1
|
De Wint FC, Nicholson S, Koid QQ, Zahra S, Chestney-Claassen G, Seelan JSS, Xie J, Xing S, Fayle TM, Haelewaters D. Introducing a global database of entomopathogenic fungi and their host associations. Sci Data 2024; 11:1418. [PMID: 39709508 DOI: 10.1038/s41597-024-04103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/07/2024] [Indexed: 12/23/2024] Open
Abstract
Pathogens significantly influence natural and agricultural ecosystems, playing a crucial role in the regulation of species populations and maintaining biodiversity. Entomopathogenic fungi (EF), particularly within the Hypocreales order, exemplify understudied pathogens that infect insects and other arthropods globally. Despite their ecological importance, comprehensive data on EF host specificity and geographical distribution are lacking. To address this, we present EntomoFun 1.0, an open-access database centralizing global records of EF-insect associations in Hypocreales. This database includes 1,791 records detailing EF species, insect host taxa, countries of occurrence, life stages of hosts, and information sources. EntomoFun 1.0 is constructed based on 600 literature sources, as well as herbarium specimens of the Royal Botanical Gardens, Kew. This database is intended to test hypotheses, identify knowledge gaps, and stimulate future research. Contents of the EntomoFun 1.0 database are visualized with a global map, taxonomic chart, bipartite community network, and graphs.
Collapse
Affiliation(s)
- Frederik C De Wint
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Department of Ecology, Ceske Budejovice, Czech Republic
- Department of Zoology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
| | - Soun Nicholson
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Department of Ecology, Ceske Budejovice, Czech Republic
| | - Qian Qun Koid
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Department of Ecology, Ceske Budejovice, Czech Republic
- Department of Zoology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Shafia Zahra
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Department of Ecology, Ceske Budejovice, Czech Republic
- Department of Zoology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jie Xie
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
| | - Shuang Xing
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Department of Ecology, Ceske Budejovice, Czech Republic
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Tom M Fayle
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Department of Ecology, Ceske Budejovice, Czech Republic.
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom.
| | - Danny Haelewaters
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Department of Ecology, Ceske Budejovice, Czech Republic.
- Department of Zoology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
He H, Huang S, Geng N, Weng S, He J, Li C. Acute hypoxia stress mediates HIF-1α-Yki-Cactus axis to facilitate the infection of Vibrio parahaemolyticus in Litopenaeus vannamei. Front Immunol 2024; 15:1476309. [PMID: 39664389 PMCID: PMC11632965 DOI: 10.3389/fimmu.2024.1476309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Hypoxia stress renders aquatic animals more susceptible to bacterial disease, yet the underlying mechanism remains elusive. Methods We conducted an acute hypoxia stress experiment to investigate the impact of stress on the immune response of Litopenaeus vannamei via transcriptome analysis, RT-qPCR and Western blot. Results Our results showed that acute hypoxia stress disrupted the tissue architecture, and significantly changed the gene expression profiles in the hepatopancreas of shrimp. More importantly, acute hypoxia stress significantly changed the expression levels of immune-related genes. Ladderlectin, GBP 1, Caspase-1, CLEC4F, MR1 and GBP 2 were significantly down-regulated, but HIF-1α, Cactus, TIPE, Akirin-2, Ivns1abp and TLR3 were significantly up-regulated. We further demonstrated that acute hypoxia activated Yki via HIF-1α to enhance expression level of Cactus, and then Cactus inhibited the phosphorylation of Dorsal and its nuclear translocation, thereby suppressing antibacterial immunity. Subsequently, the challenge experiment following stress revealed that exposure to acute hypoxia stress amplified the infectivity and lethality of Vibrio parahaemolyticus to shrimp. The mechanism of HIF-1α-Yki-Cautus axis provided an explanation for this phenomenon. Discussion This study offered new insights into interactions among environmental hypoxia stress, host immunity and pathogens, thereby providing practical guidelines for optimizing shrimp culture practices.
