1
|
Tarsitano J, Bockor SS, Palomino MM, Fina Martin J, Ruzal SM, Allievi MC. [Deficiency in N-acetylglucosamine transport affects the sporulation process and increases the hemolytic activity of the S-layer protein in Lysinibacillus sphaericus ASB13052]. Rev Argent Microbiol 2024; 56:232-240. [PMID: 39218718 DOI: 10.1016/j.ram.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 09/04/2024] Open
Abstract
Lysinibacillus sphaericus is a bacterium that, along with Bacillus thuringiensis var. israelensis, is considered the best biological insecticide for controlling mosquito larvae and an eco-friendly alternative to chemical insecticides. It depends on peptidic molecules such as N-acetylglucosamine to obtain carbon sources and possesses a phosphotransferase system (PTS) for their incorporation. Some strains carry S-layer proteins, whose involvement in metal retention and larvicidal activity against disease-carrying mosquitoes has been demonstrated. Alterations in the amino sugar incorporation system could affect the protein profile and functionality. Strain ASB13052 and the isogenic mutant in the ptsH gene, which is predominant in the PTS signaling pathway, were used in this study. For the first time, the presence of N-glycosylated S-layer proteins was confirmed in both strains, with a variation in their molecular weight pattern depending on the growth phase. In the exponential phase, an S-layer protein greater than 130 kDa was found in the ptsH mutant, which was absent in the wild-type strain. The mutant strain exhibited altered and incomplete low quality sporulation processes. Hemolysis analysis, associated with larvicidal activity, showed that the ptsH mutant has higher lytic efficiency, correlating with the high molecular weight protein. The results allow us to propose the potential effects that arise as a result of the absence of amino sugar transport on hemolytic activity, S-layer isoforms, and the role of N-acetylglucosamine in larvicidal activity.
Collapse
Affiliation(s)
- Julián Tarsitano
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sabrina Sol Bockor
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) - CONICET, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Mercedes Palomino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) - CONICET, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Joaquina Fina Martin
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) - CONICET, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sandra Mónica Ruzal
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) - CONICET, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Claudia Allievi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) - CONICET, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Tomar P, Thakur N, Jhamta S, Chowdhury S, Kapoor M, Singh S, Shreaz S, Rustagi S, Rai PK, Rai AK, Yadav AN. Bacterial biopesticides: Biodiversity, role in pest management and beneficial impact on agricultural and environmental sustainability. Heliyon 2024; 10:e31550. [PMID: 38828310 PMCID: PMC11140719 DOI: 10.1016/j.heliyon.2024.e31550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Agro-environmental sustainability is based upon the adoption of efficient resources in agro-practices that have a nominal impact on the ecosystem. Insect pests are responsible for causing severe impacts on crop productivity. Wide ranges of agro-chemicals have been employed over the last 50 years to overcome crop yield losses due to insect pests. But better knowledge about the hazards due to chemical pesticides and other pest resistance and resurgence issues necessitates an alternative for pest control. The applications of biological pesticides offer a best alternate that is safe, cost-effective, easy to adoption and successful against various insect pests and pathogens. Like other organisms, insects can get a wide range of diseases from various microbes, such as bacteria, fungi, viruses, protozoa, and nematodes. In order to create agricultural pest management practices that are environmentally beneficial, bacterial entomopathogens are being thoroughly studied. Utilization of bacterial biopesticides has been adopted for the protection of agricultural products. The different types of toxin complexes released by various microorganisms and their mechanisms of action are recapitulated. The present review described the diversity and biocontrol prospective of certain bacteria and summarised the potential of bacterial biopesticides for the management of agricultural pests, insects, and other phytopathogenic microorganisms in agricultural practices.
