1
|
Usmani M, Coudray N, Riggi M, Raghu R, Ramchandani H, Bobe D, Kopylov M, Zhong ED, Iwasa JH, Ekiert DC, Bhabha G. Cryo-ET reveals the in situ architecture of the polar tube invasion apparatus from microsporidian parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603322. [PMID: 39026755 PMCID: PMC11257570 DOI: 10.1101/2024.07.13.603322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Microsporidia are divergent fungal pathogens that employ a harpoon-like apparatus called the polar tube (PT) to invade host cells. The PT architecture and its association with neighboring organelles remain poorly understood. Here, we use cryo-electron tomography to investigate the structural cell biology of the PT in dormant spores from the human-infecting microsporidian species, Encephalitozoon intestinalis . Segmentation and subtomogram averaging of the PT reveal at least four layers: two protein-based layers surrounded by a membrane, and filled with a dense core. Regularly spaced protein filaments form the structural skeleton of the PT. Combining cryo-electron tomography with cellular modeling, we propose a model for the 3-dimensional organization of the polaroplast, an organelle that is continuous with the membrane layer that envelops the PT. Our results reveal the ultrastructure of the microsporidian invasion apparatus in situ , laying the foundation for understanding infection mechanisms.
Collapse
|
2
|
Lv Q, Zhou B, Liao H, He X, Chen Y, Pan G, Long M, Zhou Z. Proteomic profile of polar filament and polar tube from fungal pathogen microsporidium Nosema bombycis provides new insights into its unique invasion organelle. J Proteomics 2022; 263:104617. [PMID: 35595055 DOI: 10.1016/j.jprot.2022.104617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/17/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
Abstract
Microsporidium is a kind of intracellular fungal pathogen that greatly threatens the human health, breeding industry, and food security. All members of microsporidia possess a unique, highly specialized invasion organelle, described as the polar filament. Like "reversing a finger of gloves", the polar filament discharges out of mature spores to transform as the polar tube, and pathogenic sporoplasm is transported to host cell through polar tube to complete infection. During the invasion process, the structure of polar filament and polar tube has changed, so does the protein composition on them? In this study, we firstly proposed a purification method for polar filament and polar tube from microsporidium Nosema bombycis which was infected silkworm Bombyx mori, and it was also found that the structure of polar filament and polar tube was obviously different. Therefore, the proteome of these two structures was comparatively analyzed. A total of 881 and 1216 proteins were respectively identified from the polar filament and polar tube. Ten potential novel polar tube proteins (PTPs) were screened, providing a reference for the novel PTPs identification. Compared with the polar filament, there were 35 upregulated and 41 downregulated proteins on the polar tube. GO and KEGG pathway analysis of all proteins from the polar filament and polar tube provided us with a profound understanding for the microsporidian germination process, which was of great significance for clarifying the infection mechanism of microsporidia. SIGNIFICANCE: Microsporidia are obligate intracellular parasites that infect a wide variety of hosts, including humans. The polar filament is a unique invasion organelle for microsporidia, and it is also one of the important indexes of microsporidian taxonomy. The polar tube is deformed from the primitive polar filament in mature spores. During the germination, the polar filament turns into a polar tube, like "reversing a finger of gloves", through which pathogenic sporoplasm is transported to host cells to complete infection. Since the structure of the polar filament and polar tube has changed, what about their protein composition? In this study, it was the first time to purify the polar filament and the polar tube from microsporidium Nosema bombycis that was infected silkworm Bombyx mori, which provided new insights for studying the invasion organelle of microsporidia. Comparing the fine structure of polar filament and polar tube, we found that their structure was obviously different. Therefore, the protein composition of these two structures is supposed to be varied. In this case, the proteome of these two structures was comparatively analyzed. A total of 881 and 1216 proteins were respectively identified from the polar filament and polar tube. Ten potential novel polar tube proteins (PTPs) were screened, providing a reference for the novel PTPs identification. Compared with the polar filament, there were 35 upregulated and 41 downregulated proteins on the polar tube. GO and KEGG pathway analysis of all proteins from the polar filament and polar tube provided us with a profound understanding for the microsporidian germination process, which was of great significance for clarifying the infection mechanism of microsporidia.
Collapse
Affiliation(s)
- Qing Lv
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Bingqian Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Hongjie Liao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Xiuli He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Yuqing Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China.