Collapse
Affiliation(s)
- Honghui He
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Shaoqing Huang
- College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Ningze Geng
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| |
Collapse
|
3
|
Sui L, Zhu H, Wang D, Zhang Z, Bidochka MJ, Barelli L, Lu Y, Li Q. Tripartite interactions of an endophytic entomopathogenic fungus, Asian corn borer, and host maize under elevated carbon dioxide. PEST MANAGEMENT SCIENCE 2024; 80:4575-4584. [PMID: 38738508 DOI: 10.1002/ps.8163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Biological control of insect pests is encountering an unprecedented challenge in agricultural systems due to the ongoing rise in carbon dioxide (CO2) level. The use of entomopathogenic fungi (EPF) in these systems is gaining increased attention, and EPF as crop endophytes hold the potential for combining insect pest control and yield enhancement of crops, but the effects of increased CO2 concentration on this interaction are poorly understood. Here, the introduction of endophytic EPF was explored as an alternative sustainable management strategy benefiting crops under elevated CO2, using maize (Zea mays), Asian corn borer (Ostrinia furnacalis), and EPF (Beauveria bassiana) to test changes in damage to maize plants from O. furnacalis, and the nutritional status (content of carbon, nitrogen, phosphorus, potassium), biomass, and yield of maize. RESULTS The results showed that endophytic B. bassiana could alleviate the damage caused by O. furnacalis larvae for maize plants under ambient CO2 concentration, and this effect was enhanced under higher CO2 concentration. Inoculation with B. bassiana effectively counteracted the adverse impact of elevated CO2 on maize plants by preserving the nitrogen content at its baseline level (comparable with ambient CO2 conditions without B. bassiana). Both simultaneous effects could explain the improvement of biomass and yield of maize under B. bassiana inoculation and elevated CO2. CONCLUSION This finding provides key information about the multifaceted benefits of B. bassiana as a maize endophyte. Our results highlight the promising potential of incorporating EPF as endophytes into integrated pest management strategies, particularly under elevated CO2 concentrations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Hui Zhu
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Deli Wang
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | - Larissa Barelli
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
| | - Qiyun Li
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
4
|
Rozsypal J. Basking improves but winter warming worsens overwinter survival in the linden bug. JOURNAL OF INSECT PHYSIOLOGY 2024; 156:104655. [PMID: 38852905 DOI: 10.1016/j.jinsphys.2024.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The present study investigates the effects of rare winter basking behavior (observed in wild populations of the Linden bug, Pyrrhocoris apterus) and the effects of winter warming (predicted by climate models) on overwinter survival and physiology of P. apterus. The insects were exposed to scenarios simulating basking and winter warming in the laboratory. Part of the insects were exposed to real winters under semi-natural conditions in the field for comparison. The results show a clear positive effect of winter basking, implying that basking behavior is critical for overwinter survival in P. apterus. In contrast, winter warming was found to have a strong negative effect on overwinter survival, potentially representing a threat to central European populations of P. apterus. Physiological parameters (mass, water content, SCP, energy reserves) measured in this study cannot fully explain all the results. Further study is needed to better understand the mechanisms behind the positive effects of winter basking and the negative effects of winter warming on overwintering P. apterus.
Collapse
Affiliation(s)
- Jan Rozsypal
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czechia.
| |
Collapse
|
5
|
van Dijk LJA, Fisher BL, Miraldo A, Goodsell RM, Iwaszkiewicz-Eggebrecht E, Raharinjanahary D, Rajoelison ET, Łukasik P, Andersson AF, Ronquist F, Roslin T, Tack AJM. Temperature and water availability drive insect seasonality across a temperate and a tropical region. Proc Biol Sci 2024; 291:20240090. [PMID: 38889793 DOI: 10.1098/rspb.2024.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
The more insects there are, the more food there is for insectivores and the higher the likelihood for insect-associated ecosystem services. Yet, we lack insights into the drivers of insect biomass over space and seasons, for both tropical and temperate zones. We used 245 Malaise traps, managed by 191 volunteers and park guards, to characterize year-round flying insect biomass in a temperate (Sweden) and a tropical (Madagascar) country. Surprisingly, we found that local insect biomass was similar across zones. In Sweden, local insect biomass increased with accumulated heat and varied across habitats, while biomass in Madagascar was unrelated to the environmental predictors measured. Drivers behind seasonality partly converged: In both countries, the seasonality of insect biomass differed between warmer and colder sites, and wetter and drier sites. In Sweden, short-term deviations from expected season-specific biomass were explained by week-to-week fluctuations in accumulated heat, rainfall and soil moisture, whereas in Madagascar, weeks with higher soil moisture had higher insect biomass. Overall, our study identifies key drivers of the seasonal distribution of flying insect biomass in a temperate and a tropical climate. This knowledge is key to understanding the spatial and seasonal availability of insects-as well as predicting future scenarios of insect biomass change.
