1
|
Zeng X, Zeng Y, Yee JC, Yang H. Biochemical and molecular responses to long-term salinity challenges in northern quahogs Mercenaria mercenaria. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109888. [PMID: 39250983 DOI: 10.1016/j.fsi.2024.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Salinity is a key environmental factor for aquatic organisms for survival, development, distribution, and physiological performance. Salinity fluctuation occurs often in estuary and coastal zones due to weather, tide, and freshwater inflow and thus heavily affects coastal marine aquaculture. The northern quahog Mercenaria mercenaria is an important aquaculture species along the Atlantic coast in the US, but information on the effects of salinity stress on physiological, immunological, and molecular responses is still scarce. The goal of this study was to investigate cellular and molecular responses through challenges of long-term hypo- and hyper-salinities in northern quahogs. The objectives were to: 1) measure the survival of market-sized quahogs under a three-month salinity challenge at 15 (hyposalinity), 25 (control), and 35 ppt (hypersalinity); 2) determine cellular changes of hemocytes through analysis of immune functions; 3) determine changes of the total free amino acid concentration in gills, and 4) evaluate the molecular responses in gills using RNAseq technology with qPCR verification. After a three-month salinity challenge, no mortality was observed, and increases in body weight were identified with a significantly higher increase in the hypersalinity group. Northern quahogs equilibrated their hemolymph osmolality with the ambient seawater and were verified to be osmoconformers. Significant differences were observed in total hemocyte concentration, lysosomal presence, ROS production, and phagocytic rate, but no differences were found in cell viability. The total free amino acid concentration within gills was positively correlated to water salinity, indicating amino acids were critical organic osmolytes. The transcriptome of gills using RNAseq revealed differential expression genes (DEG) encoding amino acid transporters (SLC6A3, SLC6A6, SLC6A13, SLC25A38), ion channel proteins (T38B1, GluCl, ATP2C1), and water channel protein (AQP8) in hyposalinity or/and hypersalinity groups, indicating these genes play critical roles in intracellular isosmotic regulation. Overall, the findings in this study provided new insights into osmoregulation in northern quahogs.
Collapse
Affiliation(s)
- Xianyuan Zeng
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32653, USA
| | - Yangqing Zeng
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32653, USA
| | - Jayme C Yee
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32653, USA
| | - Huiping Yang
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32653, USA.
| |
Collapse
|
2
|
Dong Z, Li H, Wang Y, Lin S, Guo F, Zhao J, Yao R, Zhu L, Wang W, Buttino I, Qi P, Guo B. Transcriptome profiling reveals the strategy of thermal tolerance enhancement caused by heat-hardening in Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165785. [PMID: 37499827 DOI: 10.1016/j.scitotenv.2023.165785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The thick-shell mussel Mytilus coruscus serves as a common sessile intertidal species and holds economic significance as an aquatic organism. M. coruscus often endure higher temperatures than their ideal range during consecutive low tides in the spring. This exposure to elevated temperatures provides them with a thermal tolerance boost, enabling them to adapt to high-temperature events caused by extreme low tides and adverse weather conditions. This phenomenon is referred to as heat-hardening. Some related studies showed the phenomenon of heat-hardening in sessile intertidal species but not reported at the mechanism level based on transcriptome so far. In this study, physiological experiments, gene family identification and transcriptome sequencing were performed to confirm the thermotolerance enhancement based on heat-hardening and explore the mechanism in M. coruscus. A total of 2935 DEGs were identified and the results of the KEGG enrichment showed that seven heat-hardening relative pathways were enriched, including Toll-like receptor signal pathway, Arachidonic acid metabolism, and others. Then, 24 HSP70 members and 36 CYP2 members, were identified, and the up-regulated members are correlated with increasing thermotolerance. Finally, we concluded that the heat-hardening M. coruscus have a better thermotolerance because of the capability of maintaining the integrity and the phenomenon of vasodilation of the gill under thermal stress. Further, the physiological experiments yielded the same conclusions. Overall, this study confirms the thermotolerance enhancement caused by heat-hardening and reveals the survival strategy in M. coruscus. In addition, the conclusion provides a new reference for studying the intertidal species' heat resistance mechanisms to combat extreme heat events and the strategies for dealing with extreme weather in aquaculture under the global warming trend.