Collapse
Affiliation(s)
- Preety Tomar
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Sirmour, Himachal Pradesh, India
| | - Neelam Thakur
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Sirmour, Himachal Pradesh, India
| | - Samiksha Jhamta
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Sirmour, Himachal Pradesh, India
| | - Sohini Chowdhury
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Monit Kapoor
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University Faizabad, Uttar Pradesh, India
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystems Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, 13109, Safat, Kuwait
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Pankaj Kumar Rai
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| |
Collapse
|
3
|
Katak RDM, Cintra AM, Burini BC, Marinotti O, Souza-Neto JA, Rocha EM. Biotechnological Potential of Microorganisms for Mosquito Population Control and Reduction in Vector Competence. INSECTS 2023; 14:718. [PMID: 37754686 PMCID: PMC10532289 DOI: 10.3390/insects14090718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
Mosquitoes transmit pathogens that cause human diseases such as malaria, dengue fever, chikungunya, yellow fever, Zika fever, and filariasis. Biotechnological approaches using microorganisms have a significant potential to control mosquito populations and reduce their vector competence, making them alternatives to synthetic insecticides. Ongoing research has identified many microorganisms that can be used effectively to control mosquito populations and disease transmission. However, the successful implementation of these newly proposed approaches requires a thorough understanding of the multipronged microorganism-mosquito-pathogen-environment interactions. Although much has been achieved in discovering new entomopathogenic microorganisms, antipathogen compounds, and their mechanisms of action, only a few have been turned into viable products for mosquito control. There is a discrepancy between the number of microorganisms with the potential for the development of new insecticides and/or antipathogen products and the actual available products, highlighting the need for investments in the intersection of basic research and biotechnology.
Collapse
Affiliation(s)
- Ricardo de Melo Katak
- Malaria and Dengue Laboratory, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus 69060-001, AM, Brazil;
| | - Amanda Montezano Cintra
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Bianca Correa Burini
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA;
| | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| | - Jayme A. Souza-Neto
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Elerson Matos Rocha
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| |
Collapse
|
4
|
da Costa RA, Dutra TTB, Pereira Costa Andrade IE, Monnerat RG, Barreto CC, Dias SC. Pelgipeptins, a Nonribosomal Lipopeptide Family, Show Larvicidal Activity against Vectors Transmitting Viruses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1921-1929. [PMID: 36688912 DOI: 10.1021/acs.jafc.2c05458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aedes aegypti and Culex quinquefasciatus are vectors of numerous diseases of worldwide public importance, such as arboviruses and filariasis. The main strategy for controlling these vectors is the use of chemicals, which can induce the appearance of resistant insects. The use of Bacillus thuringiensis (Bt) and Lysinibacillus sphaericus (Ls) with larvicidal activity against arboviral-transmitting insects has been successful in many studies. In contrast, the use and knowledge of peptides with insecticidal activity are so far scarce. In this work, 25 peptides and 5 strains of each bacterial species were prospected individually or together regarding their insecticidal activity. Initially, in vitro assays of cellular cytotoxicity of the peptides against SF21 cells of Spodoptera frugiperda were performed. The peptides Polybia-MPII and pelgipeptin caused 69 and 60% of cell mortality, respectively, at the concentration of 10 μM. Thus, they were evaluated in vivo against second-stage larvae of the two Culicidae. However, in the in vivo bioassays, only pelgipeptin showed larvicidal mortality against both larvae (LC50 6.40 μM against A. aegypti, and LC50 1.22 μM against C. quinquefasciatus). The toxin-producing bacterial strain that showed the lowest LC50 against A. aegypti was Bt S8 (LC50 = 0.71 ng/mL) and against C. quinquefasciatus, it was Ls S260 (LC50 = 2.32 ng/mL). So, the synergistic activity between the association of the bacterial toxins and pelgipeptin was evaluated. A synergic effect of pelgipeptin was observed with Ls strain S260 against C. quinquefasciatus. Our results demonstrate the possibility of synergistic or individual use of both biologically active larvicides against C. quinquefasciatus and A. aegypti.