Collapse
Affiliation(s)
- Laura J A van Dijk
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 114 18, Sweden
| | - Brian L Fisher
- Entomology, California Academy of Sciences, San Francisco, CA 94118, USA
- Madagascar Biodiversity Center, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo 101, Madagascar
| | - Andreia Miraldo
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 114 18, Sweden
| | - Robert M Goodsell
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 114 18, Sweden
| | | | - Dimby Raharinjanahary
- Madagascar Biodiversity Center, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo 101, Madagascar
| | | | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anders F Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm 171 21, Sweden
| | - Fredrik Ronquist
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 114 18, Sweden
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 114 19 Stockholm, Sweden
| |
Collapse
|
6
|
Faraz K, Seely M, Marano AL. The role of the environment in allergic skin disease. Curr Allergy Asthma Rep 2024; 24:323-330. [PMID: 38733510 DOI: 10.1007/s11882-024-01147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
PURPOSE OF REVIEW This paper explores how environmental factors influence allergic skin diseases, including atopic dermatitis (AD), contact dermatitis (CD), urticaria, angioedema, and reactions to drugs and insect bites. RECENT FINDINGS Research indicates a significant impact of environmental elements on allergic skin diseases. High air pollution levels exacerbate symptoms, while climate change contributes to increased skin barrier dysfunction, particularly affecting AD. Allergen prevalence is influenced by climate and pollution. Irritants, like those in detergents and cosmetics, play a major role in CD. Plants also contribute, causing various skin reactions. Understanding the interplay between environmental factors and allergic skin diseases is crucial for effective management. Physicians must address these factors to support patient well-being and promote skin health amidst environmental changes.
Collapse
Affiliation(s)
- Khushnood Faraz
- Duke University School of Medicine, 1000 Trent Dr, Durham, NC, 27710, USA
| | - Mason Seely
- Duke University School of Medicine, 1000 Trent Dr, Durham, NC, 27710, USA
| | - Anne L Marano
- Department of Dermatology, Duke University Medical Center, 1000 Trent Dr, Durham, NC, 27710, USA.
| |
Collapse
|
7
|
Hong S, Shang J, Sun Y, Tang G, Wang C. Fungal infection of insects: molecular insights and prospects. Trends Microbiol 2024; 32:302-316. [PMID: 37778923 DOI: 10.1016/j.tim.2023.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Entomopathogenic fungi (EPF) distribute in different fungal phyla with variable host ranges and play essential role in regulating insect populations by infecting hosts via cuticle penetration. The representative ascomycete EPF of Metarhizium and Beauveria species have been widely used in mechanistic investigations of fungus-insect interactions and as ecofriendly mycoinsecticides. Here, we review the function of diverse genes, pathways, and secondary metabolites associated with EPF stepwise infections. In particular, emerging evidence has shown that EPF have to outcompete insect ectomicrobiotas prior to penetrating cuticles, and subvert or evade host antifungal immunity by using effector-like proteins and chemicals like plant pathogens. Future prospects are discussed for a better understanding of fungal pathobiology, which will provide novel insights into microbe-animal interactions.
Collapse
Affiliation(s)
- Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaneli Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
8
|
Loshouarn H, Guarneri AA. The interplay between temperature, Trypanosoma cruzi parasite load, and nutrition: Their effects on the development and life-cycle of the Chagas disease vector Rhodnius prolixus. PLoS Negl Trop Dis 2024; 18:e0011937. [PMID: 38306403 PMCID: PMC10866482 DOI: 10.1371/journal.pntd.0011937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/14/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024] Open
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi transmitted by blood-sucking insects of the subfamily Triatominae, is a major neglected tropical disease affecting 6 to 7 million of people worldwide. Rhodnius prolixus, one of the most important vectors of Chagas disease in Latin America, is known to be highly sensitive to environmental factors, including temperature. This study aimed to investigate the effects of different temperatures on R. prolixus development and life-cycle, its relationship with T. cruzi, and to gather information about the nutritional habits and energy consumption of R. prolixus. We exposed uninfected and infected R. prolixus to four different temperatures ranging from 24°C to 30°C, and monitored their survival, developmental rate, body and blood meal masses, urine production, and the temporal dynamics of parasite concentration in the excreted urine of the triatomines over the course of their development. Our results demonstrate that temperature significantly impacts R. prolixus development, life-cycle and their relationship with T. cruzi, as R. prolixus exposed to higher temperatures had a shorter developmental time and a higher mortality rate compared to those exposed to lower temperatures, as well as a lower ability to retain weight between blood meals. Infection also decreased the capacity of the triatomines to retain weight gained by blood-feeding to the next developmental stage, and this effect was proportional to parasite concentration in excreted urine. We also showed that T. cruzi multiplication varied depending on temperature, with the lowest temperature having the lowest parasite load. Our findings provide important insights into the potential impact of climate change on the epidemiology of Chagas disease, and can contribute to efforts to model the future distribution of this disease. Our study also raises new questions, highlighting the need for further research in order to understand the complex interactions between temperature, vector biology, and parasite transmission.
