1
|
Mojžišová M, Weiperth A, Gebauer R, Laffitte M, Patoka J, Grandjean F, Kouba A, Petrusek A. Diversity and distribution of Aphanomyces astaci in a European hotspot of ornamental crayfish introductions. J Invertebr Pathol 2024; 202:108040. [PMID: 38081448 DOI: 10.1016/j.jip.2023.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Ornamental trade has become an important introduction pathway of non-native aquatic species worldwide. Correspondingly, there has been an alarming increase in the number of established crayfish of aquarium origin in Europe over the previous decade. The oomycete Aphanomyces astaci, the pathogen causing crayfish plague responsible for serious declines of European crayfish populations, is dispersed with introduced North American crayfish. The role of ornamental taxa in introducing and spreading different genotypes of this pathogen in open waters remains unclear. We investigated the distribution, prevalence, and diversity of A. astaci in Budapest, Hungary, which became a hotspot of aquarium crayfish introductions. Their establishment in this area was facilitated by locally abundant thermal waters. We screened for A. astaci in six host taxa from 18 sites sampled between 2018 and 2021: five cambarids (Cambarellus patzcuarensis, Faxonius limosus, Procambarus alleni, P. clarkii, P. virginalis) and one native astacid (Pontastacus leptodactylus). The pathogen was confirmed at five sampled sites in four host taxa: P. virginalis, P. clarkii, F. limosus, and for the first time in European open waters also in P. alleni. Genotyping was successful only in individuals from two different brooks where multiple host species coexisted but revealed unexpected patterns. Mitochondrial B-haplogroup of A. astaci, previously usually reported from Pacifastacus leniusculus or infected European species, was detected in P. virginalis at both sites, and in both F. limosus and P. virginalis sampled from a thermally stable tributary of Barát brook in 2018. In contrast, A-haplogroup of A. astaci was detected in coexisting F. limosus, P. virginalis and P. clarkii sampled in the same watercourse just a few hundred meters downstream in 2020. Additional genotyping methods indicated that a previously unknown A. astaci strain was associated with the latter haplogroup. One P. virginalis individual from 2020 was apparently co-infected by strains representing both mitochondrial haplogroups. The results indicated multiple sources of A. astaci in Budapest, likely directly associated with the introduction of ornamental species, interspecific transmission of this pathogen among ornamental hosts, and potential for a quick spatial or temporal turnover of dominant A. astaci strains at a certain locality. This highlights that in regions with high richness of potential A. astaci hosts, host taxon/pathogen genotype combinations become unpredictable, which might prevent reliable genotyping of pathogen sources in local crayfish mass mortalities.
Collapse
Affiliation(s)
- Michaela Mojžišová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, CZ-12800, Czechia.
| | - András Weiperth
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, Gödöllő, HU-2100, Hungary.
| | - Radek Gebauer
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, CZ-38925, Czechia.
| | - Maud Laffitte
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267 Equipe Ecologie Evolution Symbiose, Université de Poitiers, 3 rue Jacques Fort, TSA 51106, Poitiers Cedex, FR-86073, France.
| | - Jiří Patoka
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague - Suchdol, CZ-16500, Czechia.
| | - Frédéric Grandjean
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267 Equipe Ecologie Evolution Symbiose, Université de Poitiers, 3 rue Jacques Fort, TSA 51106, Poitiers Cedex, FR-86073, France.
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, CZ-38925, Czechia.
| | - Adam Petrusek
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, CZ-12800, Czechia.
| |
Collapse
|