Collapse
Affiliation(s)
- Zhenyu Dong
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Hongfei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China; Donghai Laboratory, Zhoushan 316021, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Shuangrui Lin
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Feng Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Jiemei Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Ronghui Yao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Li Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Weifeng Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research ISPRA, Via del Cedro n.38, 57122 Livorno, Italy
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China; Donghai Laboratory, Zhoushan 316021, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China.
| |
Collapse
|
3
|
Zhou C, Yang MJ, Hu Z, Zou Y, Shi P, Li YR, Guo YJ, Song H, Zhang T. Autophagy contributes to increase the content of intracellular free amino acids in hard clam (Mercenaria mercenaria) during prolonged exposure to hypersaline environments. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106198. [PMID: 37757610 DOI: 10.1016/j.marenvres.2023.106198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Marine bivalves in intertidal zones and land-based seawater ponds are constantly subjected to a wide range of salinity fluctuations due to heavy rainfall, intense drought, and human activities. As osmoconformers, bivalves rely primarily on rapid release or accumulation of free amino acids (FAAs) for osmoregulation. Euryhaline bivalves are capable of withstanding hyposaline and hypersaline environments through regulation of physiology, metabolism, and gene expression. However, current understanding of the molecular mechanisms underlying osmoregulation and salinity adaptation in euryhaline bivalves remains largely limited. In this study, RNA-seq, WGCNA and flow cytometric analysis were performed to investigate the physiological responses of hard clams (Mercenaria mercenaria) to acute short-term hyposalinity (AL) and hypersalinity (AH), and chronic long-term hyposalinity (CL) and hypersalinity (CH) stress. We found that amino acids biosynthesis was significantly inhibited and aminoacyl-tRNA biosynthesis was augmented to decrease intracellular osmolarity during hyposaline exposure. Under CH, numerous autophagy-related genes (ATGs) were highly expressed, and the autophagy activity of gill cells were significantly up-regulated. A significant decrease in total FAAs content was observed in gills after NH4Cl treatment, indicating that autophagy was crucial for osmoregulation in hard clams during prolonged exposure to hypersaline environments. To prevent premature or unnecessary apoptosis, the expression of cathepsin L was inhibited under AL and AH, and inhibitors of apoptosis was augmented under CL and CH. Additionally, neuroendocrine regulation was involved in salinity adaption in hard clams. This study provides novel insights into the physiological responses of euryhaline marine bivalves to hyposaline and hypersaline environments.
Collapse
Affiliation(s)
- Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Yan Zou
- Marine Science Research Institute of Shandong Province, Qingdao, 266100, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Yong-Ren Li
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yong-Jun Guo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China.
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China.
| |
Collapse
|
4
|
Hu Z, Xu L, Song H, Feng J, Zhou C, Yang MJ, Shi P, Li YR, Guo YJ, Li HZ, Zhang T. Effect of heat and hypoxia stress on mitochondrion and energy metabolism in the gill of hard clam. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109556. [PMID: 36709861 DOI: 10.1016/j.cbpc.2023.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Aquatic animals suffer from heat and hypoxia stress more frequently due to global climate change and other anthropogenic activities. Heat and hypoxia stress can significantly affect mitochondrial function and energy metabolism. Here, the response and adaptation characteristics of mitochondria and energy metabolism in the gill of the hard clam Mercenaria mercenaria under heat (35 °C), hypoxia (0.2 mg/L), and heat plus hypoxia stress (35 °C, 0.2 mg/L) after 48 h exposure were investigated. Mitochondrial membrane potentials were depolarized under environmental stress. Mitochondrial fusion, fission and mitophagy played a key role in maintain mitochondrion function. The AMPK subunits showed different expression under environmental stress. Acceleration of enzyme activities (phosphofructokinase, pyruvate kinase and lactic dehydrogenase) and accumulation of anaerobic metabolites in glycolysis and TCA cycle implied that the anaerobic metabolism might play a key role in providing energy. Accumulation of amino acids might help to increase tolerance under heat and heat combined hypoxia stress. In addition, urea cycle played a key role in amino acid metabolism to prevent ammonia/nitrogen toxicity. This study improved our understanding of the mitochondrial and energy metabolism responses of marine bivalves exposed to environmental stress.