Collapse
Affiliation(s)
- Henri Loshouarn
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | - Alessandra A. Guarneri
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Mason CJ, Shikano I. Hotter days, stronger immunity? Exploring the impact of rising temperatures on insect gut health and microbial relationships. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101096. [PMID: 37517588 DOI: 10.1016/j.cois.2023.101096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Climate change can generate cascading effects on animals through compounding stressors. As ectotherms, insects are particularly susceptible to variation in temperature and extreme events. How insects respond to temperature often occurs with respect to their environment, and a pertinent question involves how thermal stress integrates with insect capabilities to resolve interactions with gut microorganisms (microbiome and gut pathogens). We explore the impact of elevated temperatures and the impact of the host physiological response influencing immune system regulation and the gut microbiome. We summarize the literature involving how elevated temperature extremes impact insect gut immune systems, and how in turn that alters potential interactions with the gut microbiome and potential pathogens. Temperature effects on immunity are complex, and ultimate effects on microbial components can vary by system. Moreover, there are multiple questions yet to explore in how insects contend with simultaneous abiotic stressors and potential trade-offs in their response to opportunistic microbiota.
Collapse
Affiliation(s)
- Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Ikkei Shikano
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 513, Honolulu, HI 96822, USA.
| |
Collapse
|
10
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Chitinases as key virulence factors in microbial pathogens: Understanding their role and potential as therapeutic targets. Int J Biol Macromol 2023; 249:126021. [PMID: 37506799 DOI: 10.1016/j.ijbiomac.2023.126021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Chitinases are crucial for the survival of bacterial and fungal pathogens both during host infection and outside the host in the environment. Chitinases facilitate adhesion onto host cells, act as virulence factors during infection, and provide protection from the host immune system, making them crucial factors in the survival of microbial pathogens. Understanding the mechanisms behind chitinase action is beneficial to design novel therapeutics to control microbial infections. This review explores the role of chitinases in the pathogenesis of bacterial, fungal, and viral infections. The mechanisms underlying the action of chitinases of bacterial, fungal, and viral pathogens in host cells are thoroughly reviewed. The evolutionary relationships between chitinases of various bacterial, fungal, and viral pathogens are discussed to determine their involvement in processes, such as adhesion and host immune system modulation. Gaining a better understanding of the distribution and activity of chitinases in these microbial pathogens can help elucidate their role in the invasion and infection of host cells.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
11
|
Pinnow N, Chibani CM, Güllert S, Weiland-Bräuer N. Microbial community changes correlate with impaired host fitness of Aurelia aurita after environmental challenge. Anim Microbiome 2023; 5:45. [PMID: 37735458 PMCID: PMC10515101 DOI: 10.1186/s42523-023-00266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
Climate change globally endangers certain marine species, but at the same time, such changes may promote species that can tolerate and adapt to varying environmental conditions. Such acclimatization can be accompanied or possibly even be enabled by a host's microbiome; however, few studies have so far directly addressed this process. Here we show that acute, individual rises in seawater temperature and salinity to sub-lethal levels diminished host fitness of the benthic Aurelia aurita polyp, demonstrated by up to 34% reduced survival rate, shrinking of the animals, and almost halted asexual reproduction. Changes in the fitness of the polyps to environmental stressors coincided with microbiome changes, mainly within the phyla Proteobacteria and Bacteroidota. The absence of bacteria amplified these effects, pointing to the benefit of a balanced microbiota to cope with a changing environment. In a future ocean scenario, mimicked by a combined but milder rise of temperature and salinity, the fitness of polyps was severely less impaired, together with condition-specific changes in the microbiome composition. Our results show that the effects on host fitness correlate with the strength of environmental stress, while salt-conveyed thermotolerance might be involved. Further, a specific, balanced microbiome of A. aurita polyps supports the host's acclimatization. Microbiomes may provide a means for acclimatization, and microbiome flexibility can be a fundamental strategy for marine animals to adapt to future ocean scenarios and maintain biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Nicole Pinnow
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Cynthia M Chibani
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Simon Güllert
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- Current address: Sysmex Inostics GmbH, Falkenried 88, 20251, Hamburg, Germany
| | - Nancy Weiland-Bräuer
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| |
Collapse
|
12
|