Collapse
Affiliation(s)
- Rosiane Andrade da Costa
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília, SGAN 916, Brasília, DF 70790-160, Brazil
| | - Thaís Tavares Baraviera Dutra
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília, SGAN 916, Brasília, DF 70790-160, Brazil
| | | | - Rose Gomes Monnerat
- Laboratório de Bactérias Entomopatogênicas, Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte, Brasília, DF 70770-917, Brazil
| | - Cristine Chaves Barreto
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília, SGAN 916, Brasília, DF 70790-160, Brazil
| | - Simoni Campos Dias
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília, SGAN 916, Brasília, DF 70790-160, Brazil
- Graduate Program in Animal Biology, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF 70910-900, Brazil
| |
Collapse
|
5
|
Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Toxins (Basel) 2021; 13:toxins13080523. [PMID: 34437394 PMCID: PMC8402332 DOI: 10.3390/toxins13080523] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022] Open
Abstract
Larvicides based on the bacteria Bacillus thuringiensis svar. israelensis (Bti) and Lysinibacillus sphaericus are effective and environmentally safe compounds for the control of dipteran insects of medical importance. They produce crystals that display specific and potent insecticidal activity against larvae. Bti crystals are composed of multiple protoxins: three from the three-domain Cry type family, which bind to different cell receptors in the midgut, and one cytolytic (Cyt1Aa) protoxin that can insert itself into the cell membrane and act as surrogate receptor of the Cry toxins. Together, those toxins display a complex mode of action that shows a low risk of resistance selection. L. sphaericus crystals contain one major binary toxin that display an outstanding persistence in field conditions, which is superior to Bti. However, the action of the Bin toxin based on its interaction with a single receptor is vulnerable for resistance selection in insects. In this review we present the most recent data on the mode of action and synergism of these toxins, resistance issues, and examples of their use worldwide. Data reported in recent years improved our understanding of the mechanism of action of these toxins, showed that their combined use can enhance their activity and counteract resistance, and reinforced their relevance for mosquito control programs in the future years.
Collapse
|
6
|
Trakulnaleamsai C, Promdonkoy B, Soonsanga S. Production of Lysinibacillus sphaericus Mosquitocidal Protein Mtx2 from Bacillus subtilis as a Secretory Protein. Protein Pept Lett 2021; 28:1054-1060. [PMID: 34137359 DOI: 10.2174/0929866528666210616103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mtx2 is a mosquitocidal toxin produced during the vegetative growth of Lysinibacillus sphaericus. The protein shows synergism with other toxins against mosquito larvae; hence it could be used in mosquito control formulations. The protein expression system is needed for Mtx2 development as a biocontrol agent. OBJECTIVE The objective of the study was to set up a Bacillus subtilis system to produce Mtx2 as a secreted protein since the protein contains a putative signal peptide. METHODS Initially, four different promoters (P43, Pspac, PxylA, and PyxiE) were compared for their strength using GFP as a reporter in B. subtilis. Subsequently, six different signal peptides (SacB, Epr, AmyE, AprE, LipA, and Vip3A)were tested in conjunction with the selected promoter and mtx2 to evaluate levels of Mtx2 secreted by B. subtilis WB800, an extracellular protease-deficient strain. RESULTS The promoter PyxiE showed the highest GFP intensity and was selected for further study. Mtx2 was successfully produced as a secreted protein from signal peptides LipA and AmyE, and exhibited larvicidal activity against Aedesaegypti. CONCLUSION B. subtilis was successfully developed as a host for the production of secreted Mtx2 and the protein retained its larvicidal activity. Although the Mtx2 production level still needs improvement, the constructed plasmids could be used to produce other soluble proteins.
