1
|
Iglesias D, Villalba A, Mariño C, No E, Carballal MJ. Long-term survey discloses a shift in the dynamics pattern of an emerging disease of cockles Cerastoderma edule, marteiliosis, and raises hypotheses to explain it. J Invertebr Pathol 2023; 201:108021. [PMID: 37977281 DOI: 10.1016/j.jip.2023.108021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Drivers of marine disease outbreaks are poorly understood in spite of their growing impact. We present here results from a unique case study examining how cockles Cerastoderma edule have responded to the introduction of the novel protistan Marteilia cochillia, which led in 2012 to cockle fishery collapse in Galician rias. Based on intensive survey for eight years (2011-2019) of two affected shellfish beds, inner and outer in the Ría de Arousa, involving monthly evaluation of cockle health status and estimation of mortality, detailed information is provided of the declining impact of marteiliosis over a wild cockle population with evidence suggesting its increasing resistance. Disease dynamics involved an annual "breaking wave" of prevalence and subsequent cockle mass mortality, causing the near extinction of every recruited cohort. A shift in this pattern, from a severe epidemic towards an endemic profile, was observed in the inner shellfish bed since the cohort that was recruited in 2016, suggesting the hypothesis of increasing marteiliosis resistance through natural selection. Risk factors that may contribute to trigger marteiliosis outbreaks were analysed. Host age and sex did not influence susceptibility to marteiliosis. No clear relationships between environmental conditions (temperature, salinity and upwelling index) or cockle density and disease dynamics were found. Spatial differences in disease dynamics could be due to differences in the abundance of infective stages hypothetically linked to spatial differences in the population dynamics of a putative planktonic intermediate host. All these findings have potential implications for the management of diseased populations.
Collapse
Affiliation(s)
- David Iglesias
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain.
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain; Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Spain
| | - Carlos Mariño
- Confraría de Pescadores "San Antonio" de Cambados, Cambados, Spain
| | - Edgar No
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
| | - María J Carballal
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
| |
Collapse
|
2
|
Skujina I, Hooper C, Bass D, Feist SW, Bateman KS, Villalba A, Carballal MJ, Iglesias D, Cao A, Ward GM, Ryder DRG, Bignell JP, Kerr R, Ross S, Hazelgrove R, Macarie NA, Prentice M, King N, Thorpe J, Malham SK, McKeown NJ, Ironside JE. Discovery of the parasite Marteilia cocosarum sp. nov. In common cockle (Cerastoderma edule) fisheries in Wales, UK and its comparison with Marteilia cochillia. J Invertebr Pathol 2022; 192:107786. [PMID: 35700790 DOI: 10.1016/j.jip.2022.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/05/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
Abstract
Diseases of bivalve molluscs caused by paramyxid parasites of the genus Marteilia have been linked to mass mortalities and the collapse of commercially important shellfish populations. Until recently, no Marteilia spp. have been detected in common cockle (Cerastoderma edule) populations in the British Isles. Molecular screening of cockles from ten sites on the Welsh coast indicates that a Marteilia parasite is widespread in Welsh C. edule populations, including major fisheries. Phylogenetic analysis of ribosomal DNA (rDNA) gene sequences from this parasite indicates that it is a closely related but different species to Marteilia cochillia, a parasite linked to mass mortality of C. edule fisheries in Spain, and that both are related to Marteilia octospora, for which we provide new rDNA sequence data. Preliminary light and transmission electron microscope (TEM) observations support this conclusion, indicating that the parasite from Wales is located primarily within areas of inflammation in the gills and the connective tissue of the digestive gland, whereas M. cochillia is found mainly within the epithelium of the digestive gland. The impact of infection by the new species, here described as Marteilia cocosarum n. sp., upon Welsh fisheries is currently unknown.
Collapse
Affiliation(s)
- Ilze Skujina
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Chantelle Hooper
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter UK; Department of Life Sciences, Natural History Museum, London, UK
| | - Stephen W Feist
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Kelly S Bateman
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Antonio Villalba
- Centro de Investigacións Mariñas, Vilanova de Arousa, Spain; Departamento de Ciencias de la Vida, Universdad de Alcalá, Alcalá de Henares, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country, Plentzia, Spain
| | | | - David Iglesias
- Centro de Investigacións Mariñas, Vilanova de Arousa, Spain
| | - Asunción Cao
- Centro de Investigacións Mariñas, Vilanova de Arousa, Spain
| | - Georgia M Ward
- Department of Life Sciences, Natural History Museum, London, UK
| | - David R G Ryder
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - John P Bignell
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Rose Kerr
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Stuart Ross
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Richard Hazelgrove
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Nicolae A Macarie
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Melanie Prentice
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Nathan King
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Jamie Thorpe
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Niall J McKeown
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Joseph E Ironside
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK.
| |
Collapse
|