Ferguson LV, Adamo SA. From perplexing to predictive: are we ready to forecast insect disease susceptibility in a warming world? J Exp Biol 2023; 226:288412. [PMID: 36825944 DOI: 10.1242/jeb.244911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Insects are critical to our ecosystems, but we do not fully understand their future in our warming world. Rising temperatures are affecting insect physiology in myriad ways, including changes to their immune systems and the ability to fight infection. Whether predicted changes in temperature will contribute to insect mortality or success, and the role of disease in their future survival, remains unclear. Although heat can enhance immunity by activating the integrated defense system (e.g. via the production of protective molecules such as heat-shock proteins) and accelerating enzyme activity, heat can also compromise the immune system through energetic-resource trade-offs and damage. The responses to heat are highly variable among species. The reasons for this variability are poorly known, and we are lagging in our understanding of how and why the immune system responds to changes in temperature. In this Commentary, we highlight the variation in insect immune responses to heat and the likely underlying mechanisms. We suggest that we are currently limited in our ability to predict the effects of rising temperatures on insect immunity and disease susceptibility, largely owing to incomplete information, coupled with a lack of tools for data integration. Moreover, existing data are concentrated on a relatively small number of insect Orders. We provide suggestions for a path towards making more accurate predictions, which will require studies with realistic temperature exposures and housing design, and a greater understanding of both the thermal biology of the immune system and connections between immunity and the physiological responses to heat.
Collapse
Affiliation(s)
- Laura V Ferguson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
13
|
Mastore M, Quadroni S, Rezzonico A, Brivio MF. The Influence of Daily Temperature Fluctuation on the Efficacy of Bioinsecticides on Spotted Wing Drosophila Larvae. INSECTS 2022; 14:43. [PMID: 36661971 PMCID: PMC9866168 DOI: 10.3390/insects14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Global climate change is allowing the invasion of insect pests into new areas without natural competitors and/or predators. The dipteran Drosophila suzukii has invaded both the Americas and Europe, becoming a serious problem for fruit crops. Control methods for this pest are still based on the use of pesticides, but less invasive and more sustainable methods, such as biocontrol, are needed. Variations in environmental conditions can affect the efficacy of bioinsecticides influencing their behavior and physiology besides that of the target insects. In this work, we developed a system that simulates the daily temperature fluctuations (DTFs) detected in the environment, with the aim of studying the influence of temperature on biocontrol processes. We investigated the effects of DTFs on the efficacy of four bioinsecticides. Results showed that DTFs modify the efficacy of some entomopathogens while they are ineffective on others. Specifically, the bacterium Bacillus thuringiensis is the most effective bioinsecticide under all conditions tested, i.e., low DTF (11−22 °C) and high DTF (17−33 °C) compared to constant temperature (25 °C). In contrast, nematodes are more sensitive to changes in temperature: Steinernema carpocapsae loses efficacy at low DTF, while Steinernema feltiae and Heterorhabditis bacteriophora are not effective in controlling the target dipteran. This work provides a basis for reviewing biological control methods against invasive species in the current context of climate change.
Collapse
Affiliation(s)
- Maristella Mastore
- Laboratory of Environmental Entomology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| | - Silvia Quadroni
- Laboratory of Ecology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| | - Alberto Rezzonico
- Laboratory of Environmental Entomology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| | - Maurizio Francesco Brivio
- Laboratory of Environmental Entomology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
14
|
Carlson KB, Wcisel DJ, Ackerman HD, Romanet J, Christiansen EF, Niemuth JN, Williams C, Breen M, Stoskopf MK, Dornburg A, Yoder JA. Transcriptome annotation reveals minimal immunogenetic diversity among Wyoming toads, Anaxyrus baxteri. CONSERV GENET 2022; 23:669-681. [PMID: 37090205 PMCID: PMC10118071 DOI: 10.1007/s10592-022-01444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
Briefly considered extinct in the wild, the future of the Wyoming toad (Anaxyrus baxteri) continues to rely on captive breeding to supplement the wild population. Given its small natural geographic range and history of rapid population decline at least partly due to fungal disease, investigation of the diversity of key receptor families involved in the host immune response represents an important conservation need. Population decline may have reduced immunogenetic diversity sufficiently to increase the vulnerability of the species to infectious diseases. Here we use comparative transcriptomics to examine the diversity of toll-like receptors and major histocompatibility complex (MHC) sequences across three individual Wyoming toads. We find reduced diversity at MHC genes compared to bufonid species with a similar history of bottleneck events. Our data provide a foundation for future studies that seek to evaluate the genetic diversity of Wyoming toads, identify biomarkers for infectious disease outcomes, and guide breeding strategies to increase genomic variability and wild release successes.