Collapse
Affiliation(s)
- Chutchanun Trakulnaleamsai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sumarin Soonsanga
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| |
Collapse
|
7
|
Mullens BA, Metzger ME, Gerry AC, Russell RC, Dhillon M. A Celebration of the Career of Dr. William E. Walton: September 1, 1956 - October 18, 2020. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2021; 46:2-11. [PMID: 35229575 DOI: 10.52707/1081-1710-46.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
| | - Marco E Metzger
- Vector-Borne Disease Section, Center for Infectious Diseases, California Dept. of Public Health
| | - Alec C Gerry
- Department of Entomology, University of California, Riverside, CA
| | - Richard C Russell
- Sydney Medical School and Sydney School of Public Health, University of Sydney, Australia
| | - Major Dhillon
- Past-president of the American Mosquito Control Association and Director Emeritus of the Society for Vector Ecology
| |
Collapse
|
8
|
Potential for Bacillus thuringiensis and Other Bacterial Toxins as Biological Control Agents to Combat Dipteran Pests of Medical and Agronomic Importance. Toxins (Basel) 2020; 12:toxins12120773. [PMID: 33291447 PMCID: PMC7762171 DOI: 10.3390/toxins12120773] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
The control of dipteran pests is highly relevant to humans due to their involvement in the transmission of serious diseases including malaria, dengue fever, Chikungunya, yellow fever, zika, and filariasis; as well as their agronomic impact on numerous crops. Many bacteria are able to produce proteins that are active against insect species. These bacteria include Bacillus thuringiensis, the most widely-studied pesticidal bacterium, which synthesizes proteins that accumulate in crystals with insecticidal properties and which has been widely used in the biological control of insects from different orders, including Lepidoptera, Coleoptera, and Diptera. In this review, we summarize all the bacterial proteins, from B. thuringiensis and other entomopathogenic bacteria, which have described insecticidal activity against dipteran pests, including species of medical and agronomic importance.
Collapse
|
9
|
de Bortoli CP, Jurat-Fuentes JL. Mechanisms of resistance to commercially relevant entomopathogenic bacteria. CURRENT OPINION IN INSECT SCIENCE 2019; 33:56-62. [PMID: 31358196 DOI: 10.1016/j.cois.2019.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 05/29/2023]
Abstract
Bacteria represent the most commercially successful entomopathogenic microbial group, with most commercialized insecticides containing gram-positive bacteria in the Bacillaceae family. Resistance to entomopathogenic bacteria threatens sustainable agriculture, and information on the mechanisms and genes involved is vital to develop management practices aimed at reducing this risk. We provide an integrative summary on mechanisms responsible for resistance to commercialized entomopathogenic bacteria, including information on resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt crops). The available experimental evidence identifies alterations in binding of insecticidal proteins to receptors in the host as the main mechanism for high levels of resistance to entomopathogenic bacteria.
Collapse
Affiliation(s)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
10
|
Gillis A, Fayad N, Makart L, Bolotin A, Sorokin A, Kallassy M, Mahillon J. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol Rev 2018; 42:829-856. [PMID: 30203090 PMCID: PMC6199540 DOI: 10.1093/femsre/fuy034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Alexander Bolotin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mireille Kallassy
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
11
|
Molecular Characterization and Evaluation of Two Potential Mosquitocidal Lysinibacillus Strains from Himalayan Valley Kashmir. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.4.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Fu P, Ge Y, Wu Y, Zhao N, Yuan Z, Hu X. The LspC3-41I restriction-modification system is the major determinant for genetic manipulations of Lysinibacillus sphaericus C3-41. BMC Microbiol 2017; 17:116. [PMID: 28525986 PMCID: PMC5437673 DOI: 10.1186/s12866-017-1014-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/26/2017] [Indexed: 12/26/2022] Open
Abstract
Background Lysinibacillus sphaericus has been widely used in integrated mosquito control program and it is one of the minority bacterial species unable to metabolize carbohydrates. In consideration of the high genetic conservation at genomic level and difficulty of genetic horizontal transfer, it is hypothesized that effective restriction-modification (R-M) systems existed in mosquitocidal L. sphaericus. Results In this study, six type II R-M systems including LspC3–41I were predicted in L. sphaericus C3–41 genome. It was found that the cell free extracts (CFE) from this strain shown similar restriction and methylation activity on exogenous Bacillus/Escherichia coli shuttle vector pBU4 as the HaeIII, which is an isoschizomer of BspRI. The Bsph_0498 (encoding the predicted LspC3–41IR) knockout mutant Δ0498 and the complement strain RC0498 were constructed. It was found that the unmethylated pBU4 can be digested by the CFE of C3–41 and RC0498, but not by that of Δ0498. Furthermore, the exogenous plasmid pBU4 can be transformed at very high efficacy into Δ0498, low efficacy into RC0498, but no transformation into C3–41, indicating that LspC3–41I might be a major determinant for the genetic restriction barrier of strain C3–41. Besides, lspC3–41IR and lspC3–41IM genes are detected in other two strains besides C3–41 of the tested 16 L. sphaericus strains, which all belonging to serotype H5 and MLST sequence type (ST) 1. Furthermore, the three strains are not horizontal transferred, and this restriction could be overcome by in vitro methylation either by the host CFE or by commercial methytransferase M. HaeIII. The results provide an insight to further study the genetic restriction, modification and evolution of mosquitocidal L. sphaericus, also a theoretical basis and a method for the genetic manipulations of L. sphaericus. Conclusions LspC3–41I is identified as the major determinant for the restriction barrier of L. sphaericus C3–41. Only three strains of the tested 16 L. sphaericus strains, which all belonging to serotype H5 and ST1 by MLST scheme, contain LspC3–41I system. Two different methods can be used to overcome the restriction barrier of the three isolates to get transformants efficiently: 1) to methylate plasmid DNA prior to the electroporation; and 2) to delete the major restriction endonuclease encoding gene lspC3–41IR.
