTZ) are pharmaceutical drugs detected in the environment and the toxicity derived from the combined effects of these drugs with ocean acidification (OA) is poorly explored. Thus, the present study investigated the biochemical parameters related to an oxidative stress response and the transcription of genes related to the MoA of CBZ (1.0 μg/L) and CTZ (0.6 μg/L) in the clam Ruditapes philippinarum chronically exposed (28 days) to control (7.8) and low (7.5) pH conditions. The results obtained showed that despite the clams accumulated both drugs, at low pH the clams exposed to CTZ decreased drug concentration and BCF values (CTZ uptake: 2.0 ± 0.5 ng/g fresh weight; BCF: 3.8 ± 0.9) in comparison with clams exposed to control pH (CTZ uptake: 2.9 ± 0.3 ng/g fresh weight; BCF: 5.5 ± 0.6). No oxidative stress was induced by the exposure to CBZ or CTZ at each pH level, but the transcription of several genes related with the MoA (neurotransmission, immunity and biomineralization) was altered by low pH, drug exposure and the combination of both stressors. At both pH conditions, CBZ increased the transcription of GABA receptor gene (neurotransmission) and CTZ led to a decrease of Perlucin gene (biomineralization) transcription. The transcription of MyD88 gene (immunity) decreased at low pH (7.5) combined with drug exposure (CBZ or CTZ). Thus, it was highlighted that the interaction of drug exposure and low pH conditions can change bivalves' sensitivity to drugs or alter drugs toxicity.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Etelvina Figueira
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Campos
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
7
|
Dias GM, Bidault A, Le Chevalier P, Choquet G, Der Sarkissian C, Orlando L, Medigue C, Barbe V, Mangenot S, Thompson CC, Thompson FL, Jacq A, Pichereau V, Paillard C. Vibrio tapetis Displays an Original Type IV Secretion System in Strains Pathogenic for Bivalve Molluscs. Front Microbiol 2018; 9:227. [PMID: 29515533 PMCID: PMC5825899 DOI: 10.3389/fmicb.2018.00227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Brown Ring Disease (BRD) caused high mortality rates since 1986 in the Manila clam Venerupis philippinarum introduced and cultured in Western Europe from the 1970s. The causative agent of BRD is a Gram-Negative bacterium, Vibrio tapetis, which is also pathogenic to fish. Here we report the first assembly of the complete genome of V. tapetis CECT4600T, together with the genome sequences of 16 additional strains isolated across a broad host and geographic range. Our extensive genome dataset allowed us to describe the pathogen pan- and core genomes and to identify putative virulence factors. The V. tapetis core genome consists of 3,352 genes, including multiple potential virulence factors represented by haemolysins, transcriptional regulators, Type I restriction modification system, GGDEF domain proteins, several conjugative plasmids, and a Type IV secretion system. Future research on the coevolutionary arms race between V. tapetis virulence factors and host resistance mechanisms will improve our understanding of how pathogenicity develops in this emerging pathogen.
Collapse
Affiliation(s)
- Graciela M. Dias
- Laboratoire des Sciences de l'Environnement Marin, Université de Bretagne Occidentale, UMR 6539 UBO/Centre National de la Recherche Scientifique/IRD/Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adeline Bidault
- Laboratoire des Sciences de l'Environnement Marin, Université de Bretagne Occidentale, UMR 6539 UBO/Centre National de la Recherche Scientifique/IRD/Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France
| | - Patrick Le Chevalier
- Laboratoire de Biotechnologie et Chimie Marine, Université de Bretagne Occidentale, Quimper, France
| | - Gwenaëlle Choquet
- Laboratoire des Sciences de l'Environnement Marin, Université de Bretagne Occidentale, UMR 6539 UBO/Centre National de la Recherche Scientifique/IRD/Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France
| | - Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, Centre National de la Recherche Scientifique UMR 5288, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Claudine Medigue
- CEA, Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université d'Evry, Centre National de la Recherche Scientifique-UMR 8030, Evry, France
| | - Valerie Barbe
- CEA, Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université d'Evry, Centre National de la Recherche Scientifique-UMR 8030, Evry, France
| | - Sophie Mangenot
- CEA, Institut de biologie François-Jacob, Genoscope, Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, Evry, France
| | - Cristiane C. Thompson
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano L. Thompson
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Annick Jacq
- Institute for Integrative Biology of the Cell, CEA, Centre National de la Recherche Scientifique, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Vianney Pichereau
- Laboratoire des Sciences de l'Environnement Marin, Université de Bretagne Occidentale, UMR 6539 UBO/Centre National de la Recherche Scientifique/IRD/Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France
| | - Christine Paillard
- Laboratoire des Sciences de l'Environnement Marin, Université de Bretagne Occidentale, UMR 6539 UBO/Centre National de la Recherche Scientifique/IRD/Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France
- *Correspondence: Christine Paillard
| |
Collapse
|
8
|