Collapse
Affiliation(s)
- Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Li Xu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Jie Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Yong-Ren Li
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Yong-Jun Guo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Hai-Zhou Li
- Shandong Fu Han Ocean Sci-Tech Co., Ltd, Haiyang 265100, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| |
Collapse
|
5
|
Zhou C, Song H, Feng J, Hu Z, Yu ZL, Yang MJ, Shi P, Li YR, Guo YJ, Zhang T. RNA-Seq analysis and WGCNA reveal dynamic molecular responses to air exposure in the hard clam Mercenaria mercenaria. Genomics 2021; 113:2847-2859. [PMID: 34153497 DOI: 10.1016/j.ygeno.2021.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Intertidal bivalves are constantly exposed to air due to daily and seasonal tidal cycles. The hard clam Mercenaria mercenaria is an economically important bivalve species and often subjected to air exposure for more than 10 days during long-distance transportation. Hard clam exhibits remarkable tolerance to air exposure. In this study, we performed RNA sequencing on hemocytes of M. mercenaria exposed to air for 0, 1, 5, 10, 20 and 30 days. The overall and dynamic molecular responses of hard clams to air exposure were revealed by different transcriptomic analysis strategies. As a result, most cytochrome P450 1A and 3A, and monocarboxylate transporter family members were up-regulated during air exposure. Additionally, the dominant molecular process in response to 5-d, 10-d, 20-d and 30-d air exposure was refolding of misfolded proteins in endoplasmic reticulum, lysosome-mediated degradation of phospholipids, protein metabolism and reorganization of cytoskeleton, and activation of anti-apoptotic process, respectively. Our results facilitated comprehensive understanding of the tolerance mechanisms of intertidal bivalves to air exposure.
Collapse
Affiliation(s)
- Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Jie Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Zheng-Lin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Yong-Ren Li
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Yong-Jun Guo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| |
Collapse
|
6
|
Farhat S, Tanguy A, Pales Espinosa E, Guo X, Boutet I, Smolowitz R, Murphy D, Rivara GJ, Allam B. Identification of variants associated with hard clam, Mercenaria mercenaria, resistance to Quahog Parasite Unknown disease. Genomics 2020; 112:4887-4896. [PMID: 32890702 DOI: 10.1016/j.ygeno.2020.08.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Severe losses in aquacultured and wild hard clam (Mercenaria mercenaria) stocks have been previously reported in the northeastern United States due to a protistan parasite called QPX (Quahog Parasite Unknown). Previous work demonstrated that clam resistance to QPX is under genetic control. This study identifies single nucleotide polymorphism (SNP) associated with clam survivorship from two geographically segregated populations, both deployed in an enzootic site. The analysis contrasted samples collected before and after undergoing QPX-related mortalities and relied on a robust draft clam genome assembly. ~200 genes displayed significant variant enrichment at each sampling point in both populations, including 18 genes shared between both populations. Markers from both populations were identified in genes related to apoptosis pathways, protein-protein interaction, receptors, and signaling. This research begins to identify genetic markers associated with clam resistance to QPX disease, leading the way for the development of resistant clam stocks through marker-assisted selection.