Collapse
Affiliation(s)
- Pan Fu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yong Ge
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yiming Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ni Zhao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhiming Yuan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xiaomin Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
13
|
Gómez-Garzón C, Hernández-Santana A, Dussán J. Comparative genomics reveals Lysinibacillus sphaericus group comprises a novel species. BMC Genomics 2016; 17:709. [PMID: 27595771 PMCID: PMC5011910 DOI: 10.1186/s12864-016-3056-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/27/2016] [Indexed: 12/12/2022] Open
Abstract
Background Early in the 1990s, it was recognized that Lysinibacillus sphaericus, one of the most popular and effective entomopathogenic bacteria, was a highly heterogeneous group. Many authors have even proposed it comprises more than one species, but the lack of phenotypic traits that guarantee an accurate differentiation has not allowed this issue to be clarified. Now that genomic technologies are rapidly advancing, it is possible to address the problem from a whole genome perspective, getting insights into the phylogeny, evolutive history and biology itself. Results The genome of the Colombian strain L. sphaericus OT4b.49 was sequenced, assembled and annotated, obtaining 3 chromosomal contigs and no evidence of plasmids. Using these sequences and the 13 other L. sphaericus genomes available on the NCBI database, we carried out comparative genomic analyses that included whole genome alignments, searching for mobile elements, phylogenomic metrics (TETRA, ANI and in-silico DDH) and pan-genome assessments. The results support the hypothesis about this species as a very heterogeneous group. The entomopathogenic lineage is actually a single and independent species with 3728 core genes and 2153 accessory genes, whereas each non-toxic strain seems to be a separate species, though without a clear circumscription. Toxin-encoding genes, binA, B and mtx1, 2, 3 could be acquired via horizontal gene transfer in a single evolutionary event. The non-toxic strain OT4b.31 is the most related with the type strain KCTC 3346. Conclusions The current L. sphaericus is actually a sensu lato due to a sub-estimation of diversity accrued using traditional non-genomics based classification strategies. The toxic lineage is the most studied with regards to its larvicidal activity, which is a greatly conserved trait among these strains and thus, their differentiating feature. Further studies are needed in order to establish a univocal classification of the non-toxic strains that, according to our results, seem to be a paraphyletic group. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3056-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camilo Gómez-Garzón
- Centro de Investigaciones Microbiológicas (CIMIC), Universidad de los Andes, Cra 1 N. 18 A-12, Bogotá, Colombia
| | - Alejandra Hernández-Santana
- Centro de Investigaciones Microbiológicas (CIMIC), Universidad de los Andes, Cra 1 N. 18 A-12, Bogotá, Colombia
| | - Jenny Dussán
- Centro de Investigaciones Microbiológicas (CIMIC), Universidad de los Andes, Cra 1 N. 18 A-12, Bogotá, Colombia.