Calvo-Iglesias J, Pérez-Estévez D, González-Fernández Á. MSP22.8 is a protease inhibitor-like protein involved in shell mineralization in the edible mussel Mytilus galloprovincialis. FEBS Open Bio 2017; 7:1539-1556. [PMID: 28979842 PMCID: PMC5623705 DOI: 10.1002/2211-5463.12286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/01/2023] Open
Abstract
The mussel shell protein 22.8 (MSP22.8) is recognized by a monoclonal antibody (M22.8) directed against larvae of the mussel Mytilus galloprovincialis. After being secreted by cells of the mantle-edge epithelium into the extrapallial (EP) space (the gap between the mantle and the shell), the protein is detected in the extrapallial fluid (EPF) and EP hemocytes and finally becomes part of the shell matrix framework in adult specimens of M. galloprovincialis. In the work described here, we show how MSP22.8 is detected in EPF samples from different species of mussels (M. galloprovincialis, Mytilus edulis, and Xenostrobus securis), and also as a shell matrix protein in M. galloprovincialis, Mytilus chilensis, and Perna canaliculus. A multistep purification strategy was employed to isolate the protein from the EPF, which was then analyzed by mass spectrometry in order to identify it. The results indicate that MSP22.8 is a serpin-like protein that has great similarity with the protease inhibitor-like protein-B1, reported previously for Mytilus coruscus. We suggest that MSP22.8 is part of a system offering protection from proteolysis during biomineralization and is also part of the innate immune system in mussels.
Collapse
Affiliation(s)
- Juan Calvo-Iglesias
- Immunology Biomedical Research Center (CINBIO) Centro Singular de investigación de Galicia Institute of Biomedical Research of Vigo (IBIV) University of Vigo Pontevedra Spain
| | | | - África González-Fernández
- Immunology Biomedical Research Center (CINBIO) Centro Singular de investigación de Galicia Institute of Biomedical Research of Vigo (IBIV) University of Vigo Pontevedra Spain
| |
Collapse
|
9
|
Der Sarkissian C, Pichereau V, Dupont C, Ilsøe PC, Perrigault M, Butler P, Chauvaud L, Eiríksson J, Scourse J, Paillard C, Orlando L. Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past. Mol Ecol Resour 2017; 17:835-853. [PMID: 28394451 DOI: 10.1111/1755-0998.12679] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/24/2017] [Accepted: 04/03/2017] [Indexed: 02/05/2023]
Abstract
Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro-) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management.
Collapse
Affiliation(s)
- Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Vianney Pichereau
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | | | - Peter C Ilsøe
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Mickael Perrigault
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | - Paul Butler
- CGES, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Laurent Chauvaud
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | - Jón Eiríksson
- Institute of Earth Sciences, University of Iceland, Askja, Reykjavík, Iceland
| | - James Scourse
- CGES, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Christine Paillard
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
- Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, CNRS UMR 5288, Toulouse, France
| |
Collapse
|
10
|
Volland M, Blasco J, Hampel M. Validation of reference genes for RT-qPCR in marine bivalve ecotoxicology: Systematic review and case study using copper treated primary Ruditapes philippinarum hemocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:86-94. [PMID: 28189915 DOI: 10.1016/j.aquatox.2017.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
The appropriate selection of reference genes for the normalization of non-biological variance in reverse transcription real-time quantitative PCR (RT-qPCR) is essential for the accurate interpretation of the collected data. The use of multiple validated reference genes has been shown to substantially increase the robustness of the normalization. It is therefore considered good practice to validate putative genes under specific conditions, determine the optimal number of genes to be employed, and report the method or methods used. Under this premise, we assessed the current state of reference gene based normalization in RT-qPCR bivalve ecotoxicology studies (post 2011), employing a systematic quantitative literature review. A total of 52 papers met our criteria and were analysed for genes used, the use of multiple reference genes, as well as the validation method employed. We further critically discuss methods for reference gene validation based on a case study using copper exposed primary hemocytes from the marine bivalve Ruditapes philippinarum; including the established algorithms geNorm, NormFinder and BestKeeper, as well as the popular online tool RefFinder. We identified that RT-qPCR normalization is largely performed using single reference genes, while less than 40% of the studies attempted to experimentally validate the expression stability of the genes used. 18s rRNA and β-Actin were the most popular genes, yet their un-validated use did introduce artefactual variance that altered the interpretation of the resulting data. Our findings further suggest that combining the results from multiple individual algorithms and calculating the overall best-ranked gene, as computed by the RefFinder tool, does not by default lead to the identification of the most suitable reference genes.