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China.
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China.
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China; College of Life Sciences, Chongqing Normal University, Chongqing 400047, China.
| |
Collapse
|
3
|
Fan Y, Wang J, Yu K, Zhang W, Cai Z, Sun M, Hu Y, Zhao X, Xiong C, Niu Q, Chen D, Guo R. Comparative Transcriptome Investigation of Nosema ceranae Infecting Eastern Honey Bee Workers. INSECTS 2022; 13:insects13030241. [PMID: 35323539 PMCID: PMC8952433 DOI: 10.3390/insects13030241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary At present, interaction between Nosema ceranae and Apis cerana is poorly understood, though A. cerana is the original host for N. ceranae. Here, comparative investigation was conducted using transcriptome data from N. ceranae infecting Apis cerana cerana workers at seven days post inoculation (dpi) and 10 dpi (NcT1 and NcT2 groups) as well as N. ceranae spores (NcCK group). There were 1411, 604, and 38 DEGs identified in NcCK vs. NcT1, NcCK vs. NcT2, and NcT1 vs. NcT2 comparison groups. Additionally, 10 upregulated genes and nine downregulated ones were shared by above-mentioned comparison groups. GO classification and KEGG pathway analysis suggested that these DEGs were engaged in a number of key functional terms and pathways such as cell part and glycolysis. Further analysis indicated that most of virulence factor-encoding genes were upregulated, while a few were downregulated during the fungal infection. Findings in this current work provide a basis for clarifying the molecular mechanism udnerlying N. ceranae infection and host-microsporidian interaction during bee nosemosis. Abstract Apis cerana is the original host for Nosema ceranae, a widespread fungal parasite resulting in honey bee nosemosis, which leads to severe losses to the apiculture industry throughout the world. However, knowledge of N. ceranae infecting eastern honey bees is extremely limited. Currently, the mechanism underlying N. ceranae infection is still largely unknown. Based on our previously gained high-quality transcriptome datasets derived from N. ceranae spores (NcCK group), N. ceranae infecting Apis cerana cerana workers at seven days post inoculation (dpi) and 10 dpi (NcT1 and NcT2 groups), comparative transcriptomic investigation was conducted in this work, with a focus on virulence factor-associated differentially expressed genes (DEGs). Microscopic observation showed that the midguts of A. c. cerana workers were effectively infected after inoculation with clean spores of N. ceranae. In total, 1411, 604, and 38 DEGs were identified from NcCK vs. NcT1, NcCK vs. NcT2, and NcT1 vs. NcT2 comparison groups. Venn analysis showed that 10 upregulated genes and nine downregulated ones were shared by the aforementioned comparison groups. The GO category indicated that these DEGs were involved in a series of functional terms relevant to biological process, cellular component, and molecular function such as metabolic process, cell part, and catalytic activity. Additionally, KEGG pathway analysis suggested that the DEGs were engaged in an array of pathways of great importance such as metabolic pathway, glycolysis, and the biosynthesis of secondary metabolites. Furthermore, expression clustering analysis demonstrated that the majority of genes encoding virulence factors such as ricin B lectins and polar tube proteins displayed apparent upregulation, whereas a few virulence factor-associated genes such as hexokinase gene and 6-phosphofructokinase gene presented downregulation during the fungal infection. Finally, the expression trend of 14 DEGs was confirmed by RT-qPCR, validating the reliability of our transcriptome datasets. These results together demonstrated that an overall alteration of the transcriptome of N. ceranae occurred during the infection of A. c. cerana workers, and most of the virulence factor-related genes were induced to activation to promote the fungal invasion. Our findings not only lay a foundation for clarifying the molecular mechanism underlying N. ceranae infection of eastern honey bee workers and microsporidian–host interaction.
Collapse
Affiliation(s)
- Yuanchan Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Jie Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Kejun Yu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Wende Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Zongbing Cai
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Minghui Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Ying Hu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Xiao Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Cuiling Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
| | - Qingsheng Niu
- Jilin Province Institute of Apicultural Science, Jilin 132000, China;
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (D.C.); (R.G.); Tel./Fax: +86-0591-87640197 (R.G.)