Collapse
Affiliation(s)
- Kara B. Carlson
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dustin J. Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hayley D. Ackerman
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jessica Romanet
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Emily F. Christiansen
- Environmental Medicine Consortium, North Carolina State University, Raleigh, NC, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
- North Carolina Aquariums, Raleigh, NC, USA
| | - Jennifer N. Niemuth
- Environmental Medicine Consortium, North Carolina State University, Raleigh, NC, USA
| | - Christina Williams
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Michael K. Stoskopf
- Environmental Medicine Consortium, North Carolina State University, Raleigh, NC, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC USA
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
15
|
Brancini GTP, Hallsworth JE, Corrochano LM, Braga GÚL. Photobiology of the keystone genus Metarhizium. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112374. [PMID: 34954528 DOI: 10.1016/j.jphotobiol.2021.112374] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Metarhizium fungi are soil-inhabiting ascomycetes which are saprotrophs, symbionts of plants, pathogens of insects, and participate in other trophic/ecological interactions, thereby performing multiple essential ecosystem services. Metarhizium species are used to control insect pests of crop plants and insects that act as vectors of human and animal diseases. To fulfil their functions in the environment and as biocontrol agents, these fungi must endure cellular stresses imposed by the environment, one of the most potent of which is solar ultraviolet (UV) radiation. Here, we examine the cellular stress biology of Metarhizium species in context of their photobiology, showing how photobiology facilitates key aspects of their ecology as keystone microbes and as mycoinsectides. The biophysical basis of UV-induced damage to Metarhizium, and mechanistic basis of molecular and cellular responses to effect damage repair, are discussed and interpreted in relation to the solar radiation received on Earth. We analyse the interplay between UV and visible light and how the latter increases cellular tolerance to the former via expression of a photolyase gene. By integrating current knowledge, we propose the mechanism through which Metarhizium species use the visible fraction of (low-UV) early-morning light to mitigate potentially lethal damage from intense UV radiation later in the day. We also show how this mechanism could increase Metarhizium environmental persistence and improve its bioinsecticide performance. We discuss the finding that visible light modulates stress biology in the context of further work needed on Metarhizium ecology in natural and agricultural ecosystems, and as keystone microbes that provide essential services within Earth's biosphere.
Collapse
Affiliation(s)
- Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Gilberto Ú L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
16
|
St. Leger RJ. From the Lab to the Last Mile: Deploying Transgenic Approaches Against Mosquitoes. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.804066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ingenious exploitation of transgenic approaches to produce malaria resistant or sterile mosquitoes, or hypervirulent mosquito pathogens, has produced many potential solutions to vector borne diseases. However, in spite of technological feasibility, it has not been determined how well these new methods will work, and how they should be tested and regulated. Some self-limiting transgenic fungal pathogens and mosquitoes are almost field ready, and may be easier to regulate than self-sustaining strategies. However, they require repeat sales and so must show business viability; low-cost mass production is just one of a number of technical constraints that are sometimes treated as an afterthought in technology deployment. No transgenic self-sustaining approach to anopheline control has ever been deployed because of unresolved ethical, social and regulatory issues. These overlapping issues include: 1) the transparency challenge, which requires public discourse, particularly in Africa where releases are proposed, to determine what society is willing to risk given the potential benefits; 2) the transboundary challenge, self-sustaining mosquitoes or pathogens are potentially capable of crossing national boundaries and irreversibly altering ecosystems, and 3) the risk assessment challenge. The polarized debate as to whether these technologies will ever be used to save lives is ongoing; they will founder without a political answer as to how do we interpret the precautionary principle, as exemplified in the Cartagena protocol, in the global context of technological changes.
Collapse
|