Collapse
Affiliation(s)
- Moritz Volland
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Universitario Río San Pedro s/n, 11510 Puerto Real, Cadiz, Spain.
| | - Julián Blasco
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Universitario Río San Pedro s/n, 11510 Puerto Real, Cadiz, Spain
| | - Miriam Hampel
- Department for Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus Universitario Río San Pedro s/n, 11510 Puerto Real, Cadiz, Spain; Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario Río San Pedro s/n, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
11
|
Vasta GR, Feng C, Bianchet MA, Bachvaroff TR, Tasumi S. Structural, functional, and evolutionary aspects of galectins in aquatic mollusks: From a sweet tooth to the Trojan horse. FISH & SHELLFISH IMMUNOLOGY 2015; 46:94-106. [PMID: 25982395 PMCID: PMC4509915 DOI: 10.1016/j.fsi.2015.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 05/02/2023]
Abstract
Galectins constitute a conserved and widely distributed lectin family characterized by their binding affinity for β-galactosides and a unique binding site sequence motif in the carbohydrate recognition domain (CRD). In spite of their structural conservation, galectins display a remarkable functional diversity, by participating in developmental processes, cell adhesion and motility, regulation of immune homeostasis, and recognition of glycans on the surface of viruses, bacteria and protozoan parasites. In contrast with mammals, and other vertebrate and invertebrate taxa, the identification and characterization of bona fide galectins in aquatic mollusks has been relatively recent. Most of the studies have focused on the identification and domain organization of galectin-like transcripts or proteins in diverse tissues and cell types, including hemocytes, and their expression upon environmental or infectious challenge. Lectins from the eastern oyster Crassostrea virginica, however, have been characterized in their molecular, structural and functional aspects and some notable features have become apparent in the galectin repertoire of aquatic mollusks. These including less diversified galectin repertoires and different domain organizations relative to those observed in vertebrates, carbohydrate specificity for blood group oligosaccharides, and up regulation of galectin expression by infectious challenge, a feature that supports their proposed role(s) in innate immune responses. Although galectins from some aquatic mollusks have been shown to recognize microbial pathogens and parasites and promote their phagocytosis, they can also selectively bind to phytoplankton components, suggesting that they also participate in uptake and intracellular digestion of microalgae. In addition, the experimental evidence suggests that the protozoan parasite Perkinsus marinus has co-evolved with the oyster host to be selectively recognized by the oyster hemocyte galectins over algal food or bacterial pathogens, thereby subverting the oyster's innate immune/feeding recognition mechanisms to gain entry into the host cells.
Collapse
Affiliation(s)
- G R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA.
| | - C Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - M A Bianchet
- Department of Neurology, and Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - T R Bachvaroff
- University of Maryland Center for Environmental Science, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - S Tasumi
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
12
|
Liao Z, Bao LF, Fan MH, Gao P, Wang XX, Qin CL, Li XM. In-depth proteomic analysis of nacre, prism, and myostracum of Mytilus shell. J Proteomics 2015; 122:26-40. [DOI: 10.1016/j.jprot.2015.03.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 11/26/2022]
|
13
|
The use of -omic tools in the study of disease processes in marine bivalve mollusks. J Invertebr Pathol 2015; 131:137-54. [PMID: 26021714 DOI: 10.1016/j.jip.2015.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/09/2015] [Accepted: 05/05/2015] [Indexed: 01/01/2023]
Abstract
Our understanding of disease processes and host-pathogen interactions in model species has benefited greatly from the application of medium and high-throughput genomic, metagenomic, epigenomic, transcriptomic, and proteomic analyses. The rate at which new, low-cost, high-throughput -omic technologies are being developed has also led to an expansion in the number of studies aimed at gaining a better understanding of disease processes in bivalves. This review provides a catalogue of the genetic and -omic tools available for bivalve species and examples of how -omics has contributed to the advancement of marine bivalve disease research, with a special focus in the areas of immunity, bivalve-pathogen interactions, mechanisms of disease resistance and pathogen virulence, and disease diagnosis. The analysis of bivalve genomes and transcriptomes has revealed that many immune and stress-related gene families are expanded in the bivalve taxa examined thus far. In addition, the analysis of proteomes confirms that responses to infection are influenced by epigenetic, post-transcriptional, and post-translational modifications. The few studies performed in bivalves show that epigenetic modifications are non-random, suggesting a role for epigenetics in regulating the interactions between bivalves and their environments. Despite the progress -omic tools have enabled in the field of marine bivalve disease processes, there is much more work to be done. To date, only three bivalve genomes have been sequenced completely, with assembly status at different levels of completion. Transcriptome datasets are relatively easy and inexpensive to generate, but their interpretation will benefit greatly from high quality genome assemblies and improved data analysis pipelines. Finally, metagenomic, epigenomic, proteomic, and metabolomic studies focused on bivalve disease processes are currently limited but their expansion should be facilitated as more transcriptome datasets and complete genome sequences become available for marine bivalve species.