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (J.W.); (K.Y.); (W.Z.); (Z.C.); (M.S.); (Y.H.); (X.Z.); (C.X.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (D.C.); (R.G.); Tel./Fax: +86-0591-87640197 (R.G.)
| |
Collapse
|
4
|
Lv Q, Wang L, Fan Y, Meng X, Liu K, Zhou B, Chen J, Pan G, Long M, Zhou Z. Identification and characterization a novel polar tube protein (NbPTP6) from the microsporidian Nosema bombycis. Parasit Vectors 2020; 13:475. [PMID: 32933572 PMCID: PMC7493173 DOI: 10.1186/s13071-020-04348-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/05/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Microsporidians are opportunistic pathogens with a wide range of hosts, including invertebrates, vertebrates and even humans. Microsporidians possess a highly specialized invasion structure, the polar tube. When spores encounter an appropriate environmental stimulation, the polar tube rapidly everts out of the spore, forming a 50-500 µm hollow tube that serves as a conduit for sporoplasm passage into host cells. The polar tube is mainly composed of polar tube proteins (PTPs). So far, five major polar tube proteins have been isolated from microsporidians. Nosema bombycis, the first identified microsporidian, infects the economically important insect silkworm and causes heavy financial loss to the sericulture industry annually. RESULTS A novel polar tube protein of N. bombycis (NbPTP6) was identified. NbPTP6 was rich in histidine (H) and serine (S), which contained a signal peptide of 16 amino acids at the N-terminus. NbPTP6 also had 6 potential O-glycosylation sites and 1 potential N-glycosylation site. The sequence alignment analysis revealed that NbPTP6 was homologous with uncharacterized proteins from other microsporidians (Encephalitozoon cuniculi, E. hellem and N. ceranae). Additionally, the NbPTP6 gene was expressed in mature N. bombycis spores. Indirect immunofluorescence analysis (IFA) result showed that NbPTP6 is localized on the whole polar tube of the germinated spores. Moreover, IFA, enzyme-linked immunosorbent (ELISA) and fluorescence-activated cell sorting (FACS) assays results revealed that NbPTP6 had cell-binding ability. CONCLUSIONS Based on our results, we have confirmed that NbPTP6 is a novel microsporidian polar tube protein. This protein could adhere with the host cell surface, so we speculated it might play an important role in the process of microsporidian infection.
Collapse
Affiliation(s)
- Qing Lv
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Lijun Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Youpeng Fan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Xianzhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Keke Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Bingqian Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
- College of Life Sciences, Chongqing Normal University, Chongqing, 400047 China
| |
Collapse
|
5
|
Wang L, Lv Q, He Y, Gu R, Zhou B, Chen J, Fan X, Pan G, Long M, Zhou Z. Integrated qPCR and Staining Methods for Detection and Quantification of Enterocytozoon hepatopenaei in Shrimp Litopenaeus vannamei. Microorganisms 2020; 8:microorganisms8091366. [PMID: 32906623 PMCID: PMC7565997 DOI: 10.3390/microorganisms8091366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Enterocytozoon hepatopenaei (EHP) is an obligate, intracellular, spore-forming parasite, which mainly infects the gastrointestinal tract of shrimp. It significantly hinders the growth of shrimp, which causes substantial economic losses in farming. In this study, we established and optimized a SYBR Green I fluorescent quantitative PCR (qPCR) assay based on the polar tube protein 2 (PTP2) gene for the quantitative analysis of EHP-infected shrimp. The result showed that the optimum annealing temperature was 60 °C for the corresponding relation between the amplification quantitative (Cq) and the logarithmic of the initial template quantity (x), conformed to Cq = −3.2751x + 31.269 with a correlation coefficient R2 = 0.993. The amplification efficiency was 102%. This qPCR method also showed high sensitivity, specificity, and repeatability. Moreover, a microscopy method was developed to observe and count EHP spores in hepatopancreas tissue of EHP-infected shrimp using Fluorescent Brightener 28 staining. By comparing the PTP2-qPCR and microscopy method, the microscopic examination was easier to operate whereas PTP2-qPCR was more sensitive for analysis. And we found that there was a correspondence between the results of these two methods. In summary, the PTP2-qPCR method integrated microscopy could serve for EHP detection during the whole period of shrimp farming and satisfy different requirements for detecting EHP in shrimp farming.
Collapse
Affiliation(s)
- Lijun Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Qing Lv
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Yantong He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Ruocheng Gu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Bingqian Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Xiaodong Fan
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
- Correspondence:
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|