Collapse
Affiliation(s)
- Sarah Farhat
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-5000, USA
| | - Arnaud Tanguy
- Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Sorbonne Université, Place Georges Teissier, 29680 Roscoff, France
| | - Emmanuelle Pales Espinosa
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-5000, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, USA
| | - Isabelle Boutet
- Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Sorbonne Université, Place Georges Teissier, 29680 Roscoff, France
| | - Roxanna Smolowitz
- Roger Williams University, Department of Biology, Marine Biology, and Environmental Science, 1 Old Ferry Rd, Bristol, RI 02809, USA
| | - Diane Murphy
- Cape Cod Cooperative Extension, 3195 Main St, Barnstable, MA 02630, NY 1197, USA
| | - Gregg J Rivara
- Cornell University Cooperative Extension of Suffolk County, 3690 Cedar Beach Rd, Southold, NY 11971, USA
| | - Bassem Allam
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-5000, USA.
| |
Collapse
|
7
|
Hu Z, Song H, Zhou C, Yu ZL, Yang MJ, Zhang T. De novo assembly transcriptome analysis reveals the preliminary molecular mechanism of pigmentation in juveniles of the hard clam Mercenaria mercenaria. Genomics 2020; 112:3636-3647. [PMID: 32353476 DOI: 10.1016/j.ygeno.2020.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/19/2023]
Abstract
Color plays a vital function in camouflage, sexual selection, immunity, and evolution. Mollusca possess vivid shell colors and pigmentation starts at the juvenile stage. The hard clam Mercenaria mercenaria is a widely cultivated bivalve of high economic value. To explore the molecular mechanism of pigmentation in juvenile clams, here, we performed RNA-Seq analysis on non-pigmented, white, and red M. mercenaria specimens. Clean reads were assembled into 358,285 transcripts and 149,234 unigenes, whose N50 lengths were 2107 bp and 1567 bp, respectively. Differentially expressed genes were identified and analyzed for KEGG enrichment. "Melanoma/Melanogenesis", "ABC transporters", and "Porphyrin and chlorophyll metabolism" pathways appeared to be associated with pigmentation. Pathways related to carotenoid metabolism seemed to also play a vital role in pigmentation in juveniles. Our results provide new insights into the formation of shell color in juvenile hard clams.
Collapse
Affiliation(s)
- Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zheng-Lin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
8
|
Jones J, Allam B, Espinosa EP. Particle Selection in Suspension-Feeding Bivalves: Does One Model Fit All? THE BIOLOGICAL BULLETIN 2020; 238:41-53. [PMID: 32163725 DOI: 10.1086/707718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Suspension-feeding bivalves are known to discriminate among a complex mixture of particles present in their environments. The exact mechanism that allows bivalves to ingest some particles and reject others as pseudofeces has yet to be fully elucidated. Recent studies have shown that interactions between lectins found in the mucus covering oyster and mussel feeding organs and carbohydrates found on the microalga cell surface play a central role in this selection process. In this study, we evaluated whether these interactions are also involved in food selection in bivalves with other gill architectures, namely, the clam Mercenaria mercenaria and the scallop Argopecten irradians. Statistical methods were used to predict whether given microalgae would be rejected or ingested depending on their cell surface carbohydrate profiles. Eight different microalgae with previously established surface carbohydrate profiles were grown and harvested during their exponential growth phase to be used in feeding experiments. Microalgae were then used in 17 feeding experiments where different pairs of microalgae were presented to clams and scallops to evaluate selection. Decision trees that model selection were then developed for each bivalve. Results showed that microalgae rich in mannose residues were likely to be ingested in both bivalves. N-acetylglucosamine and fucose residues also seem to play a role in food particle choice in scallops and clams, respectively. Overall, this study demonstrates the role of carbohydrate-lectin interactions in particle selection in suspension-feeding bivalves displaying different gill architectures, and it highlights the importance of mannose residues as a cue for the selection of ingested particles.
Collapse
|
9
|
Hu Z, Song H, Yang MJ, Yu ZL, Zhou C, Wang XL, Zhang T. Transcriptome analysis of shell color-related genes in the hard clam Mercenaria mercenaria. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100598. [DOI: 10.1016/j.cbd.2019.100598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/31/2023]
|