Collapse
|
14
|
Immune responses to infectious diseases in bivalves. J Invertebr Pathol 2015; 131:121-36. [PMID: 26003824 DOI: 10.1016/j.jip.2015.05.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/07/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022]
Abstract
Many species of bivalve mollusks (phylum Mollusca, class Bivalvia) are important in fisheries and aquaculture, whilst others are critical to ecosystem structure and function. These crucial roles mean that considerable attention has been paid to the immune responses of bivalves such as oysters, clams and mussels against infectious diseases that can threaten the viability of entire populations. As with many invertebrates, bivalves have a comprehensive repertoire of immune cells, genes and proteins. Hemocytes represent the backbone of the bivalve immune system. However, it is clear that mucosal tissues at the interface with the environment also play a critical role in host defense. Bivalve immune cells express a range of pattern recognition receptors and are highly responsive to the recognition of microbe-associated molecular patterns. Their responses to infection include chemotaxis, phagolysosomal activity, encapsulation, complex intracellular signaling and transcriptional activity, apoptosis, and the induction of anti-viral states. Bivalves also express a range of inducible extracellular recognition and effector proteins, such as lectins, peptidoglycan-recognition proteins, thioester bearing proteins, lipopolysaccharide and β1,3-glucan-binding proteins, fibrinogen-related proteins (FREPs) and antimicrobial proteins. The identification of FREPs and other highly diversified gene families in bivalves leaves open the possibility that some of their responses to infection may involve a high degree of pathogen specificity and immune priming. The current review article provides a comprehensive, but not exhaustive, description of these factors and how they are regulated by infectious agents. It concludes that one of the remaining challenges is to use new "omics" technologies to understand how this diverse array of factors is integrated and controlled during infection.
Collapse
|
15
|
Allam B, Pales Espinosa E, Tanguy A, Jeffroy F, Le Bris C, Paillard C. Transcriptional changes in Manila clam (Ruditapes philippinarum) in response to Brown Ring Disease. FISH & SHELLFISH IMMUNOLOGY 2014; 41:2-11. [PMID: 24882017 DOI: 10.1016/j.fsi.2014.05.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 02/05/2023]
Abstract
Brown Ring Disease (BRD) is a bacterial infection affecting the economically-important clam Ruditapes philippinarum. The disease is caused by a bacterium, Vibrio tapetis, that colonizes the edge of the mantle, altering the biomineralization process and normal shell growth. Altered organic shell matrices accumulate on the inner face of the shell leading to the formation of the typical brown ring in the extrapallial space (between the mantle and the shell). Even though structural and functional changes have been described in solid (mantle) and fluid (hemolymph and extrapallial fluids) tissues from infected clams, the underlying molecular alterations and responses remain largely unknown. This study was designed to gather information on clam molecular responses to the disease and to compare focal responses at the site of the infection (mantle and extrapallial fluid) with systemic (hemolymph) responses. To do so, we designed and produced a Manila clam expression oligoarray (15K Agilent) using transcriptomic data available in public databases and used this platform to comparatively assess transcriptomic changes in mantle, hemolymph and extrapallial fluid of infected clams. Results showed significant regulation in diseased clams of molecules involved in pathogen recognition (e.g. lectins, C1q domain-containing proteins) and killing (defensin), apoptosis regulation (death-associated protein, bcl-2) and in biomineralization (shell matrix proteins, perlucin, galaxin, chitin- and calcium-binding proteins). While most changes in response to the disease were tissue-specific, systemic alterations included co-regulation in all 3 tested tissues of molecules involved in microbe recognition and killing (complement-related factors, defensin). These results provide a first glance at molecular alterations and responses caused by BRD and identify targets for future functional investigations.
Collapse
Affiliation(s)
- Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA.
| | | | - Arnaud Tanguy
- Station Biologique de Roscoff, UPMC-CNRS, Roscoff, France
| | - Fanny Jeffroy
- Institut Universitaire Européen de la Mer, Plouzané, France
| | - Cedric Le Bris
- Institut Universitaire Européen de la Mer, Plouzané, France
| | | |
Collapse
|