| |
Collapse
|
14
|
Characterization of antibiotic resistant and enzyme producing bacterial strains isolated from the Arabian Sea. 3 Biotech 2016; 6:28. [PMID: 28330094 PMCID: PMC4711286 DOI: 10.1007/s13205-015-0332-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 06/27/2015] [Indexed: 11/24/2022] Open
Abstract
Marine bacteria are known to produce many bioactive molecules and extracellular enzymes of commercial importance. We have investigated the bacterial diversity of the coastal area of Karwar, Karnataka State, India. Among these bacterial isolates, five bacterial strains were selected and identified by their morphological, biochemical characteristics and phylogenetic analysis based on 16S rRNA gene sequences. The identified bacterial isolates, Bacillus toyonensis PNTB1, Lysinibacillus sphaericus PTB, Vibrio vulnificus PMD, Shewanella MPTDBS, and Pseudomonas chlororaphis PNTB were characterized for their tolerance to salt and antibiotics. Vibrio vulnificus PMD showed maximum tolerance at higher concentration of salt than other bacteria. These bacterial strains were screened for the production of extracellular enzymes such as lipase, cellulase, pectinase, tannase, chitinase, and l-glutaminase. Vibrio vulnificus showed maximum production of l-glutaminase enzyme. Bacillus toyonensis PNTB1 shows lipase, CM-cellulase and chitinase activities. These isolated bacterial cultures were also utilized most of the aromatic compounds at 7 mM. These findings indicate the organisms present in this zone may have more potential applications in bioremediation, agricultural, industrial, and therapeutics.
Collapse
|
15
|
Shrestha BK, Karki HS, Groth DE, Jungkhun N, Ham JH. Biological Control Activities of Rice-Associated Bacillus sp. Strains against Sheath Blight and Bacterial Panicle Blight of Rice. PLoS One 2016; 11:e0146764. [PMID: 26765124 PMCID: PMC4713167 DOI: 10.1371/journal.pone.0146764] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
Potential biological control agents for two major rice diseases, sheath blight and bacterial panicle blight, were isolated from rice plants in this study. Rice-associated bacteria (RABs) isolated from rice plants grown in the field were tested for their antagonistic activities against the rice pathogens, Rhizoctonia solani and Burkholderia glumae, which cause sheath blight and bacterial panicle blight, respectively. Twenty-nine RABs were initially screened based on their antagonistic activities against both R. solani and B. glumae. In follow-up retests, 26 RABs of the 29 RABs were confirmed to have antimicrobial activities, but the rest three RABs did not reproduce any observable antagonistic activity against R. solani or B. glumae. According to16S rDNA sequence identity, 12 of the 26 antagonistic RABs were closest to Bacillus amyloliquefaciens, while seven RABs were to B. methylotrophicus and B, subtilis, respectively. The 16S rDNA sequences of the three non-antagonistic RABs were closest to Lysinibacillus sphaericus (RAB1 and RAB12) and Lysinibacillus macroides (RAB5). The five selected RABs showing highest antimicrobial activities (RAB6, RAB9, RAB16, RAB17S, and RAB18) were closest to B. amyloliquefaciens in DNA sequence of 16S rDNA and gyrB, but to B. subtilis in that of recA. These RABs were observed to inhibit the sclerotial germination of R. solani on potato dextrose agar and the lesion development on detached rice leaves by artificial inoculation of R. solani. These antagonistic RABs also significantly suppressed the disease development of sheath blight and bacterial panicle blight in a field condition, suggesting that they can be potential biological control agents for these rice diseases. However, these antagonistic RABs showed diminished disease suppression activities in the repeated field trial conducted in the following year probably due to their reduced antagonistic activities to the pathogens during the long-term storage in -70C, suggesting that development of proper storage methods to maintain antagonistic activity is as crucial as identification of new biological control agents.
Collapse
Affiliation(s)
- Bishnu K. Shrestha
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, 70803, United States of America
| | - Hari Sharan Karki
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, 70803, United States of America
| | - Donald E. Groth
- Rice Research Station, Louisiana State University Agricultural Center, Rayne, Louisiana, 70578, United States of America
| | - Nootjarin Jungkhun
- Chiang Rai Rice Research Center, Bureau of Rice Research and Development, Rice Department, 474 Moo 9, Phaholyothin Rd., Muang Phan, Phan, Chiang Rai, 57120, Thailand
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, 70803, United States of America
| |
Collapse
|